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ABSTRACT 

Air embolism often causes severe consequences in patients, in 

which several cases need fast treatment at the earlier stage. 

This paper proposes a computerized approach for detection as 

well as estimation of motion trajectory of air emboli using 

OCT contrast imaging technique. Due to change in optical 

properties, speckle pattern changes from fluid to air bubble 

and so does the speckle pattern on the image plane. This 

phenomenon helps to track the air bubble due to change in 

brightness pattern over a sequence of images. A top-down 

approach has been demonstrated from the image acquisition to 

the application of different image processing algorithms. 

Segmentation of the embolus has been carried out primarily 

by selecting seed contour through anisotropic diffusion (AD) 

technique and then implementation of a snake based active 

contour (AC) method. Both the techniques reduce the manual 

labour and computational time, thereby substantially 

increasing the segmentation accuracy (92% - 94%). Besides, 

pyramidal construction of the Lucas – Kanade optical flow 

precisely optimizes the flow velocities of air bubble and also 

increases larger motion tracking ability. Hence, the proposed 

technique can becoming an assisting tool to the clinician for 

early detection of air embolism and tracking the air bubble 

through microcirculation.  
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1. INTRODUCTION 
Air embolism can become a life threatening disorder for 

which a computerized detection and diagnosis is of major 

importance. It occurs when an air bubble enters into the 

circulation, travels through vascular system and creates a 

blockage in normal blood flow pathway to a particular region 

far from its origin [1, 2]. This results in damage of the tissue 

structure as it restricts further blood supply to the cells in that 

particular region, for which the cells die due to lack of oxygen 

and nutrients. A survey in USA leads to a figure of 

approximately 20,000 patients counted due to air embolism, in 

which many of them required fast treatment in the earlier 

stage [1]. Basically, due to bifurcation in the blood channel, 

these air emboli stop at the narrower regions. Sometimes, the 

results turned into a severe heart attack and stroke when an air 

bubble clogs in the brain circulation and coronary artery 

respectively [1, 2]. Air embolism can be of two types; venous 

air embolism (pulmonary air embolism) refers to the situation 

when an air bubble travels through the right side of the heart 

to the lung and creates a sudden blockage in blood flow of the 

artery that feeds the lungs. This can be a cause of respiratory 

distress and hypoxia [3, 5–7]. According to the study of 

Bouma et al., pulmonary embolism (PE) has been found in 

one of 500 people across USA, in which approximately 11% 

cases has been reached to death whereas untreated PE is 

observed to have a high mortality rate of about 30% [5]. Other 

hand, arterial air embolism causes ischemia in different 

organs of the body by blocking the area fed by the artery. It 

can cause a stroke when it lands in the brain circulation. 

Often, it also hinders the blood flow through coronary artery, 

thereby causing of ischemic heart attack [1]. That is why; 

determining the flow trajectory of air emboli within a 

vasculature is of major importance in diagnosing different 

pathological conditions.  

Optical flow can deliver significant potential in this context 

for tracking the air bubble while flowing through the channel. 

Motion estimation is one of the important aspects while 

considering the flow of gray values on the image plane in time 

varying images. Optical flow can provide an apparent velocity 

distribution of movement of brightness pattern over a 

sequence of images [8]. Different procedures have been 

approached in this regard; differential methods, region based 

matching, energy based methods and other follows feature 

based optimization of optical flow over time varying images 

[9]. This paper mainly focuses on the gradient based 

calculation of gray level values. Determining the motion field 

of the air bubble is highly regulated by the degree of accurate 

estimation of the flow field and the computational time. Some 

of the techniques of calculating optical flow is affected by the 

data conservation and spatial coherence, whereas some 

methods result very precise optical flow but lacks in 

computational time [10]. Here, pyramidal Lucas – Kanade 

algorithm is implemented for flow field optimization which 

comprises least square estimation based error minimization 

technique. Prior to the optical flow algorithm, air embolus 

needs to be segmented from the channel. Active contour (AC) 

is employed for the segmentation of the embolus within 

microchannel. This work proposes an improved snake based 

AC implementation by incorporating a grow energy force, 

thereby moving the contour from the origin of seed contour to 
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track the boundary [12]. This will substantially reduce 

computational time. The technique can also facilitate the 

segmentation of moving emboli over a sequence of images. 

1.1 Organization of the Paper 
This paper focuses on the optical coherence tomography 

(OCT) based contrast imaging technique for embolism 

detection. In the following sections of this paper, active 

contour (AC) based segmentation is implemented to locate the 

blockage and to perform the shape analysis of the embolus. 

Manually selecting the seed point lacks in the context that the 

boundary should be placed accurately near actual boundary 

and the process of energy minimization as well as tracking the 

boundary become time consuming. Here, anisotropic diffusion 

is utilized to initialize the contour points for AC 

implementation. Different parameters of AC are optimized 

and the method is executed over several numbers of 

successive time frames. This results in the displaced 

segmented out embolus over the sequence of images. 

Thereafter, pyramidal Lucas – Kanade based optical flow 

algorithm is implemented over those images for tracking the 

velocity trajectory of the air embolus.  

2. MATERIALS AND METHODS 

2.1 Sample Preparation and Experimental 

Setup 
The overall imaging setup is depicted in figure 1. A swept 

laser source is tuned across a broad lasing wavelength to 

illuminate the interferometer. The swept source has a built-in 

Mach-Zehnder Interferometer (MZI, Thorlabs INT-MZI-

1300) that provides the frequency clock for the laser. The 

depth profile imaging is carried out at tens of kiloheartz 

repetition rate of the laser. The en-face images are acquired 

from the CMOS camera channel by incorporating a dichroic 

mirror into the beam path to reflect the visible light from 

sample onto the CCD camera. Cross-sectional images which 

reveal the samples internal structure are captured from the 

OCT channel. The transverse scan is controlled by the galvo 

scanning mirrors which determine the frame rate of the OCT 

imaging. 

 
Figure 1. OCT imaging instrumentation 

Different geometric flow channels have been prepared in the 

paraffin blocks. Some are straight channel with constant and 

inclined depth properties and Y – shaped channel. Inner 

diameter of which is kept at 2 mm with a depth of 0.5 – 1 mm 

below the superficial surface. The experiment has been carried 

out with a Swept Source Optical Coherence Tomography (SS 

– OCT) machine (ThorLabs) to study the contrast variations 

due to presence of an air bubble. The sample is placed on the 

stage capable of both XY and rotational translation. A mixture 

of saline and red gel ink has been pumped through the channel 

by a programmable syringe pump (NE – 4000, Newera) at a 

rate of 400 – 700 microlitre/min for maintaining a suitable 

velocity range (14 – 18 mm/sec) and contrast variations. The 

transverse resolution of the imaging module is 15 micron and 

axial resolution (air/water) is 12/9 micron. The swept source 

engine is triggered to start the lasing operation. A scanning 

laser (1325 nm), having an average output power of 10 mW, 

is directed on the channel for acquiring 2D cross sectional 

images at a rate of 20 fps and they are transferred to the 

workstation for image analysis. The images are further used 

for different image processing applications. 

Contrast image of the bubble roughly describes the portion of 

blockage present in the flow path. Contrast variation arises 

due to different optical properties of the fluid and the air 

bubble. Different image processing techniques are employed 

to segment the contour of the air embolus for tracking its 

motion field. The overall implementation is illustrated in 

following sections. 

2.2 Embolus Segmentation: Anisotropic 

Diffusion and Active Contour method 
A median filter has been applied first over the raw speckle 

image to reduce the effect of background noise. This would 

subsequently blur the AOI also. So, the intensity of AOI has 

been improved by dithering the image to lowest and highest 

grey levels. Dithering helps to distinguish foreground from 

background by transforming the gray image to its binary 

(black and white) counterpart. Detecting seed contour of the 

emboli is the first step of segmenting the air bubble present in 

the channel. This paper focuses on the use of AD filtering to 

extract the seed contour [15]. The piecewise smoothing has 

been performed on the original image  0 ,I x y  by convolving 

with a Gaussian filter  , ;G x y t  of variance t (scale-space 

parameter), thereby producing a successive number of more 

and more blurred images [15]. The parameter of the mask 

depends on the local content of the original image. The family 

of blurred images  , ,I x y t
 
can be represented as, 

     0, , , , ; I x y t I x y G x y t                    (1) 

with initial condition I(x,y,0) = I0(x,y), the original image. 

Mathematically, the AD equation can be written as, 

    , , , ,tI div c x y t I c x y t I c I              (2) 

For a constant c(x,y,t), the above diffusion equation becomes 

isotropic as given by [15], 

tI c I                                      (3) 

Let, E(x,y,t) be an estimate of boundary (edge) location 

having the following properties as: 

a)  , , 0E x y t  within each region. 

b)    , , , ,E x y t Ke x y t at each edge point, where, e is the 

unit vector normal to the edge at the point and K is the 

local contrast of the edge. 
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Hence, the conduction coefficient  , ,c x y t can be represented 

as a function of the estimate as given by,  

 c g E                                     (4) 

where,  g g has to be a nonnegative, monotonically 

decreasing function with  0 1g  , resulting a smoothed 

intensity levels within each region without affecting 

boundaries where the magnitude of E is large. Different 

functions can be used for  g g for edge detection mechanism 

[15]. Perona and Malik have shown that the simplest estimate 

of the edge positions providing excellent results are given by 

the gradient of the brightness function i.e. 

   , , , ,E x y t I x y t . So the conduction coefficient can be 

written as, 

    , , , ,c x y t g I x y t                        (5) 

AD filtering roughly extracts the bubble (embolus) boundary 

which is further utilized as an initial guess for active contour 

mechanism. 

In the next stage of segmentation, an improved snake based 

AC technique is implemented for actual bubble segmentation 

[12]. The goal is to reach for a curve where the weighted sum 

of internal and external energy will be minimum. 

Mathematically it can be formulated as, 

      
1

int

0

snake extE E v s E v s ds 
           

(6)     

Where, the position of snake is represented by a planar curve 

      ,v s x s y s , intE is the internal energy force, used to 

smooth the boundary during deformation. extE represents the 

external energies, pushing the snake towards the desired 

object. The coordinates of seed contour is transformed into 

polar form  ,  . Quantization step for the parameters is 

chosen to be s and  2
s n

  respectively. The contour is 

now represented with a set of such discrete polar coordinates

   ,  for 0,1,2,...., 1i i iv i n    ; where angle 
i si   . 

The energy function of this model is given by, 

        
1

0

n

cont i curv i image i grow i

i

E aE v bE v cE v dE v




   
 

 (7) 

Dfsdf According to figure 2, for each point

  for 0,1,2,...., 1iv i n  , the energies at the points 

 , ,i i i iv v v    are calculated and iv  is moved to the point 

with the minimum energy among these three where 
iv 

 and 

iv   are the two discrete points adjacent to iv at the radial 

direction. This operation is performed iteratively until the 

number of moved contour points is sufficiently small or the 

iteration time exceeds a predefined threshold. The energy 

functions are: contE is the internal continuity spline energy 

that helps to maintain the contour to be continuous, curvE is 

the internal curvature energy for smoothing the periphery,
 

imageE is external image force that depends on the image 

intensity points and 
growE represents the external grow energy 

that helps to expand the contour from the centre towards the 

boundary. Mathematically they can be formulated as below 

[12]. 

   1 1    cont j j i j i j iE v d v v v            (8) 

where, 1 1
  and  

t t t tv v
d

n n

 


  
    

   
2 2

1 1 1 12 2      curv j i j i i j i j iE v v v v v           
  

(9) 

       
1 1

1 1
, ,    

R R

image j j s j j s j j i

r r

E v I r I r v
R R

     
 

        (10)  

 
   if   v   and   

0                                                 else

jj i v origin

grow j

e v I I T
E v

    
  
  

  (11) 

where,

 

   
0  

1 1
  and   

j

i v ij

v i origin i

v v

I I v I I v
k k k k 

 
 

   

jv and 
0 are two k k ( k is an odd number) sub-blocks 

with centre points at
iv and the centroid of the contour 

respectively. The energy will decrease at iv
if both the sub-

blocks are of same intensity approximately, resulting in an 

outward movement of the contour. This movement stops 

while the sub-blocks having different intensities. Threshold T 

determines the range upto which the change in intensity is 

allowed. e is a negative constant, small value of which will 

limit the algorithm for more shape restrictions where large 

value of e also nullifies the effect of image energy for which 

the contour can exceed the actual boundary. 

 
Figure 2. Active contour (snake) in polar coordinate 

2.3 Motion Estimation of Embolus: Optical 

Flow Algorithm 
Once the contours of the bubble have been segmented over an 

image sequences, optical flow can map the three dimensional 

motion of intensity points into two dimensional image plane. 

Optical flow is computed assuming the brightness of a 

particular image point is constant over time (brightness 

constancy). Let, an image point (x, y) is moved to a new 
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coordinate (x+uδt, y+vδt) within a time period of δt, where (u, 

v) represents the optical flow in two spatial directions (x and y 

respectively). The brightness at point (x, y) at time t is denoted 

as I(x, y, t). Therefore the brightness constancy equation will 

be, 

( , , ) ( , , )I x y t I x u t y v t t t                (12) 

For a small pixel motion (say, 1 pixel) and less value of δt (

0t  ), the above equation (12) can be reduced into the 

form [8], 

0x y tI u I v I                               (13) 

where, 
x

I
I

x





, 
y

I
I

y



  

and
 t

I
I

t





are the partial derivatives 

of image brightness (intensity) with respect to x, y and t. 

dx
u

dt


 
and dy

v
dt


 
denote the optical flow velocities. This is 

limited because only one equation (equation 13) contains two 

unknown variables and it suffers from aperture problem [9]. 

To mitigate this challenge, pyramidal refinement of Lucas – 

Kanade algorithm is approached for determining flow 

trajectory of air embolus. 

2.3.1 Lucas – Kanade Optical Flow and its 

pyramidal representation 
Simple Lucas and Kanade method obtains a velocity 

optimization by least square estimation principle [9]. The 

baseline assumption in this case is, the neighboring points of 

specific object point vary smoothly and posses exactly the 

same velocity [10]. The brightness constancy equation (13) 

can be represented in matrix format as, 

T

tI U I                                    (14) 

where, 
T

x yI I I    
and  

T
U u v . Therefore, the least 

square estimation of the error function can be written as, 

     
2

, , , , ,u v I x x y y t t I x y t            (15) 

Assuming the displacement is small and approximately 

constant within the neighborhood of an object point, Taylor 

expansion of  , ,I x x y y t t     will be,
 

 , , ( , , )
I I I

I x x y y t t I x y t u v
x y t

  
  

      
  

   (16) 

Substituting this expression in equation (15) will give, 

 
2

, x y tu v uI vI I                         (17) 

Now, the optimized value of flow velocities will be achieved 

by minimizing this error function with respect to u and v. This 

will lead to a system of linear equations, matrix representation 

of which will produce following standard form of Lucas – 

Kanade optical flow equation [9]. 

1U E d                                      (18) 

where, 
2

2

x x y

x y y

I I I
E

I I I

 
  
  

 
 

 and x t

y t

I I
d

I I

 
   

 




. 

The algorithm for Lucas – Kanade optical flow technique is 

described below.  

Algorithm: Lucas – Kanade Optical Flow 

Input: Pair of images I and J (successive time frames). 

Output: Optical flow velocities (u, v) of each contour point. 

Begin:  

Initialize u = 0 of size of I, and v = 0 of size of J; 

Define the size of integration window; 

Compute the spatio-temporal derivatives Ix, Iy and It; 

Set the value of halfwindow to floor of (integration 

window/2); 

for i = (halfwindow+1) to (number of rows in Ix – 

halfwindow) with step of 1 

for j = (halfwindow+1) to (number of columns in Ix – 

halfwindow) with step of 1 

Set the window size, 

Row = i-halfwindow to i+halfwindow; 

Column = j-halfwindow to j+halfwindow; 

Select the windowed region within Ix, Iy and It, 

tempIx = Ix (Row, Column); 

tempIy = Iy (Row, Column); 

tempIt = It (Row, Column); 

Take the transpose, 

tempIx = (tempIx)
T; 

tempIy = (tempIy)
T; 

tempIt = (tempIt)
T; 

Set, tempIt = – (tempIt); 

Compute an intermediate matrix A, 

A = [ tempIx  tempIy ];  

Determine, d = AT × (tempIt); 

Compute structure tensor matrix, E = ATA; 

Calculate the optical flow velocity, U = E-1d; 

Assign, u(i,j) = U(1) and v(i,j) = U(2); 

end 

end 

End. 

However, such procedure shows erroneous results in case of 

large motions (more than 1 pixel). Other hand, selecting a 

proper integration window is problematic and it depends on 

the measure of intensity flow (large or small) of the input 

image. Small window helps to retain the details in the image, 

but cannot handle large motions. In contrast to this, larger 

window size is preferable for large motions, but wrongly 

tracks the motion due to presence of multiple components 

within window region. Building a pyramidal structure of the 

images is a solution to this trade off. Pyramid model is 

structured by low pass filtering and sub-sampling images by a 

factor of 2, of the preceding layer of the pyramid. Filtering 

helps to overcome the aliasing effect that can arise during sub-

sampling the images [10]. The ground image in such pyramid 

is the highest resolution image (I0 = I), having original size of 
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m×n. In the next of pyramid, I1 is computed from I0 by first 

filtering and then sub-sampling I0 by a factor of 2. Therefore 

the size of I0 becomes (m/2)×(n/2). Then I2 is computed from 

I1 and so on. Let, IL denotes the image at generic level L (L = 

0, 1, 2,…n). This way a pyramidal structure is formed with a 

set of images having gradual decrement in resolution, as we 

approach towards the highest generic level. Larger pixel 

motions in base level image become smaller as we approach 

to the higher level of pyramid due to reduce in image 

resolution.  

Lukas – Kanade optical flow is executed first in the highest 

level of pyramid using an initial guess of zero for the flow 

field. Computed optical flow velocity at the highest pyramid 

level (L = n) is then resized by a factor of 2 and propagated to 

the lower level (L = n-1), as initial guess for computing flow 

velocity in the lower level. This process rolls on up to the 

ground generic level (L = 0). Larger pixel motions can be 

rightly estimated with small integration window through this 

approach; hence the problem with the classical method can be 

resolved. 

3. RESULTS AND DISCUSSION 
Tracking the air bubble has been performed on the raw 

speckle images in a fully automated way from pre-processing 

of speckle images, through segmentation of the emboli in the 

micro-channel, the optical flow based motion field estimation. 

The overall programming part has been carried out in 

MATLAB environment (version 7.10.0). A 3X3 median filter 

is convolved with the input raw speckle image. Though it 

successively reduces the background noise (salt and pepper) 

level, but also the AOI gets blurred. It is then contrast 

enhanced to brighten the intensities in AOI. Also, dithering 

has been implemented to improve pixel intensities of AOI by 

converting the grey levels into binary values. Step-by-step 

results and their elaborations have been illustrated in the 

following part. 

3.1 Embolus Segmentation 
Segmentation has been performed on the dithered image in 

order to achieve the actual bubble contour within the channel. 

Conventional AD by Perona and Malik [15] is implemented 

first over the dithered image. A Gaussian kernel is used to 

smooth intra-region details while the edge information 

remains in the output. A 2D network structure of 8 

neighboring nodes is considered for diffusion conduction. 

This results in a rough picture of the actual bubble boundary 

which is further used as the initial boundary tracking position. 

The initial positions of the seed contour points are 

transformed into polar co-ordinate system first to facilitate the 

programming of AC. The centre is fixed at the centroid of 

seed contour. Quantization step size for angel   is 1s   (n 

= 360) and for  is s = 1 pixel. The weighting parameters 

of different energy functions are kept to be constants as a = 1, 

b = 0.8, c = d = 0.5. The length of radial direction (R) for 

computing image energy is chosen small (R = 3) for detecting 

sharp edges. For calculating grow energy, the intensity in each 

iteration has been computed over 3x3 pixel (size of k) block. 

It should be small for tracking local minima or boundaries. 

Here, e and T value has been taken -0.8 and 20 respectively. 

Figure 3 shows detected seed contour after application of AD 

filtering and its AC counterpart. 

        
(a) 

  (b) 

Figure 3. (a) Seed Contour of the embolus after AD, and 

(b) segmented embolus after AC implementation. 

3.2 Segmentation Accuracy 
Evaluation of the segmentation process has been performed 

by measuring segmentation accuracy at the output of the AC 

technique with respect to a ground truth. Mathematical 

expression for segmentation accuracy is presented in equation 

19.  

 
 1 100

abs A B
Segmentation Accuracy

B


   o

o
      (19) 

Where, A represents the segmented area computed using 

proposed mechanism and B is the ground truth. It has been 

experimented that segmentation accuracy falls in the region of 

92% – 94%, thereby reflecting a high efficiency in extracting 

embolus within microchannel.  

3.3 Motion Estimation 
In The segmented out contour shows the actual position of the 

air bubble within the channel and over a successive number of 

time frames it resembles the bubble motion. Motion tracking 

of the contour points is performed over 40 numbers of time-

frames taking at a rate of 20 fps.  

Pyramidal Lucak – Kanade technique facilitates the tracking 

of large pixel motions. Building the pyramid helps to reduce 

the resolution of the images. This will in turn makes the larger 

displacements to small pixel displacement and it can be easily 

tracked down by a small window size. A Gaussian pyramid 

has been formed to provide more weightage to the centre 

pixel, by filtering the image with a Gaussian mask and then 

resize by a factor of 0.5. Here, the pyramid is formed upto a 

level L = 3, as motion in the ground image limits to 5 – 6 

pixels. Integration window size is kept 3×3 and the iteration 

value is set to 10. Quiver plot of the velocity profile using 

pyramidal Lucas – Kanade approach is depicted in figure 4. 

Most of the directional vectors in figure 4 are align to the 

actual flow field, thereby reflecting the actual flow path of the 
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air embolus. Flow vectors, which are making some angle with 

the horizontal axis, reflect the deformation at the contour 

points of air bubble while flowing through the channel. The 

pyramidal approach has been implemented over a number of 

successive time frames and therefore, the velocity trajectory 

of the air bubble flowing through the microchannel has been 

easily tracked. 

 

Figure 4. Quiver plot of the optical flow field using 

Pyramidal Lucas – Kanade method 

4. Conclusion 
This paper showcases a detailed computerized diagnostic 

approach for tracking the motion of air embolus in OCT 

contrast imaging. AD based seed contour initialization helps 

to minimize manual labor for seed contour detection. An 

improved snake based AC implementation not only reduces 

the computational time, but also enhances the boundary 

tracking ability. The proposed mechanism substantially 

increases the segmentation accuracy (92% – 94%) for 

automatic detection of the embolus within the channel. 

Besides, pyramidal approach of Lucas – Kanade based motion 

tracking helps in accurate velocity optimization of the air 

embolus with reasonable computational time. This will 

facilitate the study of monitoring the flow of air emboli inside 

the peripheral microvasculature. The proposed approach 

considers only the air embolism case among different 

embolism phenomenons. Though this method is limited to the 

superficial/peripheral regions of the human body, but it can 

open up a new dimension for diagnosis of peripheral air 

embolism with minimal invasiveness. This paper also brings 

out the scopes of contrast imaging with respect to medical 

image analysis.  
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