
International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

18

ABSTRACT

Requirements phase is the most important stage in the Software

Development Process. If the requirements have not been

captured correctly, the whole development process will fail and

will results in time and monetary costs. The Goal Oriented

Requirements Engineering (GORE) approach helps in defining,

eliciting, organizing, analyzing and refining the requirements,

so that the requirements can meet the customer needs. This

paper discusses about the application of Goal-Oriented

Requirements engineering for eliciting the scalability, analyzing

the Reliability requirements and eliciting and analyzing the

security Requirements

Keywords

 Requirements Engineering, Goal-Oriented Requirements

Engineering (GORE) Approach, Non-Functional Quality

Factors, Scalability, Reliability, Security.

1. INTRODUCTION

Requirements Elicitation is the most important stage in the

Software Development Life Cycle Process. If the requirements

have not been captured correctly during the initial elicitation

process, then the whole development process will fail and also

results in time and monetary costs. Therefore the generation of

an accurate requirements model is highly necessary for any

kind of system. Hence the proper selection of Requirements

Engineering Technique becomes a challenging work [13].

The Goal Oriented Requirements Engineering (GORE) [1] [4]

[5] approach has been found appropriate for Eliciting, Defining,

Analyzing and Refining the Requirements. The Goal-oriented

requirements engineering (GORE) also supports a natural

elicitation of software requirements in the context of high-level

goals. Goals are the description of the customer needs, specified

as the properties that the system/application must satisfy. The

goal of the system is to build a system that satisfies all

stakeholders’ needs: functional and non-functional ones.

Functional Requirements associated with the

services/functionalities to be delivered to stakeholders. Non-

Functional Requirements associated with the factors like

Security, Performance, Flexibility, Reliability, Usability,

Scalability and Efficiency and so on also known as quality

factors [1].

This is clearly depicted in Fig.1.

Fig.1 Generic Goal Requirements View

The paper discuss about the background on Goal-Oriented

Requirements Engineering approach and application of Goal-

Oriented Requirements Engineering for eliciting the scalability,

analyzing the reliability and eliciting and analyzing the security

requirements

2. BACKGROUND ON GOAL ORIENTED

REQUIREMENTS ENGINEERING

Requirements engineering involves requirements gathering,

elicitation, analysis and specification of the requirements of a

Goal Oriented Requirements Engineering for Non-Functional
Factors

D. Francis Xavier Christopher
Director, School of Computer Studies

RVS College of Arts and Science
Coimbatore, India

E. Chandra
Phd, Director, School of Computer Studies

SNS Rajalakshmi College of Arts and Science
Coimbatore, India

Build System that Satisfies the

Customer Needs

System Satisfying

Functional Needs

System Satisfying Non-

Functional Needs

Scalable System

Reliable System

Secure system

Efficient System

Flexible System

Usable System

High

Performance

System

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

19

system [1]. The requirements gathered during elicitation serves

as a foundation for all the phases in software life cycle. Hence,

clear understanding of these requirements helps in assessing

and managing the requirements during development process.

Goal-oriented requirements engineering methodologies, such as

NFR, KAOS, i*/Tropos and GBRAM [8] [9] [11] focus on

justifying why a system is needed through the specification of

its high-level goals. These goals drive the requirements

elaboration process, which results in the definition of proper

requirements that can be implemented by the system under

development.

Goal-oriented requirements engineering views the system-to-be

and its environment as a collection of active components called

agents [1]. Active components may restrict their behavior due

to the constraints. These components are humans playing

certain roles, devices, and software. In GORE, agents are

assigned responsibility for achieving goals. There is a

possibility that while achieving the goal, there occur some

obstacle. This obstacle can be overcome by taking necessary

actions and finding the way to attain that goal. This is clearly

depicted in Fig 2 Goal Modeling Diagram.

Fig2. Goal Modeling Diagram [1]

A Goal is a prescriptive statement of intent about some

(existing or to-be) system whose satisfaction generally requires

the cooperation of some of the agents that constitute the system.

A Requirement is a goal whose achievement is the

responsibility of a single software agent [1] [11].

 The following are the benefits for Goal Modeling [1]

1) Expectations for the Goal are captured during the early

requirement phase.

2) The specifications of requirements are complete with

respect to the set of defined goals.

3) A requirement is pertinent with respect to set of goals and

hence a goal provides clear requirement pertinence.

4) A goal refinement provides the traceability links from

high-level requirements to low-level requirements.

5) Goal Modeling provides a natural mechanism for

structuring complex requirements documents. Also helps to

communicate the requirements to the customers efficiently

6) A goal helps in identifying and managing the conflicts

among the requirements.

3. GORE APPROACH FOR SCALABILITY

Scalability has been widely recognized as an important non-

functional factor. It is necessary to undertake a clear, consistent

and systematic exploration of the system’s scalability goals in

the application domain. The lack of techniques to elicit

scalability requirements leads to number of problems.

Define the Scalability as “Ability of a system to maintain the

satisfaction of its quality goals to levels that are acceptable to

its stakeholders when characteristics of the execution

environment (“the world”) and design (“the machine”) vary

over expected ranges” [7].

It is apparent that it is necessary to derive the variables, scaling

ranges, bounds on the ranges and characteristic functions in a

clear, consistent and systematic manner from system goals in

order to increase the precision and usefulness of scalability

analysis results.

The following are the advantages of using Gore Technique for

Scalability [7]:

1. Scalability of the application domain based on

assumptions:

The scalability of the application domain should depend not

only on the assumptions made during the current system

environment but also for the future system environment.

Making such assumptions is essential for scalability.

2. Provides rationale for requirements:

Lack of foundation in scalability requirements may results in

unpredictable errors on the system design. These errors can be

avoided by defining the proper scalability. Goal models helps in

assessing the completeness of scalability requirements with

respect to the defined goals.

3. Provides traceability:

 Traceability is important in the context of scalability. If the

assumptions made on the ranges of the application domain, in

the future are found to be incorrect or no longer valid, then they

can be traced easily to the system requirements and design.

4. Assignment of responsibilities:

Assign goals to respective agents. GORE can establish the

responsibility for scalability as the agents takes the

responsibility in achieving the goals.

Why?

How?

 Refinement

Responsibility

GOA

L

GOA

L

REQUIREMENT

AGENT

OBSTACLE

E

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

20

5. Measurable quality variables and objective

functions:

By using scalability factor, the untested boundary values can be

identified and helps in measuring the quality variables and

achieving the objective function i.e., to deliver the high quality

software to the customer.

The following are the difficulties in applying GORE for

eliciting requirements [7].

1) Handling ranges and thresholds in the application domain.

2) No clear taxonomy for the assumptions on the application

domain

3) Handling conflicts on the range values

This paper reviews number of well-recognized advantages of

GORE which are particularly useful for scalability. However,

there is a lack of techniques for elaborating goal models with

respect to scalability goals. In future, applying different models

and techniques will help to overcome the difficulties in

scalability.

4. GORE APPROACH FOR RELIABILITY

Reliability is one of the most important criteria for the Non-

Functional quality factor. IEEE STD 982.2 states “A software

reliability management program requires the establishment of a

balanced set of user quality objectives, and identification of

intermediate quality objectives that will assist in achieving the

user quality objectives.”[6]

The main goal for Reliability is to build high quality reliability

software which depends on the application/system quality

attributes in the requirements phase. The business requirements

are gathered from the business analysts/clients which are the

basic building blocks for the development process upon which

the entire application is built. Hence requirement validation has

to be done in order to ensure that the functionality delivered

correctly [12]. However, when there is any misunderstanding

between the developer and the client, then the requirements

delivered are not satisfied, results in the accepting changes to

the existing functionality. The better approach is to get the

requirements complete, concise and clear. This provides a clear

picture for the developer to build the system without any

misunderstanding between the Business Analyst, Developer,

Quality Assurance team and the client [6].

The Requirement Reliability Metric is based on the

requirements specification and keeps track of the requirements

in scope of the project [6] [12]

This metric make sure that the project is staying on track by

counting the number of requirements that plan to implement

during the current release and tracking their status during

construction. This would help in focus on meeting the client’s

needs and delivery targets by monitoring requirements change

requests. Further helps in estimating future projects better by

tracking the time spent on requirements engineering and

correlating requirements definitions with development effort.

This can be achieved by applying Gore Approach as mentioned

in below points.

 Specify a set of goals based on the needs of the

organization, project and client.

 Generate a set of quantifiable questions to achieve the

specified goal/target in time.

 Define the set of measures that provide the

quantitative information needed to answer the questions.

More number of questions and Measures can be identified and

formulated based on the organizational needs and client’s needs

to achieve the target i.e., to achieve the high quality reliable

software. First step is to identify the goals and generate the

quantifiable questions to achieve the goal and then identify the

metrics to answer the questions. This helps for the project

manager to keep track of the status of the requirements. Given

below the sample set of questions and Measures to attain the

Requirements Reliability [6] [12].

Questions Measures

1. What is the

current status of each

requirement

Status of each requirement in

the current phase

2. Is the

requirements are stable

Number of Initial

Requirements

Number of Changes per

Requirement

Number of Changes per

Requirement per Release

Total Number of Changes in

the release

Number of Final Requirements

Number of requirements added

Number of requirements

modified

Number of requirements

rejected

3. Is the

requirements are feasible

for the current

development technology

Number of Requirements

identified as feasible

Number of Requirements

identified as infeasible

Total Number of

Requirements

4. Has the Effort

Estimation have been

documented for each

requirement

Number of Hours estimated

per Requirement.

Actual Number of Hours spent

per requirement

Type of Documentation

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

21

5. Has the

Scheduling Changes for the

requirement have been

documented

Initial Number of hours

Scheduled per Phase

Number of Hours Scheduled

per Phase after changes

Actual Number of Hours Spent

per Phase

6. How many other

requirements are affected

by the change

Number of requirements

affected by change due to

dependency relation

Questions Measures

7. How many

incomplete requirements

have been identified

Number of Incomplete

Requirements

8. How many

identified incomplete

requirements made to be

complete

Number of Complete

Requirements which are

incomplete before

9. Has the all the

requirements are

documented including

change, incomplete and so

on

Type of Documentation

10. How many

missing requirements have

been identified

Number of Missing

Requirements

11. Does the product

developed has satisfy all

the customer needs

Functionality of the software

Number of Initial

Requirements

Number of Final Requirements

Number of Tests per

Requirement

Number of Passed Tests per

Requirement

12. Has all the

Change proposals have

been approved by Change

Control Board(CCB)

Total Number of Requirement

Changes

Number of Requirement

changes proposed by

developer

Number of Requirement

changes proposed by

client/System Analysts

Number of Requirement

Changes Approved and

Rejected by CCB per release

13. Has the test cases

have been documented for

Number of Test Cases written

per Requirement

requirements Number of Test Case changed

per Requirement

Type of Documentation

14. Has the

communication between

client and developer

regarding requirements

clarification has been

documented

Type of Requirement

Clarification Document

The following are the advantages of applying GORE technique

for Reliability:

1) Ease of Use.

2) Validate and verify the requirements if it meets the

customer needs.

3) Completeness of requirements.

4) Setting the goal and identifying the path to achieve the

target.

5) Calculating the reliability of the software.

5. GORE APPROACH FOR SECURITY

Security is an integral part of the Software Development Life

Cycle. Security Requirements Engineering deals with the

protection of assets from malicious attacks that may harm the

security of the system. GORE approach to security

requirements concentrates on identifying potential obstacles for

satisfying security goals. The security constraints should be

identified and defined at the application level during the early

development phase itself for protecting the system from harm.

The Security Requirements Model consists of two phases:

Elicitation phase and Analysis Phase [2] [3].

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

22

Fig3. Goal Oriented Security Requirements Model

In Elicitation Phase, the steps to be followed [3]:

 Identify Security Requirements based on the needs of the

clients/organization

 Identify the Security Goals(Confidentiality, Integrity,

Availability and so on) based on the Security Requirements

and prioritize them

 Validate the Security Requirements for satisfying the

security Goals

 Identify the Mitigation

In Analysis Phase, Security Requirements Analysis,

Vulnerability Analysis, Threat Analysis and Risk Analysis have

to be done to achieve the security Goals that are defined during

the Elicitation Phase [3]. The Security Requirements Analysis

explores and evaluates the security requirements based on the

threats, vulnerability and the risks. A threat is simply an event

that may have the negative impact of the system. Threat

Analysis describes the potential attacks on the system and helps

in making critical decisions and countermeasures for avoiding

threats. Vulnerability Analysis describes the weakness of an

asset, error in the specification which can exploits the system’s

security. Risk analysis determines the chances that the threats,

vulnerability will occur and helps in assessing their impact and

the risk [3].

This can be clearly depicted in Fig3. Goal Oriented Security

Requirements Model.

The following are the benefits of using Goal Oriented Security

Requirements Modeling:

1) Identifying the Security Goals for each Security

Requirements at the early development phase which helps

in attaining the high quality of the system.

2) For every threat T identified in the system, there will exists

a mitigation or countermeasure M that helps in neutralizing

the threats and vulnerabilities.

3) It helps to build a powerful and secure system based on the

client’s needs.

4) It helps in making critical decisions which protects the

system from malicious attacks.

6. CONCLUSION AND FUTURE WORK

The paper discusses the importance of GORE approach in early

Requirements phase. This paper reviews number of well-

recognized advantages of Goal Oriented Requirements

Engineering approach particularly useful for the Non-

Functionality factors such as Scalability, Reliability and

Security. By applying the GORE Approach, goals that have

been defined based on the organization/client needs can be

achieved which in turn achieves high quality software.

In future, the research concentrates on the other Non-Functional

factors which help in improving the quality of software. Many

software quality models such as ISO/IEC 9126 Quality Model,

McCall’s model, Boehm’s Model exists in the real world for

quantifying the Non-functional factors. Software quality

factors needs to be quantified and measured so that the quality

of the software can be measured. This can be done by

formulating a mathematical model in organizing all the Non-

Functional Factors based on Goal Oriented Requirements

Engineering Approach.

REFERENCES

[1] Alexei Lapouchnian, “Goal-Oriented Requirements

Engineering: An Overview of the Current Research” Depth

Report, University of Toronto, 2005

[2] Bashar Nuseibeh, Charles B. Haley, Craig Foster,

“Securing the Skies: In Requirements we trust”, IEEE

proceedings, September 2009

[3] Hui Wang, Shulan Gao, Bibo Lu, Zihao Shen, “A Novel

Model for Security Requirements Process” ISECS ’10,

Guangzhou, China, pp 29-33, July 2010.

[4] Huzam Saud Faleh Al-Subaie “ Evaluating the

Effectiveness of a Goal-Oriented Requirements

Engineering Method”, Research thesis submitted to the

University of London, 2007

International Journal of Computer Applications (0975 – 8887)

Volume 52 – No. 7, August 2012

23

[5] Jennifer Horkoff and Eric Yu, “Analyzing Goal Models –

Different Approaches and How to Choose Among

Them” SAC’11 Proceedings of the 2011 ACM Symposium

on Applied computing, pp 675-682, Mar. 2011.

[6] Dr. Linda Rosenburg, Ted Hammer, Jack Shaw, “Software

Metrics and Reliability”, ISSRE, November 1998.

[7] Leticia Duboc, Emmanuel Letier, David S. Rosenblum,

Tony Wicks, “A Case Study in Eliciting Scalability

Requirements”, International Requirements Engineering,

2008, 16
th

 IEEE, pp 247-252, Sep. 2008.

[8] Miguel A. Teruel, Elena Navarro, Victor Lopez-Jaquero,

Francisco Montero, Pascual Gonzalez, “ A Comparative of

Goal-Oriented Engineering Approached to Modelling

Requirements for Collaborative Systems”, 6th International

Conference on ENASE’11, Springer, pp 131-142, March

2011

[9] Miguel A. Teruel, Elena Navarro, Victor Lopez-Jaquero,

Francisco Montero, Pascual Gonzalez, “Assessing the

Understandability of Collaborative Systems Requirements

Notations: An Empirical Study”, Empirical Requirements

Engineering, 2011 First International Workshop on IEEE

proceedings, pp 85-92, Aug. 2011.

[10] Miguel A. Teruel, Elena Navarro, Victor Lopez-Jaquero,

Francisco Montero, Pascual Gonzalez, “CSRML: A Goal

Oriented Approach to Model Requirements for

Collaborative System”, Proceeding ER'11 Proceedings of

the 30th international conference on Conceptual modeling,

Springer, pp 33-46, 2011.

[11] Ponsard, Christophe and Devroey, Xavier, “Generating

High-Level Event-B System Models from KAOS

Requirements Models” InforSID 2011, May 2011.

[12] Rohit Gupta, “Software Reliability Metric Taxonomy”,

TECHNIA – International Journal of Computing Science

and Communication Technologies, Vol 3, No.2, Jan 2011.

[13] Dr. Sohail Asghar, Mahrukh Umar, “Requirements

Engineering Challenges in Development of Software

Applications and selection of Customer-off-the-Shelf

(COTS) Components”, International Journal of Software

Engineering (IJSE), Volume 1, Issue 2, 2010.

AUTHOR’S PROFILE

D.Francis Xavier Christopher received his B.Sc., in 1996,

M.Sc., in 1998 from Bharathiar University; Coimbatore .He

obtained his M.Phil, in the area of Networking from Bharathiar

University, Coimbatore in 2002. At present he is working as a

Director, School of Computer Studies in RVS College of Arts

and Science, Coimbatore. He has published more than 08

research papers in National, International journals and

conferences. He has guided for more than 40 M.Phil, scholars.

His research interest lies in the area of Software Engineering.

Dr. E.Chandra received her B.Sc., from Bharathiar University,

Coimbatore in 1992 and received M.Sc., from Avinashilingam

University, Coimbatore in 1994. She obtained her M.Phil., in

the area of Neural Networks from Bharathiar University, in

1999. She obtained her PhD degree in the area of Speech

recognition system from Alagappa University Karikudi in 2007.

At present she is working as a Director, School of Computer

Studies, in SNS Rajalakshmi College of Arts and Science,

Coimbatore. She has published more than 20 research papers in

National, International journals and conferences. She has

guided for more than 30 M.Phil, scholars. At present, she is

guiding 5 PhD research scholars. Her research interest lies in

the area of Data Mining, Artificial intelligence, neural

networks, speech recognition systems and fuzzy logic. She is an

active member of CSI, Currently management committee

member of CSI, Life member of Society of Statistics and

Computer Applications.

