
International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

28

Modifications in Lamport Algorithm for Distributed
Computing System

Taskeen Zaidi

Research Scholar, Deptt. of Computer Science
Babasaheb Bhimrao Ambedkar University

Vidya Vihar, Rae Bareli, Lucknow

Vipin Saxena

Professor, Deptt. of Computer Science
Babasaheb Bhimrao Ambedkar University
 Vidya Vihar, Rae Bareli Road, Lucknow

ABSTRACT

In the current scenario, distributed approach of computing is

very popular over the centralized approach of computing due

to faster execution of processes; cut off the execution time of

processes and cost. In the year 1978, Lamport [6] has

proposed an approach for synchronization of processes under

distributed environment which has the limitations for

reordering and executing the events of the processes by using

time, ordering of events and clock conditions. The important

limitation is that the algorithm does not cover the process

execution in reflexive, symmetric and transitive manners

when the unidirectional or bidirectional ring is appearing in

the distributed network for executing the processes and

sharing the common resources under distributed environment.

The present work will focus on these aspects and processor

can execute the events of processes either on its node called as

computer system in the reflexive manner and if the current

node is busy for other tasks then it can use the next promising

node under the defined topology and can be executed by using

symmetric property and if further second node is busy then

events can be transmitted to next promising node and these

are executed in the transitive manner and the output is

transferred to the first node. These aspects are demonstrated

by proposing a new kind of topology called as step topology

in which numbers of computer systems are attached in the

distributed network. Algorithms are designed for all these

three cases by considering the definitions of process and

thread. Since one computer system can interact with another

computer system with message passing technique under

distributed environment, therefore, message complexities in

all these cases are also measured and compared with Lamport

and other similar kinds of algorithms available for distributed

computing system.

Keywords

Distributed approach, Bidirectional ring, Message

Complexity, Step topology and Lamport algorithm.

1. INTRODUCTION
Due to evolution of multithreaded systems, the executions

time of processes to be executed by using processors have

been drastic reduced in comparison of the old centralized

computing approach. Many of the computing labs have been

converted towards the distributed computing approach to take

benefits of distributed systems over the centralized systems.

In the distributed computing system, a task or process is

divided into number of subtasks or sub processes and

executed in the mutually exclusive manner [1-4]. In the

mutual exclusion if one process is using the critical section

with well defined memory boundaries called as critical section

and it will not allow the other process till the completion of

previous process. The necessary conditions for mutual

exclusion of processes are well defined in [5]. Under the

distributed systems, the processes are arranged into a

sequence of execution by using the scheduling algorithms.

These follow the time, clock and ordering events which are

well explained by Lamport [6]. Later on, the Lamport

algorithm for mutual exclusion is further modified by Ricart

and Agarwala [7] and processes are handled with the help of

queue in which processes are arranged in a sequence of

execution. In a reference of Maekawa [8], a distributed

algorithm is designed for symmetric execution of processes

and allows fully parallel operation used to solve the mutual

exclusion by using the sets. If a process wants to execute by in

the critical section then it will take permission from all other

processes which are available in its sets [9]. A token based

ring approach for the distributed algorithm is suggested by

Suzuki and Kasami [10] and they have discussed that if any

process wants to enter in its critical section then it will send a

message to all other processes and also to that process which

is currently holds the token and then that process sends the

token to the requester processes.

The concept of graph theory is also used by the various

researchers for the distributed algorithm and a tree concept is

used by Raymond [11] in which it is discussed that if any

process wants to enter in its critical section then first it

submits its request to the parent node and then the request will

be forwarded to the root and the token will be passed to the

requester child, if it is at the top of the request queue. An

efficient token based algorithm for mutual exclusion; in the

distributed system is explained by Kawsar et al. [12] and they

have explained that if any process desires to enter in its

critical section then it will match its request to the stored copy

of token, it is called as token ring approach having token

timestamps, request hosts and node numbers. Many of the

researchers have done the work on the unidirectional ring of

attached computer systems but limited work is available for

the bidirectional ring. Chakraborty and Yaprak [13] have

suggested an approach to improve the reliability of token ring

in bidirectional ring and found on the detection of ring

breakage if it is related to single link failure.

In the present work, authors have proposed a new kind of

network topology in the form of steps and called as static step

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

29

topology which can be used to establish static interconnection

of computer systems called as nodes. Therefore, it is

necessary to describe some of the important references related

to network topology. Various kinds of network topology like

star, tree, bus, mesh, hierarchical, etc are well explained by

Hwang [4]. Minar [14] has explained various kinds of

topologies like centralized, decentralized and hybrid

topologies used for distributed computing for static

internetworking and models. Androutsellis and Spinelis [15]

have explained a survey related to point to point protocol used

for network topology. Habib [16] has simulated the results for

analysis of server placement for the execution of tasks under

distributed environment. Zhang et al. [17] have explained the

performance analysis of network topology in agent based

connectivity architecture for the decision support system.

Many of the researchers have used modeling concepts to

model the various aspects of distributed systems. In the

current scenario and due to evolution of object-orientation, a

well known Unified Modeling Language (UML) has also

applied for distributed computing systems. It is a modeling

language and used to model the various kinds of research

problems. It contains various kinds of notations used to

present real time structure of research problem. First time,

Pllana and Fahringer [18-19] have suggested the various UML

profiles for modeling the high performance applications and

proposed various performance metrics for the parallel and

distributed applications. A well known author Gomma [20]

has used the concepts of UML for designing the concurrent,

distributed and real time applications. Later on Saxena et al.

[21-22] have used UML to propose various designs

architecture for distributed system like multiplex system for

parallel computation and mutual exclusion establishment for

parallel tasks. Martinez et al. [23] have explained the

modeling of communications protocols in details. The major

performance attributes for the distributed system is the

reduction in the execution time; Drozowski [24] has estimated

the execution time for the various distributed applications

using parallel processing and applied mathematical concepts.

The performance of large multiagent system for distributed

application has also been measured by Helsinger et al. [25].

In the present work, Unified Modeling Language is used to

model a step topology for static interconnection of computer

system and later on a segment is considered in the form of the

triangle with the bidirectional ring and proposed the

modification in Lamport algorithm. The processes or tasks are

executed by taking the triangle in reflexive, symmetric and

transitive manner. These three cases are explained in the form

of algorithm; message complexities in all three cases are

measured and compared with Lamport algorithm and other

similar kinds of algorithms under distributed environment.

2. BACKGROUND

2.1 Distributed System

In the current scenario, distributed system is called as the

collection of various heterogeneous devices like mobile

system, computer system, i-pads, pda’s, laptops, etc and they

don’t share the global clock. In the comparison of centralized

computing system, distributed computing system has reduced

the cost of infrastructure as well as usage of resources in the

minimum time. The devices connected in the distributed

system can be interacted each other by using the well known

message passing technique supported by object-oriented

technology and this is due to evolution of graphical user

interface. The best example of distributed system is collection

of above devices through wide area network and on the basis

of this, Government of India has set up a National Knowledge

Network (NKN) under Next Generation Networ (NGN) in

India in the year 2009.The above concept of distributed

system is demonstrated in figure 1 as shown below:

Fig. 1: A distributed system

2.2 Process
A process is defined as a collection of subprocesses, subtasks,

subprograms, macro’s, subroutines or a unit of task to be

executed by the use of processor. The task can be executed by

a unit called as a processing unit. The unit is used to execute

the process and can be controlled by the object under object-

oriented technology. Let us first define the object-oriented

class of a process in terms of lines of code as given below:

Class process

{

public:

int process_id, process_size;

string process_in_time, process_out_time;

process_create();

process_delete();

process_update();

process_join();

process_suspend();

process_synchronize();

process_ack();

};

The class of process is controlled by an object and when it is

called many times then the multiple instances are handled by

the object.

 Mobile_Devices

Distributed Computing

System

 Computer_Systems

Laptops

Resources_Collection

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

30

2.3 Thread
The process in object-oriented programming language which

consists of number of subprograms is controlled by threads.

The threads are executed in a concurrent manner; follow the

sequential flow of instructions and controlled by

synchronization. The threads run simultaneously for the

process and they have number of attributes and operations that

are used during the execution of thread as described below:

Class thread

{

public:

int thread_id, thread_size, thread_priority;

string thread_in_time,thread_out_time;

thread_create();

thread_start();

thread_interrupt();

thread_terminate();

thread_resume();

thread_join();

thread_synchronize();

thread_execute();

};

The above class thread is again accessed by the object and if it

is called many times then multiple instances are also

controlled by the object.

2.4 Mutual Exclusion and Critical Section
A UML class diagram for accessing the critical section is

shown in the figure 2 which consists of six UML classes

namely Process, Thread, Communication_lines, Synchronize,

Critical_section and Memory. In the proposed work, a new

kind of step topology is considered and in the proposed

topology, process may be executed through thread by using

the message passing technique. Firstly, thread is assigned to a

process and sends the request to access the critical section as

shown by class name Critical_section. Then accessing of

Critical_section is performed by the Thread class as shown in

the figure. From the diagram, one can observed that when one

process is inside the Critical_section through class Thread

then it will not allow for accessing of the Critical_section by

other processes and it is controlled by the Synchronize class.

Threads assigned to processes move on the

Communication_lines on network by using two techniques

called as Point to Point (P2P) and Broadcast communication

styles.

At the top of the line, the relation between the two classes is

shown by the 1..1 and 1..* which may be one to one and one

to many, respectively.

2.5 Process Migration
The process migration is related to transmit the process from

one computer system to another computer system according to

availability of the processor for execution of the process or

sharing the resources under distributed computing system. If a

data is available on one computer system and wants to migrate

to another computer system by using the write back or write

through cache then inconsistency occurs. For maintaining the

cache consistency, write update and write invalidate policies

are used for faster execution of the task and all these are

controlled by using the message passing techniques.

2.6 Lamport Research work
In the year of 1978, Lamport [6] has described an algorithm

for the execution of the processes for mutual exclusion under

the distributed computing environment. The entire research

work done by Lamport is based upon the distributed

computing approach by considering the two processes Pi and

Pj and recorded the start timings Ti and Tj in its own queue

which is controlled by system clock and used the message

passing technique for execution of the processes. The Pi

process records its timestamp Ti in its own request queue and

the process Pj records its timestamp Tj and puts the received

message in its own queue. On the receipt of message, Pi acts if

the request is at the front of request queue and Pj receives the

messages from Pi, simply say Ti<Tj. Upon the receipt of the

message, Pi and Pj release all resources from their own queue.

The steps of the algorithm are shown below:

Process Thread

Communication_

lines

Synchronize

Critical

_section
Memory

P2P Broadcast

1..1

1..*

1..*

1..1

1..1

1..1

1..*

Fig. 2: A UML class diagram for mutual exclusion of process

The Pi process records its timestamp Ti by message passing

technique in its own request queue. The algorithm proposed

by Lamport [6] is given below:

1. The process Pj records its timestamp Tj by message

passing technique and puts the received message in its

own queue;

2. On the receipt of message, Pi acts according to following

condition:

(a) Pi request’s are at the front of request queue;

(b) Pj receives the messages from Pi after giving the

timestamp reply to Pi i.e. Ti<Tj.

3. Now Pi and Pj release all the requests from their own

queues.

From the above algorithm, it is observed that the algorithm

does not cover when the resources are available on the other

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

31

computer system, and how it will receive the resources or

incoming task can be executed on the other computer system

called as node when one node is busy with some other tasks.

In the proposed algorithms, all these aspects are covered and

demonstrated in the subsequent sections.

3. PROPOSED MODIFICATIONS IN

LAMPORT ALGORITHM

The Lamport algorithm is based on total ordering of events

and it permits only one process has to access the resources at a

time and has some limitations as described above. In the

proposed work, the events of processes are executed in

reflexive, symmetric and transitive manner i.e. first the events

of process are executed on its own node called as computer

system, if the current node is busy for some other processes

then it use the next promising free node and executed the

events of process and return the output in symmetric manner

and if further, second node is busy then events of process can

be transmitted to next promising free node and output is

transferred to first node in transitive manner. Let us first

describe some important assumptions taken into consideration

for the proposed modifications in the Lamport algorithm.

These are given below:

3.1 Ordering of Events of Task/Process

1. Let us consider e1 and e2 are two events of a process P, if

e1 comes before e2 then e1 e2;
2. Let e1, e2 and e3 are three events of a process P, if e1

comes before e2 (e1 e2) and e2 comes before e3

 (e2 e3) then e1 comes before e3 i.e. e1 e3.

3.2 Clock Conditions for a Task/Process

i. If C1(e1) < C2(e2), where, e1 and e2 are the events of process

P then e1 event will happen first in comparison of e2, e1

e2, C1 and C2 are clock time of e1 and e2, respectively;

ii. If e1 is the sending event of process P and e2 is receiving

event of process P then C1 (e1) < C2 (e2), where C1 and C2

are clock time of e1 and e2, respectively.

 f(r)

Fig 3: Representation of step topology

In addition to the above, the proposed work is based upon the

new static kind of topology called as step topology as shown

in the figure 3 which consists of the M computer systems

called as nodes and a segment is considered and represented

in the figure and it consists of the three computer systems

represented as N1, N2 and N3 as shown in the figure.

For the NM computer systems, consider the length of segments

as described below:

N1N2=α1, N1N
’
4= α2, ………… N1N

’
M-2= αM-1, N1N

’
M-1= r

1 =tan1, 2 =tan2,………………….. M =tanM

f(r) is the radial distance measuring the diameter of the step

topology as described below:

f(r)=1+1r+2(r- α1)+ 3(r-α2)+………+ M(r-αM-1)

where r is the horizontal distance of the cable controlling the

computer systems and measured in meters, while α1, α2,

…………= αM-1 are the cable segments as shown in the above

figure.

The other assumptions are given below:

1. Let us consider the computer systems N1, N2, N3…....NM

are the finite number of computer systems arranged under

distributed environment as shown in figure 3 with each one

has local memory, cache and processor;

2. The above computer systems donot share the global clock

and follow the structure of step topology of static

interconnection as defined earlier;

3. Consider the subnet of three computer systems N1, N2 and

N3 from the above computer systems arranged under the

step topology;

4. Let us consider the series of events of process P like e1,

e2…..eJ, with timestamp tp1, tp2…….tpJ are recorded in the

queue Q1 and series of events of process Q say q1,

q2…….qK having timestamp tq1, tq2…..tqK recorded in the

queue Q2 and series of events of process R say r1, r2…..rL

having timestamp tr1, tr2…….trL recorded in Q3.

5. The above events are arranged by using the pipelining

property as given below:

 e1 e2 …….eJ eJ then tp1< tp2 <……<tpJ

 q1 q2 .. qK . qK then tq1< tq2 <….<tqK

 r1 r2 …….. rL rL then tr1< tr2 <……<trL

6. Consider the systems P, Q, R are idle at the initial stage and

queues Q1, Q2 and Q3 are the ready queues.

7. The processes P, Q and R create the logical ring in

bidirectional manner as shown in figure.

 z

z

N’
4

N’
M-1

N5

θ M

θ2

θ1

N3

N1

NM

N2

N4

NM-2

NM-1

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

32

8. The events of new incoming processes may appear on the

computer systems and can join the logical ring according to

the status of queue.

On the basis of above assumptions, the following cases arise

for the execution of events of P, Q and R processes on nodes

N1, N2 and N3.

Case 1: Reflexive Execution of a Process

reflexive()

{

 1. Create an object obj1 on class process (process

obj1);

 2. Assign obj1.process_id to a process P on node

N1(P obj1.process_id);

3. Set clock time for events of process P through

obj1.process_in_time and recorded in queue Q1

(e1 obj1.tpJ …….. eJ obj1.tpJ);

 4. Create an object obj2 on class thread (thread obj2);

 5. Assign obj2.thread_id to a process P on node

N1(P obj2.thread_id)

6. for (i=1;i<=J;++i)

7. {

 8. Synchronize the thread with processor

(obj2.thread_synchronize());

9. if processor on self node N1 is free then

10. {

11. Execute the process through thread

(obj2.thread_execute());

12. Synchronize the thread for completing e1,e2,…. eJ

(obj2.thread_synchronize());

 13. After completing execution e1,e2,…….. eJ, terminate

the thread (obj2.thread_terminate());

14. Acknowledge by the thread to process

(obj1.process_ack());

15. Record process_out_time in queue Q1 through

obj1.process_out_time;

 16. Empty the queue Q1;

 17. }

18. Repeat steps 1-17 for processes Q and R for N2 and

N3 at the same time, respectively;

19. else goto Case 2: Symmetric Execution of a Process

20. }

 }

Interpretation: The above case shows that the process P is

executing on the self node N1 and all the events e1, e2,……..,eJ

of the process P execute on the node N1. This case supports

the reflexive property and events are executed through thread

which synchronizes with the processor attached under the

distributed environment as represented segment of nodes N1,

N2 and N3 as shown in figure 3. These events are executed by

using the pipelining property as described above. The

message complexity of the above case is O(N).

Case 2: Symmetric Execution of a Process

symmetric()

{

1. Create an object obj1 on class process (process

obj1);

2. Assign obj1.process_id to a process P on node

N1(P obj1.process_id);

3. Set clock time for events of process P through

obj1.process_in_time and recorded in queue Q1

(e1 obj1.tp1…….. ….eJ obj1.tpJ);

4. Create an object obj2 on class thread (thread

obj2);

5. Assign obj2.thread_id to a process P on node

N1(P obj2.thread_id)

6. if(N2/N3 is free) then

7. {

8. for(i=1;i<=J;++i)

9. {

10. Synchronize the thread with processor of next

promising node N2/N3 (obj2.thread_

synchronize());

11. Execute the process through thread

(obj2.thread_execute());

12. Synchronize the thread for completing e1,e2,……..

eJ (obj2.thread_synchronize());

13. After completing execution e1,e2,…….. eJ,

terminate the thread (obj2.thread_terminate());

14. Acknowledge by the thread to process P to N1

(obj1.process_ack());

15. Record process_out_time in queue Q1 through

obj1.process_out_time;

16. }

17. Repeat steps 1-15 for processes Q and R for N1/N3

and N1/N2 at the same time, respectively;

18. }

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

33

 19. else

 20. {goto next transitive case}

 21.}

Interpretation-the above case shows that if node N1 is busy,

then process P is executed on next promising node N2/N3 and

all the events e1,e2,….eJ of process P are executed on node

N2/N3 and after completing the execution of all the events, it

returns the acknowledgement to node N1. This case supports

the symmetric property and all the events are executed

through the thread which synchronizes the processor attached

with the distributed environment as represented in figure

3.These events are executed using pipelining property as

described above. The same is applicable for the other

processes Q and R on nodes N2 and N3, respectively which

selects the next promising node N1/N3 and N1/N2,

respectively. The message complexity of the above case is

observed as O(N).

Case 3: Transitive Execution of a Process

transitive()

 {

1. Create an object obj1 on class process (process

obj1);

2. Assign obj1.process_id to a process P on node

N1(P obj1.process_id);

3. Set clock time for events of process P through

obj1.process_in_time and recorded in queue Q1

(e1 obj1.tp1…….. eJ obj1.tpJ);

4. Create an object obj2 on class thread (thread

obj2);

5. Assign obj2.thread_id to a process P on node

N1(P obj2.thread_id)

6. if (N1 is busy) then

7. {goto symmetric case }

8. else

9. {if (N1 and N2 are busy) then

10. {search for N3 node

11. if (N3 is free) then

12. {for(i=1;i<=J;++i)

13. {Synchronize the thread with processor

(obj2.thread_synchronize());

14. Execute the process through thread

(obj2.thread_execute());

15. Synchronize the thread for completing

e1,e2,…….. eJ (obj2.thread_synchronize());

16. After completing execution e1,e2,…….. eJ,

terminate the thread (obj2.thread_terminate());

17. Acknowledge to N1 through thread to process

(obj1.process_ack());

18. Record process_out_time in queue Q1 through

obj1.process_out_time;

19. }}}}

 20. }

Interpretation- the above case shows the execution of the

process for the transitive property which shows that if N1 is

busy then process will execute on the next promising node

either N2 or N3 by using the symmetric property, otherwise if

N1 and N2 are busy then it will search for the next node N3

and execute the events e1,e2,…….. eJ of the processes in

transitive manner and return the output to the node N1. This

case supports the transitive property and all the events are

executed through the thread which synchronizes the processor

attached with the distributed environment as represented in

figure 3.These events are executed using pipelining property

as described above. The message complexity of the above

case is observed as O(N).

The comparison of the message complexity is summarized

below in the following table and found that message

complexities of the present work is matching with the existing

algorithm as represented below:

Table 1. Comparison of the Message Complexity

The authors have also computed the message complexity for

24 computer systems attached through step topology as shown

in the figure 1. In all the three cases i.e. reflexive, symmetric

and transitive, it is of order of N. The computed results are

shown in table 2 for all angles of 450 and horizontal cable

segment is 90 meter; middle segments are controlled by α1=

α2= ….. αM-1 and taken as uniformly 10 meter. These results

are also shown in the figure 4 and it is observed that message

complexity is increasing as more computer systems are added

in the network as shown in figure 3.

Table 2. Message Complexity of Proposed Algorithms

 (1 =2 =,…. 8 =1, α1= α2= …..= α8=10,r=90)

Activity Order of Message

Lamport [6] O(N)

Ricart Agarwal [7] O(N)

Maekawas [8] O(N1/2)

Token Ring [9] O(N)

Suzuki Kasamis [10] O(N)

Raymonds [11] O(Log N)

Fahims [12] O(N)

Author’s Algorithm

(Reflexive/Symmetric/Tr

ansitive)

O(N)

Number of

Nodes

Message Complexity

Reflexive/Symmetric/Transitive

3 91

6 172

9 242

12 302

15 362

18 402

21 432

24 452

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

34

Fig 4: Representation of message complexity

4. CONCLUSIONS

From the above work, it is concluded that the Unified

Modeling Language is a powerful tool and can be used to

model the complex research problem. In the above mutual

exclusion of execution of a process can be represented by the

use of UML. It is observed that a well known researcher

Lamport has published an algorithm for mutual exclusion for

the distributed computing system which was applicable only

for the self node or computer system. In the reference of this,

the above work is extended when the numbers of the

computer systems are attached according to the bidirectional

ring and especially for the newly developed static step

topology under distributed environment. The work is extended

from the self node to the next promising node and execution

of process is according to the symmetric property and further

extended for the next promising node by using the transitive

property. In this manner, the process may be executed inside

the static step topology and in all the cases message

complexity is of linear order. The sharing of resources for

execution of a process is also done in the same manner.

The present work can be extended in many directions like for

finding the node failures during the transferring of the

messages from one computer system to another computer

system. The loading, balancing and resilence issues are also

the major areas for extending the proposed algorithms.

5. ACKNOWLEDGMENTS

The authors are very thankful to University Grants

Commission for providing financial assistance to the

Department of Computer Science, Babasaheb Bhimrao

Ambedkar University, Lucknow to carry out the above

research work.

6. REFERENCES
[1] Siberschatz, A. and Galvin, P.B., 2000, Operating

Systems Concepts, 5th Edition, John Wiley and Sons, Inc.

D.D.L.L.D.

[2] Siberschatz, A. and Peterson, J. L., 1988, Operating

System Concepts, Addison–Wesley, Alternate Edition.

[3] Andrew S. Tanenbaum, 1995, Distributed Operating

Systems, Prentice Hall.

[4] Hwang, K. 1993, Advanced Computer Architecture,

McGraw-Hill Series in Computer Engineering, Inc

Publishing.

[5] Milenkovic, M., 1997, Operating Systems: Concepts and

Design,Tata Mcgraw-Hill.

[6] Lamport, L., 1978, Time, Clocks and Ordering of Events

in a Distributed System, Communications of ACM, Vol.

21, No.7, pp.558-565.

[7] Ricart, G. and Agrawala, A., 1981, An Optimal

Algorithm for Mutual Exclusion in Computer Networks,

Communications of the ACM, Vol.24, No.1, pp.9-17.

[8] Maekawa, M., 1985, A sqrt(n) Algorithm for Mutual

Exclusion in Decentralized Systems, ACM Transactions

on Computer Systems,Vol.3, No.2, pp.145-159

[9] Agrawal, D. and El Abbadi, A., 1991, An efficient and

fault tolerant solution for distributed mutual exclusion,

ACM Transactions on Computer Systems, Vol.9, No.1,

pp.1-20.

[10] Suzuki, I. and Kasami ,T.,1985, A Distributed Mutual

Exclusion Algorithm, ACM Transactions on Computer

Systems,Vol.3,No.4, pp.344-349.

[11] Raymond K.,1989,A Tree Based Algorithm for

Distributed Mutual Exclusion, ACM Transactions on

Computer Systems,Vol.7,No.1, pp. 61-77.

[12] Kawsar, F., Shaikot, S. H., Saikat, S. and Mottalib, M.,

A., 2002, An efficient Token Based Algorithm for

Mutual Exclusion in Distributed System, Proceedings of

5th International Conference on Computer and

Information Technology (ICCIT 2002), pp.93-96, Dhaka,

Bangladesh.

[13] Chakraborty ,R. N. and Yaprak, E., 1993, Improve-ment

in Reliability of the Token Ring Network by Reversal of

Token in case of a Single Component Failure, Circuits

and Systems, IEEE, Proceedings of the 36th Midwest

Symposium on vol.2,Issue,16-18, pp.1152-1154.

[14] Minar N, 2002, Distributed System Topologies Part 1

and Part 2, Retrieved on June 19, 2012 from

http://www.open2p.com/lpt/a/1461.

[15] Androutsellis –Theotokis S and Spinelis D, 2004, A

Survey for peer to peer Content Distribution

Technologies, ACM Press, New York ,U.S.

[16] Habib, S.J, 2005, Simulated Analysis of Server

Placement on Network Topology Design, Proceedings of

the 3rd ACS/IEEE International Conference on Computer

Systems and Application, Cairo Egypt, pp.80-87.

[17] Zhang, H.L., Leung, H.C. and Raikundalia, G.K.,

Performance Analysis of Network Topologies in Agent

Based Open Connectivity Architecture for DSS,

Available online on Google Search Engine, Retrieved on

June 19, 2012.

[18] Pllana, S. and T. Fahringer, 2002, On Customizing the

UML for Modeling Performance Oriented Applications.

In <<UML>>, Model Engineering Concepts and Tools,

Springer-Verlag, Dresden, Germany.

International Journal of Computer Applications (0975 – 8887)

Volume 53– No.6, September 2012

35

[19] Pllana, S. and T. Fahringer , 2002,UML Based Modeling

of Performance Oriented Parallel and Distributed

Applications, Winter Simulation Conference, Retrieved

on June 19, 2012.

[20] Gomma, H., 2001, “Designing Concurrent, Distributed,

and Real-Time Applications with UML”, Proceedings of

the 23rd International Conference on Software

Engineering (ICSE’01), IEEE Computer Society.

[21] Saxena, V. and Arora, D., 2008 “UML Modeling of a

Protocol for Establishing Mutual Exclusion in

Distributed Computer System, International Journal of

Computer Science and Network Security,Vol.8, No.6,

pp.227-235.

[22] Saxena, V., Arora, D. and Ahmad S., 2007, Object

Oriented Distributed Architecture System through UML,

Conference IEEE, International Conference on Advances

in Computer Vision and Information Technology,

ACVIT-07, ISBN 97881-89866-74-7, pp.305-310.

[23] Martinez Jesus, Merino Pedro and Solmeron Alberto,

2007, “Applying MDE Methodologies to Design

Communication Protocols for Distributed Systems”,

IEEE Transactions of Software Engineering, April.

[24] Drozowski ,M, 2002, Estimating Execution Time of

Distributed Application, Parallel Processing and Applied

Mathematics, 4th International Conference PPAM, LNCS

2328, Springer-Verlag, pp 137-142.

[25] Helsinger, A., Lazarus, R., W., Wright, W. and Zinnky,

J., 2003, Tools and Techniques for Performance

Measurement of Large Distributed Multi Agent System,

Proceedings of AAMAS 03 Conference, Australia,

pp.843-850.

