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ABSTRACT
Association rule mining is the process of finding some re-
lations among the attributes/attribute values of huge database
based on support value. Most existing association mining tech-
niques are developed to generate frequent rules based on fre-
quent itemsets generated on market basket datasets. A common
property of these techniques is that they extract frequent itemsets
and prune the infrequent itemsets. However, such infrequent or
rare itemsets and consequently the rare rules may provide valu-
able information. So, many applications demand to mine such
rare association rules which have low support but higher confi-
dence. This paper presents a method to generate both frequent
and rare itemsets and consequently the rules. The effectiveness
of the rules has been validated over several real life datasets.

General Terms:
Association Rule Mining, Rare Association Rule Mining

Keywords:
Association rule, rare rule, minimum constraint,
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1. INTRODUCTION
Association mining is one of the important tasks of data min-
ing intended towards decision support. Basically it is the process
of finding some relations among the attributes/attribute values
of huge database. Inside the huge collection of data stored in a
database, some kind of relationships among the various attributes
may exist. Discovering such relationships may help in some de-
cision making process significantly. However, extraction of such
relationship from large dataset is not a trivial task. The process
of extracting these relationships is termed as association rule
mining and can be represented in IF-THEN form. Association
rule mining problem was introduced by Agrawal[1] that works
on a binary dataset, termed as market basket, where each at-
tribute is termed as an item. In the last two decades several novel
works have been evolved to handle the association rule mining
problem[2][8][15]. All these algorithms are based on a support-
confidence framework. They work in two phases, namely fre-
quent itemset generation and rule generation. The first phase
explains the concept of support to derive the frequent itemsets.
Support of an itemset can be defined as the proportion of transac-
tions in the dataset which contain the itemset. The confidence of
a rule X ⇒Y is defined as Conf(X ⇒Y)=sup(X∪Y)/sup(X). A
major limitation of these frequent itemset generation techniques
is that they can extract only those itemsets which are frequent
with respect to a given threshold i.e support-count. However, in
practical scenario, there can be some itemsets which have signif-
icance but their support counts are relatively less. To extract the

relationship among those itemsets having less frequency of oc-
curances, rare association rule mining came into existance. Rare
association rules can provide useful knowledge[14] about those
relatively infrequent or rare itemsets. However, a major difficulty
with single minsup based association rule (or frequent itemset)
mining approach is that they suffer from the dilemma called
”Rare Item Problem”[13]. If minsup is set too high, we miss the
frequent itemsets involving rare items because rare items fail to
satisfy high minsup. To find frequent itemsets consisting of both
frequent and rare items, we have to set minsup very low. How-
ever, this may cause combinatorial explosion and produce too
many frequent itemsets.
An association rule r is called a valid rare rule if its support
is less than a given minimum support denoted by minsup i.e.
supp(r) <minsup and its confidence is greater than a given
minimum confidence denoted by minconf, i.e. conf(r) >minconf.
Rare association rules are usually required to satisfy a user spec-
ified minimum support and a user specified minimum confidence
at the same time.
The Rare rules are very important for many applications such as
medicine and biology[20]. But the major problem of rare rule
generation is that a single minsup value can’t determine all the
rare rules without generating uninteresting rules. To overcome
this problem multiple minsup values are used [9] but still it suf-
fers from the same problem and also dropped some of the rare
rules. This has motivated us to develop a rare association rule
mining technique to extract all the rare rules without generating
uninteresting rules. The rest of the paper is organized as follows-
section 2 reports a discussion on rare association rule genera-
tion methods. In section 3, the problem is defined followed by
the proposed technique, in section 4. Experimental results are
shown in section 5. Section 6 describes the multi-Objective rule
generation followed by conclusion and future work in section 7.

2. RARE ASSOCIATION RULE GENERATION
In the past couple of years several novel
algorithms[1][3][7][11][12][18] have been developed to
extract strong association rules, fulfilling the minimum support
and minimum confidence requirements. These algorithms are
mainly focused on the frequent itemsets generation phase and
capable of finding only the frequent itemsets from the dataset,
and it drops the infrequent itemsets. But, the main goal here is to
generate the rare rules which might give valuable information.
Some algorithms were developed for extracting rare itemsets
and/or frequent itemsets from a dataset. In this section some
of those algorithms are discussed. To describe the algorithms,
symbols and notations used are given in Table 1.

[a]Apriori-Rare[20]: The main objective of this algorithm
is to generate the frequent as well as rare itemsets. It is the
modification of Apriori algorithm to generate minimal rare
itemsets. It uses a sub-routine called Supportcount to find
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Table 1. Symbols Used and their meaning
Symbols Meaning Symbols Meaning
Minsup Minimum

support
Maxsup Maximum sup-

port
Minconf Minimum

confidence
Ci Candidate itemset

Ri Rare item-
set

Fi Frequent itemset

LRi Large and
Rare item-
set

D Dataset

S Sporadic
itemset

MIS Minimum Item
Support

LS Least Sup-
port

NCk Not large candi-
date set

NLCk Both Large
and not
large
candidates

MZG Minimum Zero
Generator

NLk Itemset
satisfying
second
support

NLLk Both large & not
large itemset

the support count of a given itemset. The main advantage of

Algorithm 1: Apriori-Rare
C1←All 1-itemsets
i←1
while (Ci not Null) do

Supportcount(Ci)
Ri = Rare items (Supportcount <Minsup)
Fi = Frequent items (Supportcount >Minsup)
Ci+1 = AprioriGen(Fi).
i = i+1
End of While

end
F = Fi

MRI =Ri, where i=1,2,3.....

this algorithm is that it restores all the minimal rare itemsets.
However, it fails to find all the rare itemsets.
[b]Apriori-Inverse[10]: This algorithm determines only the
sporadic rules using one Minsup value and one Maxsup value.
The sporadic rules have the property that they fall below user
define Maxsup but above the Minconf value. The main advan-
tage of Apriori-Inverse is that it can find the sporadic itemsets
much more quickly than apriori. However, a major limitation is
that it is incapable of finding all the rare itemsets.

[c]MSapriori(Multiple Support Apriori)[9]: It uses multiple
minsup values to determine the rare itemsets.
The working principle is same as Apriori except it uses multiple
supports for the items in the dataset. If the actual support of
the itemset is larger than the minimum of MIS values of the
items present in the itemset then the itemset is called a frequent
itemset. It attempts to overcome the rare item problem by
altering the definition of minimum support with multiple misup
values. In the extended model, it uses a user define minimum
item support(MIS) for each item present in the dataset and
minsup of an itemset is represented as the minimal MIS value
among all its items. This way, the user expresses different
support requirements for different rules. Let MIS(i) denotes the
MIS value of item i. The lowest MIS value among the items in
an itemset is the minimum support of a rule. With minimum
item supports thus enable us to achieve the goal of having higher
minimum supports for the rules that only involve frequent items,

Algorithm 2: Apriori-Inverse
|D| ←Size of Dataset
Generate inverted index I of (item, [TID-list]) from D.
Generate sporadic itemsets of size 1:
S1 =NULL
for each item i ∈I, do

if (count(I,i)/|D|) <maximum support and
if count(I, i) >minimum absolute support
S1 =S1+i

end
Find Sk the set of sporadic k itemsets where k ≥2
for k=2;Sk−1 is not null, do

Sk=NULL
for each i ∈I itemsets that are extension of Sk−1, do

if all subsets of i of size k-1 belong’s to Sk−1 and
count(I, i) >minimum absolute support then Sk = Sk

+ i
end

end
return Sk, for all k=1,2,3....

and having lower minimum supports for rules that involve less
frequent items. The MIS values are calculated by the following
formula[9]:

MIS(i) = M(i), if M(i) > LS
= LS otherwise where M(i)=β∗f(i),

where 0 ≤ β ≤ 1 and LS is least support. This model tries to
solve the rare item problem using MIS values but due to the
value of β, it still suffers from the same rare item problem as
Apriori. The value of β plays an important role in extraction
of rare itemsets which is a major drawback because it does
not depends on the frequency f of the itemsets. So the user
specified β is an important factor. It is capable of solving the
rare item problem of Apriori, however, here the rare itemsets are
determined based on a user defined threshold β rather than the
frequency of occurrence.
[d]RSAA algorithms (Relative Support Apriori
Algorithm)[21]: The RSAA algorithm generates rules which
involve significant rare itemsets. The main objective of this
algorithm is to increase the support threshold values for the
items having lower frequency and decrease the support threshold
for items having higher frequency of occurrences. Like Apriori
and MSapriori, RSAA is exhaustive in its generation of rules,
so it spends a significant amount of time looking for the rules
which are not rare. If the minimum permissible relative support
count is set close to zero, then RSAA takes a similar amount
of time to that taken by Apriori to generate low support rules.
To generate candidate itemsets in RSAA, we should be able
to construct the candidate itemset that contains rare data. The
set of candidate itemsets in RSAA consists of two groups. One
group includes the frequent items that satisfy the first support,
and the other group includes the rare items that do not satisfy
the first support count but satisfes the second support count.
The former group is the same set as the one computed by
Apriori. RSAA is exhaustive in its generation of rules, so it
spends significant amount of time looking for rules which are
not sporadic. However, it uses two thresholds, one is Minsup
and the other is Maxsup.
[e]ARIMA (Another Rare Itemset Miner Algorithm)[19]:
It initially calls the Apriori-Rare that generates the Minimal
Rare Itemsets. ARIMA takes these MRIs and produces the rare
itemsets. It uses the concept of zero generator to reduce the
search space. The main advantage of ARIMA is that it can find
rare itemset without generating zero itemsets. However, it is
dependent on two threshold values, i.e. minsup and maxsup.
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Table 2. Rare Association Mining Techniques: A General Comparison.
Method Apriori-Inverse Apriori-Rare MSapriori RSAA ARIMA

Input parameter(s) Minsup Minsup Minsup Minsup Minsup

proof of correctness Yes Yes Yes Yes Yes
Proof of completeness No No Yes No Yes

Type of Dataset binary binary binary binary binary
No. of DB scans multiple multiple multiple multiple multiple

Approach bottom-up bottom-up bottom-up bottom-up bottom-up
Candidate generation Yes Yes Yes Yes Yes

Type of Itemset Sporadic Minimal Rare, Frequent Rare Rare Rare

Algorithm 3: RSAA
if(k ==2) then
Insert into NC2

select p.item1; q.item1 from NL1.p;NL1.q
insert into NLC2

select p.item1; q.item1 from NL1.p; L1.q
else
insert into NCk

select p.item1; p.item2;· · ·; p.itemk−1; q.itemk−1
from NLk−1.p;NLk−1.q
where p.item1=q.item1;
p.item2=q.item2;· · ·;p.itemk−1=q.itemk−1,
p.itemk−1 < q.itemk−1;
insert into NLCk

select p.item1, p.item2, · · ·, p.itemk−1, q.item1

from NLLk−1.p, NLLk−1.q
where p.item1 = q.item1; p.item2 = q.item2;· · ·;
p.itemk−1 = q.itemk−1; p.itemk−1 < q.itemk−1

Algorithm 4: ARIMA
MZG =Null
S =all attributes in D
i =length of smallest itemset in MRI
Ci =i-long itemsets in MRI
MZG =i-itemsets having support count zero
Ri=i-itemsets having Support larger than zero
while (Ri not NULL), do

loop over the elements of r in Ri

Cand = All possible supersets of r using S
loop over the element of Cand(c)

if c has a proper subset in MZG then delete c
from Cand

Ci+1=Ci+1 + Cand
Cand = NULL

Supportcount(Ci+1)
Ci+1=Ci+1 +(i+1) long itemsets in MRI
MZG =MZG + (i+1) itemsets having support count zero
Ri+1=(i+1) itemsets having Support larger than zero
i=i+1

end
IR=Union of all rare itemsets

2.1 Discussion and Motivation
Based on our limited experimental study on the existing algo-
rithms for rare association mining, as reported in Table 2, it can
be observed that-

—All the algorithms are capable of generating rare itemsets but
except ARIMA and MSapriori, the rest algorithms do not guar-
antee proof of completeness;

—ARIMA can find all the rare itemsets but it is dependent on
Apriori-Rare for the MRIs;

—Apriori-Inverse finds only a subset of rare itemsets;

—MSapriori ensures the proof of completeness, but the rules it
generates are not all interesting;

Agrawal’s algorithm generates all the frequent itemsets and
drops the rare itemsets. However, it also generates a special su-
perset of rare itemsets called the Minimal Rare Itemsets (MRIs).
Following this algorithm, several variants have been proposed,
but most of them generate only frequent itemsets and conse-
quently the frequent rules. Apriori-Rare, another variant of Apri-
ori, retains MRIs instead of dropping them and generates the
rare itemsets. But a major limitation of this algorithm is that it
cannot determine all the rare itemsets. Apriori-Inverse finds the
perfectly rare itemsets i.e. rare itemsets such that all their sub-
sets are rare, but again it cannot generate all the rare itemsets.
To overcome this rare item problem, the MSapriori was intro-
duced which uses multiple Minsup values to find the rare item-
sets. Again, it also cannot determine all the rare rules and often
found to generate uninteresting rules. ARIMA uses the MRIs gen-
erated by Apriori-Rare and uses the concept of Minimum Zero
Generator (MZG) to find the rare itemsets. Thus, based on our
limited experimental study on these algorithms, it is observed
that most algorithms suffer from the limitations of huge memory
requirements and execution time. Another limitation of these al-
gorithms is their dependency on multiple user parameters, which
are difficult for appropriate assessment.
So, we are motivated to introduce (i) an algorithm (referred here
as NBD-Apriori-FR) for generation of both frequent as well as
rare itemsets and (ii) a method to generate the rules without loss
with minimum number of database scans and by fulfilling the
three objectives: confidence, comprehensibility and interesting-
ness.

3. PROBLEM FORMULATION
For a given dataset say D, with reference to a user-defined
threshold ’Minsup’, the problem is to find all the frequent and
rare itemsets without violating the proof of correctness with min-
imum database scans and to find all the rare rules by fulfilling
three objectives, namely confidence, comprehensiveness and in-
terestingness.

4. NBD-APRIORI-FR:PROPOSED METHOD FOR
FREQUENT AND RARE ITEMSET FINDING

Our method i.e NBD-Apriori-FR uses the same downward clo-
sure property and botton-up approach of Apriori algorithm. It
takes D and Minsup as inputs and produces both rare and fre-
quent itemsets as outputs. In an initial step, it makes one database
scan to find the support counts of all the single-itemsets. Then
based on the support counts, it categorizes the itemsets as: zero
itemsets having support count zero, frequent itemsets having sup-
port counts greater than Minsup and rare itemsets having support
counts less than Minsup. Next, it generates three candidate lists.
The first candidate list is generated from the frequent single-
itemset, second candidate list is generated from the rare itemset
and the third list is generated by combining frequent and rare
itemsets. Now, these three lists are combined to make one single
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list and make one database scan to find the zero, frequent and
rare itemsets of size 2. This procedure continues for itemsets of
larger size until no more frequent or rare itemsets are produced.
But, before scanning the database for k itemsets where k ≥2,
this algorithm first generates the (k− 1) subsets of the candidate
k itemsets. If any (k − 1) subsets belong to the (k − 1) zero list
then that k itemset is put into the zero k list. Finally, from the
rare itemsets it generates rare rules using three objectives: con-
fidence, comprehensibility and interestingness based on pareto
optimal solution. The steps of the algorithm are given next.

Algorithm 5: NBD-Apriori-frequent-rare
D =Dataset
i =1
Ci =All 1 itemsets
Supportcount(Ci)
Li=i itemsets having supportcount larger minsup
Ri=i itemsets having supportcount smaller minsup
MZG=i itemsets having supportcount zero
while (Li or Ri is not Null), do

Li+1=CandidateGen(Li)
Ri+1=CandidateGen(Ri)
LRi+1=CandidateGen(Li,Ri)
i=i+1
Ci=Li + Ri + LRi

Supportcount(Ci)
Li=i itemsets having supportcount larger minsup
Ri=i itemsets having supportcount smaller minsup
MZG=i itemsets having supportcount zero

end
L=Union of all large itemsets
R=Union of rare itemsets

4.1 Complexity Analysis
The overall complexity of the algorithm is basically depends on
the size of the dataset and the user defined parameter Minsup.
For any dataset of n attributes and m records, the approximate
complexity is O(nk+1 × m), where k is the maximum length
itemset.

4.2 Proof of Correctness
In this section we establish that NBD-Apriori-FR is correct in
generating both frequent and rare itemsets. Following lemma
provides the proof of correctness of our NBD-Apriori-FR.
Lemma 1: NBD-Apriori-FR is correct i.e the itemsets generated
by the algorithm are either frequent or rare with reference to the
user defined threshold Minsup.
Proof: The correctness of NBD-Apriori-FR can be established
from the fact that it generates the final list of frequent and rare
itemsets based on three candidate lists i.e zero, frequent and rare
with reference a user defined threshold i.e Minsup. An itemset is
put in the final list of frequent and rare itemset iff it satisfies the
Minsup condition, hence the proof.

5. EXPERIMENTAL RESULTS
To implement the method we used C++ in a linux environment
on a 32-bit workstation having 2.94 Ghz core2 Due processor,
4GB RAM and 360GB Secondary storage.

5.1 Datasets Used
To evaluate the performance of the proposed NBD-Apriori-
FR we used three synthetic and four real-life benchmark UCI
datasets with various dimensinality and number of instances. The
characteristics of the datasets used are reported in Table 3.

Table 3. Datasets used for evaluation.
Dataset Type Attributes Records

cancer Real 4 32
Monk1 Real 5 423
Monk3 Real 5 423

Mushrooms Real 128 8413
T20D10000k Synthetic 5 20

T100D10000k Synthetic 10 100
T1000D90000k Synthetic 12 1000

5.2 Results
The peformance of the proposed method was compared with
Apriori and two other well known rare itemset finding tech-
niques, viz Apriori-Rare and ARIMA and the results are reported
for each dataset in tables 4 through 6.

Table 4. Results on Monk1 and
Monk3 dataset for Minsup 80%.

Algorithm
Monk1 Monk3

FIs RIs FIs RIs
Apriori 4 0 4 0

Apriori-Rare 4 5 4 5
ARIMA 0 28 0 28
Proposed 4 6 4 6

Table 5. Results on Cancer and
Mushrooms dataset for Minsup 50%

Algorithm
Cancer Mushrooms

FIs RIs FIs RIs
Apriori 7 0 163 0

Apriori-Rare 7 0 163 147
ARIMA 0 0 0 43,907
Proposed 7 0 163 47,767

5.3 Discussion
From the experimental results it can be observed that the pro-
posed method can find both frequent and rare itemsets without
any loss of frequent and rare itemsets. As can be seen from the
tables that in case of all the datasets, our method can find all
the frequent itemsets generated by Apriori. In case of cancer
dataset, none including our method finds a rare itemset. How-
ever, in case of other datasets, our method consistently finding
more rare itemsets than Apriori-rare. However, in case of three
datasets, ARIMA finds more number of rare itemsets than ours.
Also, it has been observed that it takes almost same amount of
time and same number of database scan like Apriori. Since, it
maintains a zero itemsets list so that if any subset of a candidate
list belongs to the zero lists then its support will be zero and it
does not require any database scan to count the support. Though
ARIMA tries to find all the rare itemsets but it needs twice the
time as required by Apriori. Because, first it calls Apriori-Rare
algorithm to generate the Minimal Rare Itemsets and from those
MRIs, finally it generates the rare itemsets.

6. RARE RULE GENERATION USING
MULTI-OBJECTIVE GENETIC ALGORITHM

Several methods have been introduced in the past couple of years
either by using bottom-up or top-down or by using hybridization
of both to find the frequent rules using the support-confidence
framework. However, a major limitation of those methods is that
it contains only one item in the consequent part. It is resolved by
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Table 6. Results on T20D10000K,T100D10000K and
T1000D90000K dataset for Minsup 50%

Algorithm
T20D10000K T100D10000K T1000D10000K

FIs RIs FIs RIs FIs RIs
Apriori 31 0 511 0 15 0

Apriori-Rare 31 0 511 60 15 62
ARIMA 0 92 0 10,976 0 844092
Proposed 31 40 511 38,143 15 903768

the Srikant’s first algorithm [17] that practically it may contain
any number of items in the consequent part. Again most meth-
ods check some candidate rules unnecessarily that waste signifi-
cant amount of time. Srikant’s second algorithm [17] overcomes
this problem by eliminating unnecessary checking of candidate
rules. But in rare rule generation we cannot directly use these
algorithms because rare itemsets may have zero support value.
So, specifically to address this rare rule generation problem us-
ing single objective based support-confidence framework may
not be the right choice. So, here we introduce a multi-objective
pareto[16] based rule generation method to generate the rare
rules.

6.1 Multiobjective Pareto based rule generation
method

Multi-objective problems have multiple objectives and hence
multiple solutions.So, it is always very difficult to find out a sin-
gle optimal solution from a set of multiple solutions. In such
problems, it is natural to find out a set of solutions depending
on non-dominance criterion[4][5][6][22]. The decision maker
takes a decision based on the solution that seems to fit bet-
ter depending on the circumstances can be chosen from the set
of these candidate solutions. A solution, say a, is said to be
dominated by another solution, say b, if and only if the solu-
tion b is better or equal with respect to all the corresponding
objectives of the solution a, and b is strictly better in terms
of at least one objective. Here the solution b is called a non-
dominated solution. The NBD-Apriori-MOFR algorithm uses
three objective functions mainly confidence, comprehensibility
and interestingness for rare rule generation. The confidence of
a rule (A →C) is support(A ∪ C)/support(A). Comprehensibil-
ity and interestingness are defined as follows: Comprehensibil-
ity=log(1+P)/log(1+Q)
Interestingness=[SUP(A ∪ C)/SUP(A)][SUP(A ∪ C)/SUP(C)]
[1-(SUP(A ∪ C)/R)]. Here, P,Q and R are the size of conse-
quent part, size of the whole rule and total number of records in
the database respectively. A is the antecedent and C is the con-
sequent. Next we report our MOGA (Multi-objective GA) based
rare rule generation method.
Algorithm NBD-Apriori-MOFR:

(1) Load a sample of records from the database that fits in the
memory.

(2) Generate N chromosomes randomly.
(3) Decode them to get the values of the different attributes.
(4) Scan the loaded sample to find the support of antecedent

part, consequent part and the rule
(5) Find the confidence, comprehensibility and interestingness

values.
(6) Rank the chromosomes depending on the non-dominance

property.
(7) Assign fitness to the chromosomes using the ranks, as men-

tioned earlier.
(8) Bring a copy of the chromosomes ranked as 1 into a separate

population, and store them if they are non-dominated in this
population also. If some of the existing chromosomes of this
population become dominated, due to this insertion, then re-
move the dominated chromosomes from this population.

(9) Select the chromosomes, for next generation, by roulette
wheel selections scheme using the fitness calculated in Step
7.

(10) Replace all chromosomes of the old population by the chro-
mosomes selected in Step 9.

(11) Perform multi-point crossover and mutation on these new
individuals.

(12) If the desired number of generations is not completed, then
go to Step 3.

(13) Decode the chromosomes in the final stored population,
and get the generated rules.

The motivation for developing a multi-objective genetic algo-
rithm(GA) for rule generation was that (i) GAs are a robust
search method, capable of effectively exploring the large search
spaces often associated with attribute selection problem; (ii) GAs
perform a global search, (iii) GAs already work with a popula-
tion of candidate solutions, which make them naturally suitable
for multi-objective problem solving where the search algorithm
is required to consider a set optimal solutions at each iteration.

6.2 Proof of Correctness
Following lemma provides the proof of correctness of our NBD-
Apriori-MOFR.
Lemma 2: The NBD-Apriori-MOFR algorithm is correct i.e the
rules generated from the rare itemsets are ranked according to
their optimal solutions of confidence, comprehensibility and in-
terestingness to find the best set of rules.
Poof: Our algorithm can be proved as correct from the fact that
the confidence, comprehensibility and interestingness of a rule
say A is greater than or equal to another rule say B and at least
one objective measure value among confidence, comprehensibil-
ity and interestingness must be strictly greater than the objective
measures of other rule.

6.3 Experimental Results
To implement the proposed MOGA based method for rare rule
generation, we used the similar programming platform and envi-
ronment as reported in section 5.1. To evaluate the performance
of our method we used three benchmark UCI datasets, namely
Monk1, Monk3 and Mushrooms dataset, and the results are re-
ported for various Minsup values in Tables 7 through 9. Rules
generated from different datasets are shown below.

Table 7. Rules generated for Monk1 Dataset and their
effectiveness

Rule Minsup
in %

Confidence Comprehen
sibility

Interes
tingness

6, 7→3 25 0.333333 0.682606 0.069959
1, 4→8 50 0.500000 0.682606 0.051988
2→8 50 0.666666 0.792481 0.185969
2, 5→8 50 0.510638 0.682606 0.053094
6, 7→2 25 0.333333 0.682606 0.069959

Table 8. Rules generated for Monk3 Dataset and their
effectiveness

Rule Minsup
in %

Confidence Comprehen
sibility

Interes
tingness

6, 7→3 25 0.333333 0.682606 0.069959
1, 4→8 50 0.500000 0.682606 0.051988
2→8 50 0.666666 0.792481 0.185969
2, 5→8 50 0.510638 0.682606 0.053094
6, 7→2 25 0.333333 0.682606 0.069959
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Table 9. Rules generated for Mushrooms Dataset and their
effectiveness

Rule Minsup
in %

Confidence Comprehen
sibility

Interes
tingness

2, 65→95 8 0.300000 0.682606 0.299049
21, 117→10 4 0.500000 0.682606 0.499762
36, 80→4 2 0.250000 0.682606 0.124970
4→10 1 0.250000 0.792481 0.062493

6.4 Discussion
Association rule mining problem can be viewed as a multi-
objective problem rather than single objective one. Using con-
fidence, comprehensibility and interestingness as the various ob-
jective measures, rare rules are generated from the rare itemsets.
Similarly, frequent rules are also generated from the frequent
itemsets using the same objective measures. The confidence of
a rule determines the reliability of the rule. Comprehensibility
determines the significance of a rule based on number of items
present in both the antecedent and consequent part. Interesting-
ness helps in knowledge gathering. Based on these measures an
attempt has been shown to determine the best set of rules. How-
ever, along with the meaningful rare rules, generation of redun-
dant rules is a limitation of our method.

7. CONCLUSION AND FUTURE WORK
Several frequent and rare association rule mining techniques
have been studied and reported in this paper. A general com-
parison among these techniques also has been reported to high-
light their pros and cons. To address the limitations of these
techniques, an effective Apriori based frequent and rare item-
set finding technique has been presented. The superiority of the
technique has been established in terms of seven datasets while
comparing with its other competing algorithms. Finally, to ad-
dress the limitation of any support-confidence based single ob-
jective rare rule mining method, this paper introduces a multi-
objective GA based rare rule generation method. The effective-
ness of the method has been shown over three publicly avail-
able UCI datasets. Work is going on for further enhancement of
our MOGA (Multi-Objective GA) based rare association mining
method by considering measures other than confidence, interest-
ingness and comprehensiveness, and for datasets with large num-
ber of high-dimensional instances to help finding only meaning-
ful rare association rules. Attempt is also going on to explore
the possibility of applying both the methods in network anomaly
detection towards identification of known as well as unknown
attacks.
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