
International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

21

Change Requests Artifacts to Assess Impact on
Structural Design of SDLC Phases

Rudra Kumar Madapudi
Assoc. Professor,

Dept. Of CSE
AITS, Rajampet

A. Ananda Rao, PhD.
Professor & Principal

JNTU College of Engineering,
Anantapur

Gopichand Merugu
Associate.Professor

CSE Department, BVRIT,
Narasapur, AP, India

ABSTRACT

Current escalating demands on software, software developers

to be obliged to generate software that can be altered, which

escape from the risk of mortifying the software structural-

design of the "SDLC phases". Degraded software structural-

design is problematic because it makes the system more prone

to defects and change requests turn to be costlier. The impacts

of change requests to software can be hard to determine. One

way to determine these consequences is to artifact the causes

and effects caused by change request. A software change

artifact allows to assess the effects of a change using different

criteria such as causes to apply the change to be requested,

change request type and the software module influenced by

that changes. Once these artifacts identified then these

artifacts can be used to scale the potential impact of the

change. Another benefit of defining artifacts of the change-

requests are that it allows engineers to develop a common

approach to deal with changes that have similar in defined

artifacts, rather than addressing each change individually.

This paper introduces a mechanism that defines artifacts of

the change-request to assist developers in measuring the

impact of a software change on the structural-design of the

SDLC-phases.

Keywords:

Artifact, change request, SDLC, software engineering, risk

prediction

1. INTRODUCTION

To begin development, a set of requirements must be agreed

upon by the developer and the customer. He stated that the

software undergoes never-ending maintenance and

development that is driven by the difference between its

current capability and what is required by the ever-changing

environment [1]. It is the foundation for the development of

budgets, schedule, tests, and design [2]. Therefore, developers

must have effective mechanisms to manage the change

process [3]. It has been hypothesized that, likely increase in

cost to handle the defects in the process of software

development, a potential change in software requirements

applied later in the life cycle will be more difficult and costly

to implement [4]. The environment change could require

changes in protocols and standards necessary for

communication with other systems. Software requirement

changes are common and frequent in different phases of the

life SDLC. A change request should contain all the

information necessary to modify the requirements to achieve

the desired functionality [5]. There are many reasons why

software must change to accommodate these differences. In

fact, it is likely that more than half of the system requirements

will change before deployment [6]. Managing customer

requirements is one of the key problem areas in software

system development and production [6]. Ideally, developers

prefer to create a set of requirements that are stable, which is

not practical.

Change management is one of the most important aspects of a

successful software development project. Manny Lehman

aimed to describe common issues concerning software

systems that change.In this regard created software evolution

laws. Developers must also be aware of the risks associated

with changes. Requirements engineering is the basis for

software development. A change request is a requirement to

add to initial requirements, which also includes a change

request related to hardware[2]. Software, regardless of the

precision of the development process or the depth of problem

understanding by the developers, will change. But, it is often

impossible to make all the correct requirements and

implementation decisions at the beginning [7]. Hence the risk

increases as development progresses.

Because of these divergent changes, the change request

analysis should ensure to predict the risks possible with regard

to apply the change requirement.

2. RELATED WORK

To assess the impact and risk associated with change requests

to software can be classified with currently existing

classification schemes. These classifiers mainly classify the

impacts due to change requests. The functional aspects of

these classifiers can be observed in the literature as

o Determining risks associated with change request and

identifying the scope of acceptability of the change

request.

o Allowing engineers to group changes based on different

criteria such as the cause of the change, the type of

change, the location where the change must take place,

and the potential impact of the change.

o Allowing engineers to develop a common approach to

deal with similar changes, resulting in less overall effort

required than if each change was addressed individually

[8].

Lientz et al [9] work identified the frequency of the different

types of maintenance activities performed by a large sample

of software development organizations. Based on their work

and work by Sommerville et al [10], the major types of

changes related to perfection, correction, adapt and prevent

have been identified. Changes related to Perfection are the

result from changes adopted during the SDLC process. These

changes aimed to advance the system to achieve scalability in

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

22

target requirements. Predicted or confirmed defects cause the

change requests that demands corrections. Adapting to the

new software environment or system platform can be

categorized as adaptive [10]. Change requests that aimed to

achieve stability in software model against impending

problem can categorized as prevention category [11].

Nedstam et al [12] described the process of change request as

a process flow:

1. Recognizing a need that is evolved

2. Resource allotment for change request analysis and

implementation

3. Assess feasibility and impact of the change request.

4. Define a strategic change request handler

5. Define methods of implementation

6. Initiate change request.

A method that defines artifacts of the change request will be

addressed in this paper to assist SDLC crew, in particular in

steps 3 and 4. By defining artifacts of the change request it is

possible to conceptualize the impact of a proposed change on

all other phases of the SDLC.

The model that defines artifacts is build on features of existing

change classification and analysis schemes that provide

insight into changes that affect software architecture. Kung et

al [13] studied the impact of code changes on the class

inheritance structure within a software system. Nedstam, et al

[18] identified changes that affect the architecture or system

process or both.

There are various types of software dependencies. Product

metrics regarding direct dependencies are categorized into

syntactic dependency, and process metrics regarding rational

coupling are categorized into rational dependency [14].

Cataldo et al. [15] compared the strengths of the correlations

between various dependencies and faults. Their examination

showed that the correlation between syntactic dependency and

faults was insignificant or weak and that the correlation

between rational dependency and faults was significant and

the strongest. The results are one of the cases that product

metrics are insufficient for fault prediction in maintenance.

Zimmermann et al [16] applied social network analysis (SNA)

on a software dependency graph representing relationships

between binary modules of software systems. They reported

that adding network measures from SNA literature could

improve the performance of fault prediction. Although the

network measures are product metrics, they are not covered

by the syntactic dependency categorized by Cataldo et al [15].

Kenichi Kobayashi et al [17] assumed that the network

measures used by Zimmermann and the rational dependency

used by Cataldo [15] share common factors of fault-

proneness. Therefore, they assumed that the change impact

analysis [18] on source code enables us to extract implicit

dependency, such as relations exposed by rational coupling.

Change impact analysis is a technique that detects affected

areas of source code when some part is changed. In Cataldo’s

examining the number of rational couplings of a given module

was most correlated with faults. Therefore, we expected the

scale of estimated areas affected by any changes correlates

with fault-proneness as well as the number of rational

couplings.

However, it is difficult to compute the exact affected areas of

change impact. Static analysis [18] has a nature that it may

derive excessive (false positive) areas. Besides, it requires

enormous computation time to improve the accuracy.

Dynamic analysis [19] can easily capture dynamically bound

areas, but it has a nature that it may fail to capture affected

areas which are seldom used. In reality, there are many cases

in which dynamic analysis cannot be performed. A practical

technique to find the affected areas has been proposed for the

case where the change to a given module is already known

[20]. However, since we need to know the area before the

change is given, it is difficult to compute the areas while

minimizing false positives.

In the best of our knowledge and annotations done on state of

the art in impact analysis of change request, we can conclude

that the most of the literature on impact analysis of the change

request is aiming to define the impact in developer context, in

particular development phase of the SDLC. Hence here we

attempted to provide an analytical study to derive the artifacts

of change request to assess impact of that request on SDLC

phases.

3. DEFINING ARTIFACTS FOR

CHANGE REQUEST

As an initiation of our research, we proposed a scheme to

define artifacts for change request to assess impact of that

change request on structural design of the SDLC phases. This

proposed scheme is motivated and using change and defect

classifications that identify aspects of an SDLC phases, which

would influence by change request considered.

3.1 Overview of the Model that define

Artifacts

The model to define artifacts for change request was designed

to assess the effects of change request on structural design of

the SDLC phases and leads to analyzing the impact of change

request on SDLC phases. This proposed model defines the

artifacts starting with the high-level features of the change,

and then progress to a more detailed selection of desired

change requests artifacts and fallows to artifact’s effect on

SDLC phases. The high-level features describe necessitate of

the change request, the change category, the load of the

change, the change’s impact to the SDLC static and dynamic

features, and finally the functional and nonfunctional

requirements that will be affected by the change. The detailed

artifacts of the change request identify the specific structural

design changes that should be made to the major structural

design annotations of the SDLC phases in order to implement

the change.

The following steps brief the process of defining artifacts for a

change requested.

 Recording the mandatory actions essential on SDLC

phases in descriptive format.

 Verify the correlation between the actions recorded

 Assess the impact of the actions correlated to verify that

change can be implemented in actual constraints or not.

 If implementation of change request is not limited to

actual constraints then generate the consensus on impacts

of change request on other SDLC phases that helps to

recommend the changes required in structural design of

the different SDLC phases. These changes are correlated

to the actual change request.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

23

The proposed model defined as a decision tree where choices

made for the high-level artifacts will affect the decisions taken

at various levels of SDLC. The Inter dependability of these

artifacts is needed to elaborate, which identifies possible

constraints and dependents concern to high-level artifacts that

are selected.

3.2 Defining wide-ranging Artifacts:

The top layered artifacts describe the overall characteristics of

the change and its effect on the whole system and

development environment. Table 1 shows the wide-ranging

Artifacts. In the figure describes the top layer artifacts and

their possible values. The values for most of these top layered

artifacts are measured using the Overall Impact Scale. The

developer must first select the need of the change requested.

The change request need can be due to an enhancement

proposal or defect. The information provided by the

motivation artifact is much for the multiple changes, however

as time advancements, the occurrence of defects versus

enhancements will afford supplementary imminent into

system maintenance. A raise in the numeral of defects

establishes overtime may clue to a system that is moribund in

maintainability as more defects are commenced during the

maintenance practice [10]. The next artifact, type, determines

the type of change request. The value of this artifact can be

ideal, remedial, acclimatize or defensive. The occurrence

observed in change request type during maintenance indicates

eminence factors affecting core necessities concluded during

SDLC such as reflections on system portability due to

recurrent acclimatize change requests [22], potential

maintainability due to recurrent ideal change requests [22].

The “coarse effect” of the change request as artifact explains

the load of the change request in terms of its impact on

structural design of the system. The change request load can

be identified as functional, architectural or reform. Purely

functional changes affect the values of user observable

artifacts and functional artifacts. The change requests of the

system architecture are affects only the values of architectural

artifacts [12]. Reforming usually takes place to satisfy some

quality artifacts such as maintainability, suppleness, or

complication [23]. One or more types loads can be observed

from on change request. The features artifact determines the

change request impact on SDLC phases. An inert change

request affects the rational system features, such as the

decomposition of modules at the design phase, dependency

analysis at requirement analysis phase, the inheritance

structure defined during modules development phase. A

change to the dynamic features affects how the data is

propagated through the SDLC phases, in particular, the

behavior of distributed components, how prescribed

concurrent processes influence, and other expected runtime

behaviors. For the “features” artifact we rate the Impact to

determine the extent of the effect on each feature. Range

values between 0 and 4 that includes these 0 and 4 used to rate

the impact of change request on a selected feature. These rates

indicate the no impact by 0 and the abnormal impact by 4,

which conclude the drastic effect of change request on the

features.

Table 1: Taxonomy of Wide range Artifacts

Artifact Choice of artifact value

Motivation Enhancement or defect

category

ideal, remedial,

acclimatize or defensive

coarse effect

functional,

architectural or reform

Features static, dynamic

Logical

Dependency , Layers,

Module Decomposition,

Source Structure,

Inheritance Structure

Runtime

control flows, repository access,

concurrency, components,

distribution, deployment

Non Functional

usability, reliability,

availability, security,

portability, complexity,

flexibility, scalability

Functional

Technology, interfaces,

data access and transfer,

environmental,

Further discussed top layered artifacts identify that which

software engineering issues the change request addresses in

terms of functional and non-functional requirements. As of

the process of the model, Assessing feasibility and impact of

the change request, rank the impact of the change request in

between 0 to 4 on features defined under functional and non

functional artifacts. This rating helps to identify the

constraints to apply change request. The values of the top

layered artifact related functional issues were derived from

several sources in the literature that examined software

change. These values of the functional artifacts include the

functions of data such as access and transfer, system interface,

system environment, user level interface, domain specification

limits, and discretionary others attribute that allows for adding

additional issues not currently addressed by the scheme [21],

[24], [25], [26], [27]. The values of the top layered artifact

“non-functional issues” elevates about ability of usage,

reliable or not, availability constraints, security constraints,

also includes the portability issues, intricacy, suppleness,

scalability, and elective other features that allow for additional

non-functional requirements not listed currently. The final set

of wide ranging artifacts offers more detail into the changes

that must be made to the structural design defined by SDLC

phases. The developer can choose the rational and runtime

architectural annotations that must be changed in order to

implement the change request. The top layered artifact

"rational" includes a comprehensive list of general structural

design properties that can be used to describe the framework

derived from SDLC phases in particular, most object oriented

software intensive systems. The other top layered artifact

"runtime" serves a similar purpose as the artifact "rational".

This artifact list the dynamic structural design properties

defined during SDLC phases, in particular, common to most

object oriented software intensive structural design. The

Overall Impact Scale will be used to assess the impact of the

change request on processing of control flow , accessing

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

24

resources repositories, processes that are concurrent,

interactions between components, component distribution and

deployment of component.

The wide range artifacts aim to describe the overall impact of

change request on SDLC phases. The explicit-range artifact

which provides more details into the change requests to the

rational and runtime structures is fallows.

3.3 Explicit-Range Artifacts

The explicit range artifacts allows to analyze the structural

design while making recommendations for changes to the

overall structure in order to implement the change request.

The changes that are reflected in the architecture include

changes to any structural design module, interface,

component, and connector. A specific impact rating strategy

used to describe the magnitude of the changes that can be

made to the structural design defined by SDLC phases. Each

rating will correspond to the type of correlated change applied

to an item in the rational and runtime lists of structural design.

The rational and runtime artifacts of the system contain

several static and dynamic annotations. An annotation is a

depiction of a set of system elements and the relationships

among those elements. Both the rational and runtime artifacts

presented in the structural design change scheme describe

several different aspects of SDLC phases, in particular Object

oriented system. The goal in producing the explicit-range

artifacts was to create a comprehensive list of wide range

artifacts that can be used to describe the types of changes that

could be made to any SDLC phase.

The rational and runtime artifacts together referred as explicit

range artifacts of the system contain several static and

dynamic system annotations. An annotation is a representation

of a set of system elements and the relationships among those

elements. Both the rational and runtime artifacts presented in

the structural design change scheme describe several different

aspects of SDLC phases, in particular Object oriented system.

The goal in creating the explicit range artifacts was to create a

comprehensive list of wide range artifacts that can be used to

describe the types of changes that could be made to any

SDLC phase.

The list of rational artifacts includes a description of the types

of changes that can be made to elements of any annotation

that exhibits explicit range artifacts. Table 2 provides an

overview of the specific explicit range artifacts and the types

of changes that can be made to elements in each structural

design annotation. These changes could include adding,

update, and delete and connect can apply to elements. The

rational annotations range of modules in layered structure to

individual module and all relationships in between.

The "dependency" artifact describes changes that are made to

modules that affect their relationships with other modules that

they depend on. These changes include adding deleting or

update dependencies between modules. The impact rating

allotted for the applied changes would determine the severity

of the actions performed on any dependency modifications.

The "stratum" artifact identifies the modifications to the

elements in a structural design annotation that shows how the

system divided into its various layers. Then a decision can be

taken that one or more layers should be modified to carry out

the change. The size and complication of any adapted layers

would be noted by the value selected in the Specific Impact

rating between 0 and 4. If multiple layers are changed then the

estimates are going to require a great deal of effort to

implement, a value of ‘4’ would be suggested for the Layer

change type. The other changes that could be made with an

annotation having layers include adding an internal module to

a layer; add a connection between two modules within a layer

and/or between two modules of different layers.

The "inheritance" artifact addresses changes made to

annotations that depict inheritance relationships between

modules. Changes that applied to annotations showing

inheritance relationships, which could include adding a child

module to an existing parent and adding a parent module with

new children. The developer may possibly decide to modify

or remove an existing parent-child hierarchy. Hence there

could be a change occurrence at functional or interface levels

of the parent child modules.

The "decomposition" artifact includes annotations about

relationships between system modules. The changes that

applied to these annotations includes adding a module, modify

a module, remove a module and alter modules relation.

The final rational structural design change artifact is the

"code". The "code" artifact allows to record changes to

strategy of storing source code on a computer that contains

system modules. This artifact registers the changes occurred

to specific files and packages on the system. It also records

the changes occurred at an external library.

The runtime artifacts that part of explicit range artifacts

explain potential changes that could be made to runtime

structural design annotations. These annotations will include

system dispensation apparatus and the connectors amid these

components. There are various illustrations of the processing

components of any SDLC phase, in particular, object oriented

system. The proposed process of defining artifacts provides an

inclusive list of these representations and the possible changes

that could be made to them.

The "control flow" artifact describes changes that could be

made to annotate that exhibit qualities of a pipe-and-filter or

batch sequential style. These correlated changes include

adding and update the functionality of the processing units,

update the format or values that the processing units process,

update a connection that connects any of two process units,

and adaptation to interfaces that used by a processing unit to

access external data.

The "repository" artifact identifies changes made to any

annotation that includes a shared data storage. The kinds of

users that have access to this data storage can be altered and

then facilitate to conclude the changes to a user’s

authorization credentials, the change occurrence at

accessibility of data from a user and adding a data storage to

a system.

The "concurrent" artifact illustrates component processes that

communicate and execute in a concurrent manner. The

annotations about changes occurred to the components that

involved in concurrent process indicates the changes desired

to that processing unit, the information shared between any of

the processing units, or a change in the connection strategy of

any two units.

The "interaction" artifact contains viewed involved in implicit

invocation or publish-subscribe structural design

representations. This artifact handles changes to the event

driven structural designs. The components in a component

interaction annotation could broadcast events to other

components or a component that listens the events

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

25

broadcasted. The modification occurred to components that

participating in interactions will be recorded by this artifact,

also records the updates applied to an event broadcasted,

updates applied to event registration process between any of

the components.

The "distributed" artifact highlight changes to distributed

structural designs. These distributed structural designs involve

remote components that interact by transferring data and/or

allowing access to specified non local objects. A peer-to-peer

or client-server connectivity are the considerable format to

represent distributed relations. As an example, the developer

must consider the connection type between peer to peer need

to be checked while considering structural design related

change requests. Where in the case of client to server, the

location of the resources such as the client interface,

application server and data storage would be considerable to

modify and record of the developer.

The “deployment” artifact maps processing units to hardware

in regard of a hardware change request or to the location in

regard of a processing change request.

Table 2: Taxonomy of Explicit range artifacts

Specificati

on
Artifact Values

Runtime

Control flow

Add, delete or update events on

 · processing unit

 · input, output of processing unit

 · format of input output

 · connectionsexternal interface

Repository

Add operation on user type

Add, update or delete operation on

 Access privileges

 Attachment

 Repository

Concurrent

Add, update and delete operations on

 Concurrent processes

 Synchronize processes

 Connect process

 Data exchange

Interaction

Add, update or delete operation on

 Publicize a component

 Event

 Publicize an event

 record an event

 Listen to an event

Distributed

Add, delete or update operation on

 Peer

 Client Type

 Server Component

 Connection

 Update operation on layer structure

Deployment

Add, update or delete operation on

 Hardware

 Process Location

Rational

Dependency
Add, Update or Delete operation on

 dependency

Stratum

Add, Update or Delete Operation on

 Stratum

 Intra and inter stratum connection

 Stratum module

Inheritance

Add, Update or delete operation on

 Parent

 Child

 Interface

 Interface Connection

Decomposition

Add, Update or Delete operation on

 Module

 Relation

Source

Add, Update or Delete Operations on

 Package structure

 File Structure

 Library usage Structure

4. CONCLUSION

The model proposed here is defining artifacts to provide as an

input to any of the classifier such as decision tree, SVM that

incorporates change request classification, impact analysis,

and predicts correlated changes in different SDLC phases,

Also assess risks to aid SDLC crew in making decisions for

changes based on how the system will be affected. We

continue to refine the proposed model that defines artifacts for

change requests. We use these models to define artifacts for

change requests from historical data sets and correlate those

changes to the implementation data to assess correlation

changes. Finally, we projected to attainability further analysis

on the data to examine an information-theory based metric

approach to measure consensus when multiple values

assigned to predicted artifacts under various classification

models.

5. REFERENCES

[1]. M.M. Lehman and L. Belady, Software Evolution -

Processes of Software Change, Academic Press, London,

1985

[2]. L. Arthur, Software Evolution: The Software

Maintenance Challenge, John Wiley & Sons, Toronto,

Canada, 1988.

[3]. C. Jones, "Software Change Management," Computer,

vol. 29, no. 2, 1996, pp. 80-82.

[4]. B. Boehm, Software Engineering Economics, Prentice-

Hall, Englewood Cliffs, NJ, 1981.

[5]. G. Stark, A. Skillicorn, and R. Ameele, "An Examination

of the Effects of Requirements Changes on Software

Releases " Crosstalk: The Journal of Defense Software

Engineering, vol. 11, no. 12, 1998, pp. 11-16.

International Journal of Computer Applications (0975 – 8887)

Volume 54– No.18, September 2012

26

[6]. G. Kotonya and I. Sommerville, Requirements

Engineering: Processes and Techniques, John Wiley &

Sons, Chichester, West Sussex, England, 1998.

[7]. J. Siddiqi, "Requirement Engineering: The Emerging

Wisdom," IEEE Software, vol. 13, no. 2, 1996, pp. 15.

[8]. N. Nurmuliani, D. Zowghi, and S. P. Williams. "Using

Card Sorting Technique to Classify Requirements

Change," in Proceedings of the 12th IEEE International

Requirements Engineering Conference, 2004, pp. 240-

248.

[9]. B. Lientz and B. Swanson, Software Maintenance

Management Addison-Wesley, 1980

[10]. I. Sommerville, Software Engineering. 7th ed: Addison-

Wesley, 2004

[11]. P. Mohagheghi and R. Conradi. "An Empirical Study of

Software Change: Origin, Acceptance Rate, and

Functionality Vs. Quality Attributes," in Proceedings of

the 2004 International Symposium on Empirical

Software Engineering (ISESE '04), 2004, pp. 7- 16.

[12]. J. Nedstam, E. A. Karlsson, and M. Host. "The

Architectural Change Process," in Proceedings of the

2004 International Symposium on Empirical Software

Engineering (ISESE '04), 2004, pp. 27-36.

[13]. D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C.

Chen. "Change Impact Identification in Object Oriented

Software Maintenance," in Proceedings of the

International Conference on Software Maintenance,

Victoria, BC, 1994, pp. 202-211.

[14]. Gall, H., Hajek, K., and Jazayeri, M., “Detection of

rational coupling based on product release history,” IEEE

Int’l Conf. on Softw. Maint. ICSM, pp.190-198, 1998.

[15]. Cataldo, M., Mockus, A., Roberts, J. A., and Herbsleb, J.

D., “Software dependencies, work dependencies, and

their impact on failures,” IEEE Trans. Softw. Eng. 36, 2,

pp.864-878, 2009.

[16]. Zimmermann, T., and Nagappan, N., “Predicting defects

using network analysis on dependency graphs,” Int'l

Conf. on Softw. Eng. ICSE, pp.531-540, 2008.

[17]. Kobayashi, K.; Matsuo, A.; Inoue, K.; Hayase, Y.;

Kamimura, M.; Yoshino, T.; , "ImpactScale: Quantifying

change impact to predict faults in large software

systems," Software Maintenance (ICSM), 2011 27th

IEEE International Conference on , vol., no., pp.43-52,

25-30 Sept. 2011; doi: 10.1109/ICSM.2011.6080771

[18]. Bohner, S. A., and Arnold, R. S. (Eds.), “Software

change impact analysis,” Bohner, S. A. and Arnold, R.

S., “An introduction to software change impact analysis,”

IEEE Computer Society Press, pp.1-26, 1996.

[19]. Grove,D., and Chambers,C., “A framework for call graph

construction algorithms,” ACM Trans. Program. Lang.

Syst. 23, 6, pp.685-746, 2001.

[20]. Law, J., and Rothermel, G., “Whole program path-based

dynamic impact analysis,” Int’l Conf. on Softw. Eng.

ICSE, pp.308-318, 2003.

[21]. Ren, X., Shah, F., Tip, F., Ryder, B. G., and Chesley, O.,

“Chianti: a tool for change impact analysis of Java

programs,” Conf. on Object-Oriented Prog., Syst., Lang.,

and App. OOPSLA, pp.432-448, 2004.

[22]. J. Bosch, Design and Use of Software Architectures:

Addison Wesley, 2000

[23]. V. Basili and D. Weiss. "Evaluation of a Software

Requirements Document by Analysis of Change Data,"

in Proceedings of the 5th international conference on

Software engineering, San Diego, CA, IEEE Press, 1981,

pp. 314-323.

[24]. L. C. Briand and V. R. Basili. "A Classification

Procedure for the Effective Management of Changes

During the Maintenance Process," in Proceeding of the

Conference on Software Maintenance, Orlando, FL,

1992, pp. 328-336.

[25]. N. H. Madhavji. "The Prism Model of Changes," in

Proceedings of the 13th International Conference on

Software Engineering Austin, TX, 1991, pp. 166-177.

[26]. A. Mockus and L. G. Votta. "Identifying Reasons for

Software Changes Using Historic Databases," in

Proceedings of the International Conference on Software

Maintenance, San Jose, CA, 2000, pp. 120-130.

