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Application of Neural Networks in Character Recognition 

 
 
 
 

ABSTRACT 

With the recent advances in the computing technology, many 

recognition tasks have become automated. Character   

Recognition maps a matrix of pixels into characters and 

words. Recently, artificial neural network theories have 

shown good capabilities in performing character recognition. 

In this paper, the application of neural networks in 

recognizing characters from a printed script is explored. 

Contrast to traditional methods of generalizing the character 

set, a highly specific character set is trained for each type. 

This can be termed as targeted character recognition. 

General Terms 

Pattern Recognition, Character Recognition, Artificial Neural 

Networks. 
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1. INTRODUCTION 
Optical Character Recognition (OCR) refers to identifying 

printed characters as digitally recognizable form (such as 

ASCII) [1]. From preserving ancient manuscripts to helping 

blind people read (by using text-to-speech algorithms), the 

advantages are numerous. There are various ways to do this. 

Traditionally, this was possible only through complex 

algorithms that had very little tolerance to errors. These 

algorithms required more computational power and 

processing time. In spite of these drawbacks, it is extremely 

difficult to code.  

Traditional algorithms included sharp feature extraction and 

comparison to a stencil. This had many flaws and a little 

deviation from stencil had disastrous results. Another 

disadvantage is that the stencil has to be hard coded and 

addition of new characters would mean reprogramming the 

whole software. Handwritten character recognition has 

additional problems such as the variability in handwriting, 

similarity, and different styles. Omid Rashnodi et al have 

suggested box approach in Persian Handwritten digits 

Recognition [2]. 

With the advancements in Neural Networks, pattern 

recognition has had a huge leap. This reduces coding to 

minimal. There are many algorithms based on ANN to 

achieve OCR. This paper aims at improving the accuracy and 

efficiency of the existing Neural Network algorithms. Given 

the wide variety of applications, it is very important to 

develop a reliable and a flexible way to recognize characters. 

Sameeksha Barv has implemented OCR using neural 

networks. In that paper, each typed English letter is 

represented by binary numbers that are used as input to a 

simple feature extraction system whose output, in addition to 

the input, are fed to an ANN [3]. A comparison study of 

backpropagation neural network and leaning vector 

quantization is analyzed by Anuja P. Nagare [4] 

2. ARTIFICIAL NEURAL NETWORKS 
Artificial Neural Networks (ANN) is a computational model 

that is based on how human brain interacts and learns new 

things. ANN consists of a number of simple units that work 

parallel through weighted connections. Learning algorithms 

adjust these weights as it processes information. Once fully 

trained, the weights act as a torch lighting the way as 

information passes till the output nodes. 

The algorithm used in this paper is BPN (Back Propagation 

Network). The BP algorithm determines the weight for a 

multilayer ANN with feed-forward connections. During the 

learning phase, the computation is done by minimizing a 

mean square difference between the desired output and the 

actual output [5]. 

2.1 Mathematical Model 
 

 

Fig 1:  Architecture of ANN model 

Figure 1 shows the basic structure of an ANN model. For each 

training values, a series of steps are done. These steps can be 

broken down mainly into Forward Pass and Backward Pass. 

At the beginning of training, the weights are randomly 

initialized [6]. The nomenclatures used in the algorithm are 

given below: 

ix  – Input value 

ijv  – Weight from input to hidden 

 

 

 

 

 

 

 

Output 

Layer 

y (θ) 

Hidden 

Layer 

z (τ) 

Input 

Layer 

x (t) 

1 

2 

3 

v 
w 

V. Kalaichelvi 
Assistant Professor 

Dept of Electronics & Instrumentation Engg 
BITS PILANI, DUBAI CAMPUS 

 

Ahammed Shamir Ali 
Student 

BITS PILANI, DUBAI CAMPUS 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 52– No.12, August 2012 

2 

jv0  – Weight of bias node from input to hidden 

injz _ – Weight from input to hidden node  

jz – Weight output from hidden node 

jkw - Weight of bias node from hidden to output 

kw0 - Weight of bias node from hidden to output 

injy _ – input to hidden node  

jy – Final output value 

During the forward pass, information from the input layer 

goes to output layer through hidden layer. Each input node in 

the input layer is loaded with the values that are given for 

training. And for each input pattern a desired output is also 

supplied. Each hidden unit sums up all incoming values and 

its bias and then is passed to an activation function f(x). 
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The output from the hidden node is passed to every output 

node. The output node sums up the value from each hidden 

node and then passes to activation function. 
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This marks the end of Forward Pass. The backward pass 

begins with determining the error. The error is the difference 

between the desired and actual value  kk yt  . This error 

has to be distributed backwards to each hidden node. In order 

to find that it is passed through the derivative of activation 

function.  

   kkkk inyfyt _  …………………… (3) 

Once k is found, the change in weight can be easily 

computed as: 
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Learning rate determines how fast the model learns. A small 

value would result in a long training time where as a high 

value would make the model ineffective when there are 

variations in the input pattern. 

Updating the weights between the input and hidden layers 

require more calculations.  
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The old weights are then added with the change to get the 

updated weights. 
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3. METHODOLOGY 
The entire process can be broken down into Pre-processing, 

Feature Extraction, and then passing into ANN for training 

and simulation. These steps are visualized in fig 2. 

 

Fig 2: Flowchart of Pattern Recognition system 

3.1 Pre-processing 
Prior to ANN modeling, it is important that the images are in 

good quality. This enhances the image and decreases noise 

and distortion. This helps in achieving higher accurate results. 

It is essential in any OCR system that a preprocessing stage 

exists [7].  

3.1.1 Normalization 
This helps to decrease the noise in the image by performing a 

local averaging operation on a 5 X 5 neighborhood. In order 

to achieve this, a median or mean filter can be used. To 

achieve minimal blurring, median filter is used. 

3.1.2 Binarization 
Local binarization is then carried out in the resulting image. 

Since the color information is irrelevant, this gives us 

uniformity between the samples. This also reduces 

computational power as it has to deal with only 2 colors. 

3.1.3 Thinning 
Thinning reduces the width of similar pixels to 1 pixel. 

Thinning is done with the help of edge detection by sobel’s 

method. Thinning reduces redundancy and makes the 

characters uniform. Other pre-processing techniques such as 

Skew detection/correction, histogram matching, etc. could 

also be done. 
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3.2 Feature Extraction 
Feature extraction in OCR using Neural Networks primarily 

refers to the extraction of each character from the image. 

3.2.1 Segmentation 
Segmentation refers to isolation of each character from others. 

It is done by drawing the smallest rectangle drawn around the 

characters. This is done using the regionprops function in 

Matlab. The BoundingBox property of regionprops contains 

the coordinates of the rectangle. This can be reshaped to fit 

the type of dataset using reshape function. Prior to using 

regionprops, it is essential that any spaces are removed or any 

discontinuity within each character or else it would be treated 

as separate ones. 

This can be achieved by dilation and filling up the holes. This 

is achieved by imfill and imfill function. Dilation fills up the 

small gaps in boundaries and imfill fills up the boundaries. 

Now it is possible to easily generate draw boxes around the 

blocks, the coordinates of this can be used to extract the 

character.   

3.2.2 Scaling 
The image thus extracted is scaled into a 7 X 5 matrix 

irrespective of the size. The image is scaled up/down to attain 

uniformity. Scaling has to be done carefully preserving the 

important features. This is done using a separate user defined 

function. 

3.2.3 Detection of Line  
If the image contains multiple lines with no proper 

justification (e.g. handwritten text), then there is a good 

chance that Ilabel function would pick up the characters in the 

wrong order. In order to tackle this, the y coordinates are 

compared and sorted in a special way. A local threshold is 

calculated to determine the average difference between two 

adjacent lines. This threshold then determines the sorting 

criteria.  

3.2.4 Detection of Space 
Since each character is segmented by finding the space 

between them it is not possible to find the actual space 

between words. In order to detect space, before passing each 

character to the ANN, the difference between the x-

coordinates of adjacent characters are compared with a 

threshold value to see if it’s an actual space. Threshold value 

is calculated locally. The spaces between each character is 

calculated and sorted in descending order. The difference 

between these sorted values determines which one is an actual 

space (space between words) and which one is not. The 

lowest value acts as threshold.  

3.3 ANN Model 
The ANN model selected is a Feed Forward Back Propagation 

Network. The information is passed in Forward direction and 

Error is propagated backwards. The optimal number of hidden 

layers and nodes has to be selected based on simulation and 

training results. Typically the model contains 1 Input layer, 1 

hidden layer and 1 Output layer. Input layer consist of 35 

nodes (7 X 5). No. of Output and Hidden nodes vary 

according to the situation. Output nodes depend on the 

separate characters that make up the document.  

A dynamic model is better suited for a targeted OCR than a 

generalized one. In this way better accuracy can be attained as 

the model is trained particularly for the dataset. Training set is 

from the data itself, i.e., the training set consists of all the 

individual letters that make up the document. Each font/ 

handwriting has its uniqueness. And this unique features 

associated with a character remains the same throughout the 

scripture. The training set can be further optimized by 

excluding any character that the author never uses. This 

reduces redundancy. Analysis of a standard 26 letters is done 

and documented. This can be used as starting point to reduce 

time. Some standard models can be trained for quick tasks. 

During training the models are trained with a custom training 

set. A custom training set is a tailored set of all characters that 

makes up the full document. A common training set is 

possible if the constituents are known beforehand. For 

example, English alphabets. A custom training set can 

increase accuracy to a wide extent. For example, if the 

document does not contain any punctuation mark other than 

period and comma, then all the other punctuation marks 

become redundant. A custom training set reduces this and 

includes only which are found in the document. This means 

the model would not have to confuse between unused 

symbols.  

4. SIMULATION STUDIES 

4.1 Case study 1 
An image containing the text “THE QUICK BROWN FOX 

JUMPS OVER THE LAZY DOG.” is selected. The font used 

was Calibri, text size of 20 and spacing of 2.2. For simplicity, 

all letters were capitalized. The training set consisted of the 

same font and size from A to Z with full stop. As discussed 

earlier, the custom training set is what makes this more 

accurate. Figure 3 explains  how all the alphabets are included 

in it. The word “DOG” has been purposely moved to the next 

line so as to check the line detection in the program. 

Simulation studies are carried out using MATLAB software 

[8-11] 

 

Fig 3: Printed Characters for Case Study 1 

4.2 Analysis of Simulation Results 

4.2.1 Training Set 
The idea behind targeted OCR is getting a tailored training 

set. Training set contains all 26 alphabets and the end 

punctuation. Since only capital letters are used, the training 

set need not contain any small letters as shown in Figure 4. 

 

Fig 4: Training set for Character Recognition 

4.2.2 Training 
Number of nodes can now be fixed as the training set is ready. 

There are 35 input nodes, representing each pixel of the 7 X 5 

character. There are 27 output nodes meaning hidden nodes 

can be around half of 27. Hidden nodes were fixed at 11. The 

activation function used was Logsig. Any of these parameters 

can be changed to suit a particular case. In order to train the 

NN model, certain parameters have to be fixed. The optimal 

values are found out by simulation analysis. Important 
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parameters are Learning Rate (LR), Epochs, and Momentum 

Constant (MC). Performance goal was set at 1e-09. Once 

trained, the model can be used to recognize any number of 

images with the same building blocks (characters) [12-13].  

4.2.3 Optimum Value  
The parameters of the model ultimately decide how accurate 

and fast the result will be. It is essential to do some analysis 

before fixing the values. The optimum value can be found by 

looking at the Performance attained and time taken. Initial 

value for the model has been set as LR = 0.01, MC = 0.95, 

Maximum Epochs = 6000. 

4.2.3.1 Analysis of Learning Rate 
In order to analyze learning rate, the momentum constant and 

maximum epochs had been kept constant. Typical values of 

LR range from 0 to 1 and hence 6 values (0.01, 0.1, 0.25, 0.5, 

0.75, and 1) were taken into account. The observations are 

recorded below. 

Table 1: Analysis of Learning Rate 

Analysis Of Learning Rate (Keeping MC at 0.95) 

       LR 0.01 0.1 0.25 0.5 0.75 1 

Epoch 6000 3681 4137 5264 2846 3740 

Goal Met No Yes Yes Yes Yes Yes 

Time (s) 29 26 23 27 16 21 

 

From Table 1, it is clear that LR at 0.75 produced the best 

result in terms of both time and performance. The 

performance curve (Figure 5) also suggests that this has a 

faster convergence rate in comparison with other LR values. 

The average time taken to complete is very low compared to 

rest. The error was found to be 9.92e-10 and was even lower 

than the goal. The average performance point was 0.444 and 

was clearly the most suitable choice. A further increase in 

learning rate also means that the NN model would treat even 

minor changes as different input. 

4.2.3.2 Analysis of Maximum Epochs 
Maximum number of epochs is an important factor in 

determining the average training time. If the performance goal 

cannot be met, then the termination is triggered by either 

minimum gradient or by the number of epochs. Minimum 

gradient is fixed and hence the average time is entirely 

dependent on the maximum number of epochs. A very low 

epoch would result in an unfinished performance and a very 

high number would result in wastage of time if the 

performance is not met. Unlike the other parameters, this is 

judged by counting the no. of trials to success. It can also be 

calculated on the number of successful attempts for each 

epoch. The training is regarded as failure when the 

performance goal is not met. 

 

 

 

 

 

Table 2: Analysis of Max. Epochs 

Analysis Of Maximum Epochs  (MC = 0.95, LR=0.75) 

      
Max Epoch 8000 7000 6000 5000 4000 

Failures 1 1 2 3 4 

Epoch 3417 2495 4486 3386 2821 

Time 18 14 23 27 16 

 

From Table 2, it is clear that that the no. of failures is constant 

when maximum epoch is above 7000 and hence keeping a 

higher value does not make any sense. Therefore, max epoch 

of 7000 has been selected as the optimal combination. Out of 

10 trials, there was only 1 failure when the maximum epoch 

was set at 7000. The analysis was done keeping LR and MC 

constant. LR value is update from the previous analysis and is 

set at 0.75 whereas MC is set at 0.95 which was the initial 

value. 

4.2.3.3 Analysis of Momentum Constant 
Since the LR and Maximum Epoch are optimized, the training 

time now solely depends upon the momentum constant. Like 

learning rate, it determines how fast it converges. 

MC reduces the chance of giving wrong inputs (while 

learning) when unusual inputs are processed. In a way MC 

eases the function of Learning Rate. Since LR is kept at 0.75, 

it is essential to choose a value greater than 0.5 so that in 

effect the LR is reduced to half. If MC=0, there is no effect of 

MC and if MC=1, there is no effect of LR. Both these 

conditions are not desirable and hence the values of MC range 

from 0.5 to 0.95. 

Table 3: Analysis of Momentum Constant 

Analysis Of Momentum Constant (Keeping LR at 

0.75) 

     MC 0.5 0.65 0.8 0.95 

Epoch 3643 7000 2347 4357 

Goal Met Yes No Yes Yes 

Time (s) 21 34 15 22 

 

From Table 3 it is very clear that the optimum value is 0.8, as 

the average training time is just 15s (the lowest time with any 

other combination). The performance is 0.454 and suggests 

improvement from the original case when LR was kept at 

0.75. The performance curves (Fig 5) converge much quickly 

and show steepness at regular interval. The mean squared 

error is dropped to a staggering 10-2 at just about 40 epochs, 

which means even if the goal is met, this would give the best 

results 
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Fig 5: Performance Curve for the best training 

5. RESULT 
The training was carried out and was highly successful. In 

addition to meeting the performance goal, it only took 21 

seconds to finish the training. The result is shown below. The 

problem was then presented to the trained model to recognize 

the characters. It came out with 100% accuracy. The 

simulation results using Matlab software is shown in Figure 6. 

 

Fig 6: Simulation Result of Problem 1 

All the characters were correctly decoded. The spacing 

detection and new line detection was accurate. To test the 

accuracy with handwritten characters, the following problem 

(Figure 7) was taken as the sample. 

 

Fig 7: Handwritten Character 

In order to recognize the characters, the training set was 

created from the same handwriting. In order to test the 

effectiveness of the present approach, full alphabets were 

trained though adhering to the principle would require only 8 

characters. The training set is shown in Figure 8. 

 

 

 

 

Fig 8: Training set for Handwritten Character 

Following the exact steps a 90% accuracy was obtained.  

After tweaking the space and line detection and with low 

learning rate, 100% accuracy was obtained. This means a low 

value of LR favors handwritten characters. Figure 9 shows the 

simulation results of handwritten character using Matlab 

software. The training time took only 11 seconds to complete 

with an LR of 0.5.  

 

Fig 9: Simulation Result of Handwritten Character 

6. CONCLUSION 
OCR has a wide variety of applications and there exists 

various ways to achieve it. In the present work, an attempt has 

been made to implement neural network technique for 

character recognition. Neural Network is a very effective 

method to decipher any character of any language given the 

right set of training. In cases such as preserving old 

manuscripts where accuracy is more important, then this 

method can be employed. Also it is possible to improve the 

accuracy by adding probability to each character. For example 

a capital Q is very less likely to be found. Q is often mistaken 

with O in most of the OCR software. The results then can be 

forwarded for human review as nothing is full proof. 

Custom training set is more effective than a Universal trained 

set. For better results, different parameters should be adjusted 

for printed character recognition and handwritten characters. 

This also means addition of new characters for recognition is 

easy.  

Certain improvements such as a GUI based interface that can 

make training set by choosing the individual character would 

automate the process and save large amount of time. Many 

custom training set can be tweaked and saved for specific 

purposes. These can be used on less important documents and 

get accurate results. 
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