
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

1

Application of Neural Networks in Character Recognition

ABSTRACT

With the recent advances in the computing technology, many

recognition tasks have become automated. Character

Recognition maps a matrix of pixels into characters and

words. Recently, artificial neural network theories have

shown good capabilities in performing character recognition.

In this paper, the application of neural networks in

recognizing characters from a printed script is explored.

Contrast to traditional methods of generalizing the character

set, a highly specific character set is trained for each type.

This can be termed as targeted character recognition.

General Terms

Pattern Recognition, Character Recognition, Artificial Neural

Networks.

Keywords

Neural Networks, Character Recognition, Back Propagation

1. INTRODUCTION
Optical Character Recognition (OCR) refers to identifying

printed characters as digitally recognizable form (such as

ASCII) [1]. From preserving ancient manuscripts to helping

blind people read (by using text-to-speech algorithms), the

advantages are numerous. There are various ways to do this.

Traditionally, this was possible only through complex

algorithms that had very little tolerance to errors. These

algorithms required more computational power and

processing time. In spite of these drawbacks, it is extremely

difficult to code.

Traditional algorithms included sharp feature extraction and

comparison to a stencil. This had many flaws and a little

deviation from stencil had disastrous results. Another

disadvantage is that the stencil has to be hard coded and

addition of new characters would mean reprogramming the

whole software. Handwritten character recognition has

additional problems such as the variability in handwriting,

similarity, and different styles. Omid Rashnodi et al have

suggested box approach in Persian Handwritten digits

Recognition [2].

With the advancements in Neural Networks, pattern

recognition has had a huge leap. This reduces coding to

minimal. There are many algorithms based on ANN to

achieve OCR. This paper aims at improving the accuracy and

efficiency of the existing Neural Network algorithms. Given

the wide variety of applications, it is very important to

develop a reliable and a flexible way to recognize characters.

Sameeksha Barv has implemented OCR using neural

networks. In that paper, each typed English letter is

represented by binary numbers that are used as input to a

simple feature extraction system whose output, in addition to

the input, are fed to an ANN [3]. A comparison study of

backpropagation neural network and leaning vector

quantization is analyzed by Anuja P. Nagare [4]

2. ARTIFICIAL NEURAL NETWORKS
Artificial Neural Networks (ANN) is a computational model

that is based on how human brain interacts and learns new

things. ANN consists of a number of simple units that work

parallel through weighted connections. Learning algorithms

adjust these weights as it processes information. Once fully

trained, the weights act as a torch lighting the way as

information passes till the output nodes.

The algorithm used in this paper is BPN (Back Propagation

Network). The BP algorithm determines the weight for a

multilayer ANN with feed-forward connections. During the

learning phase, the computation is done by minimizing a

mean square difference between the desired output and the

actual output [5].

2.1 Mathematical Model

Fig 1: Architecture of ANN model

Figure 1 shows the basic structure of an ANN model. For each

training values, a series of steps are done. These steps can be

broken down mainly into Forward Pass and Backward Pass.

At the beginning of training, the weights are randomly

initialized [6]. The nomenclatures used in the algorithm are

given below:

ix – Input value

ijv – Weight from input to hidden

Output

Layer

y (θ)

Hidden

Layer

z (τ)

Input

Layer

x (t)

1

2

3

v
w

V. Kalaichelvi
Assistant Professor

Dept of Electronics & Instrumentation Engg
BITS PILANI, DUBAI CAMPUS

Ahammed Shamir Ali
Student

BITS PILANI, DUBAI CAMPUS

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

2

jv0 – Weight of bias node from input to hidden

injz _ – Weight from input to hidden node

jz – Weight output from hidden node

jkw - Weight of bias node from hidden to output

kw0 - Weight of bias node from hidden to output

injy _ – input to hidden node

jy – Final output value

During the forward pass, information from the input layer

goes to output layer through hidden layer. Each input node in

the input layer is loaded with the values that are given for

training. And for each input pattern a desired output is also

supplied. Each hidden unit sums up all incoming values and

its bias and then is passed to an activation function f(x).

 
jj

n

i

ijijj

inzfz

vxvinz

_

_
1

0



 
 ………………………. (1)

The output from the hidden node is passed to every output

node. The output node sums up the value from each hidden

node and then passes to activation function.

 kk

p

j

jkjkk

inyfy

wzwiny

_

_
1

0



 


………………………. (2)

This marks the end of Forward Pass. The backward pass

begins with determining the error. The error is the difference

between the desired and actual value  kk yt  . This error

has to be distributed backwards to each hidden node. In order

to find that it is passed through the derivative of activation

function.

   kkkk inyfyt _ …………………… (3)

Once k is found, the change in weight can be easily

computed as:

kk

jkjk

w

zw









0

 …………………….. (4)

Learning rate determines how fast the model learns. A small

value would result in a long training time where as a high

value would make the model ineffective when there are

variations in the input pattern.

Updating the weights between the input and hidden layers

require more calculations.

jk

m

k

kj win 



1

_  ………………………. (5)

 
jjj inzfin __   ………………………. (6)

jj

ijij

v

xv









0

 ………………………. (7)

The old weights are then added with the change to get the

updated weights.

   

    kkk

jkjkjk

woldwneww

woldwneww

000 


………………. (8)

3. METHODOLOGY
The entire process can be broken down into Pre-processing,

Feature Extraction, and then passing into ANN for training

and simulation. These steps are visualized in fig 2.

Fig 2: Flowchart of Pattern Recognition system

3.1 Pre-processing
Prior to ANN modeling, it is important that the images are in

good quality. This enhances the image and decreases noise

and distortion. This helps in achieving higher accurate results.

It is essential in any OCR system that a preprocessing stage

exists [7].

3.1.1 Normalization
This helps to decrease the noise in the image by performing a

local averaging operation on a 5 X 5 neighborhood. In order

to achieve this, a median or mean filter can be used. To

achieve minimal blurring, median filter is used.

3.1.2 Binarization
Local binarization is then carried out in the resulting image.

Since the color information is irrelevant, this gives us

uniformity between the samples. This also reduces

computational power as it has to deal with only 2 colors.

3.1.3 Thinning
Thinning reduces the width of similar pixels to 1 pixel.

Thinning is done with the help of edge detection by sobel’s

method. Thinning reduces redundancy and makes the

characters uniform. Other pre-processing techniques such as

Skew detection/correction, histogram matching, etc. could

also be done.

Normalization

Binarization

Thinning

ANN

Modeling
Feature

Extraction
Pre

Processing

 Segmentation
Scaling

Line Detection

Training

Analysis

Simulation

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

3

3.2 Feature Extraction
Feature extraction in OCR using Neural Networks primarily

refers to the extraction of each character from the image.

3.2.1 Segmentation
Segmentation refers to isolation of each character from others.

It is done by drawing the smallest rectangle drawn around the

characters. This is done using the regionprops function in

Matlab. The BoundingBox property of regionprops contains

the coordinates of the rectangle. This can be reshaped to fit

the type of dataset using reshape function. Prior to using

regionprops, it is essential that any spaces are removed or any

discontinuity within each character or else it would be treated

as separate ones.

This can be achieved by dilation and filling up the holes. This

is achieved by imfill and imfill function. Dilation fills up the

small gaps in boundaries and imfill fills up the boundaries.

Now it is possible to easily generate draw boxes around the

blocks, the coordinates of this can be used to extract the

character.

3.2.2 Scaling
The image thus extracted is scaled into a 7 X 5 matrix

irrespective of the size. The image is scaled up/down to attain

uniformity. Scaling has to be done carefully preserving the

important features. This is done using a separate user defined

function.

3.2.3 Detection of Line
If the image contains multiple lines with no proper

justification (e.g. handwritten text), then there is a good

chance that Ilabel function would pick up the characters in the

wrong order. In order to tackle this, the y coordinates are

compared and sorted in a special way. A local threshold is

calculated to determine the average difference between two

adjacent lines. This threshold then determines the sorting

criteria.

3.2.4 Detection of Space
Since each character is segmented by finding the space

between them it is not possible to find the actual space

between words. In order to detect space, before passing each

character to the ANN, the difference between the x-

coordinates of adjacent characters are compared with a

threshold value to see if it’s an actual space. Threshold value

is calculated locally. The spaces between each character is

calculated and sorted in descending order. The difference

between these sorted values determines which one is an actual

space (space between words) and which one is not. The

lowest value acts as threshold.

3.3 ANN Model
The ANN model selected is a Feed Forward Back Propagation

Network. The information is passed in Forward direction and

Error is propagated backwards. The optimal number of hidden

layers and nodes has to be selected based on simulation and

training results. Typically the model contains 1 Input layer, 1

hidden layer and 1 Output layer. Input layer consist of 35

nodes (7 X 5). No. of Output and Hidden nodes vary

according to the situation. Output nodes depend on the

separate characters that make up the document.

A dynamic model is better suited for a targeted OCR than a

generalized one. In this way better accuracy can be attained as

the model is trained particularly for the dataset. Training set is

from the data itself, i.e., the training set consists of all the

individual letters that make up the document. Each font/

handwriting has its uniqueness. And this unique features

associated with a character remains the same throughout the

scripture. The training set can be further optimized by

excluding any character that the author never uses. This

reduces redundancy. Analysis of a standard 26 letters is done

and documented. This can be used as starting point to reduce

time. Some standard models can be trained for quick tasks.

During training the models are trained with a custom training

set. A custom training set is a tailored set of all characters that

makes up the full document. A common training set is

possible if the constituents are known beforehand. For

example, English alphabets. A custom training set can

increase accuracy to a wide extent. For example, if the

document does not contain any punctuation mark other than

period and comma, then all the other punctuation marks

become redundant. A custom training set reduces this and

includes only which are found in the document. This means

the model would not have to confuse between unused

symbols.

4. SIMULATION STUDIES

4.1 Case study 1
An image containing the text “THE QUICK BROWN FOX

JUMPS OVER THE LAZY DOG.” is selected. The font used

was Calibri, text size of 20 and spacing of 2.2. For simplicity,

all letters were capitalized. The training set consisted of the

same font and size from A to Z with full stop. As discussed

earlier, the custom training set is what makes this more

accurate. Figure 3 explains how all the alphabets are included

in it. The word “DOG” has been purposely moved to the next

line so as to check the line detection in the program.

Simulation studies are carried out using MATLAB software

[8-11]

Fig 3: Printed Characters for Case Study 1

4.2 Analysis of Simulation Results

4.2.1 Training Set
The idea behind targeted OCR is getting a tailored training

set. Training set contains all 26 alphabets and the end

punctuation. Since only capital letters are used, the training

set need not contain any small letters as shown in Figure 4.

Fig 4: Training set for Character Recognition

4.2.2 Training
Number of nodes can now be fixed as the training set is ready.

There are 35 input nodes, representing each pixel of the 7 X 5

character. There are 27 output nodes meaning hidden nodes

can be around half of 27. Hidden nodes were fixed at 11. The

activation function used was Logsig. Any of these parameters

can be changed to suit a particular case. In order to train the

NN model, certain parameters have to be fixed. The optimal

values are found out by simulation analysis. Important

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

4

parameters are Learning Rate (LR), Epochs, and Momentum

Constant (MC). Performance goal was set at 1e-09. Once

trained, the model can be used to recognize any number of

images with the same building blocks (characters) [12-13].

4.2.3 Optimum Value
The parameters of the model ultimately decide how accurate

and fast the result will be. It is essential to do some analysis

before fixing the values. The optimum value can be found by

looking at the Performance attained and time taken. Initial

value for the model has been set as LR = 0.01, MC = 0.95,

Maximum Epochs = 6000.

4.2.3.1 Analysis of Learning Rate
In order to analyze learning rate, the momentum constant and

maximum epochs had been kept constant. Typical values of

LR range from 0 to 1 and hence 6 values (0.01, 0.1, 0.25, 0.5,

0.75, and 1) were taken into account. The observations are

recorded below.

Table 1: Analysis of Learning Rate

Analysis Of Learning Rate (Keeping MC at 0.95)

 LR 0.01 0.1 0.25 0.5 0.75 1

Epoch 6000 3681 4137 5264 2846 3740

Goal Met No Yes Yes Yes Yes Yes

Time (s) 29 26 23 27 16 21

From Table 1, it is clear that LR at 0.75 produced the best

result in terms of both time and performance. The

performance curve (Figure 5) also suggests that this has a

faster convergence rate in comparison with other LR values.

The average time taken to complete is very low compared to

rest. The error was found to be 9.92e-10 and was even lower

than the goal. The average performance point was 0.444 and

was clearly the most suitable choice. A further increase in

learning rate also means that the NN model would treat even

minor changes as different input.

4.2.3.2 Analysis of Maximum Epochs
Maximum number of epochs is an important factor in

determining the average training time. If the performance goal

cannot be met, then the termination is triggered by either

minimum gradient or by the number of epochs. Minimum

gradient is fixed and hence the average time is entirely

dependent on the maximum number of epochs. A very low

epoch would result in an unfinished performance and a very

high number would result in wastage of time if the

performance is not met. Unlike the other parameters, this is

judged by counting the no. of trials to success. It can also be

calculated on the number of successful attempts for each

epoch. The training is regarded as failure when the

performance goal is not met.

Table 2: Analysis of Max. Epochs

Analysis Of Maximum Epochs (MC = 0.95, LR=0.75)

Max Epoch 8000 7000 6000 5000 4000

Failures 1 1 2 3 4

Epoch 3417 2495 4486 3386 2821

Time 18 14 23 27 16

From Table 2, it is clear that that the no. of failures is constant

when maximum epoch is above 7000 and hence keeping a

higher value does not make any sense. Therefore, max epoch

of 7000 has been selected as the optimal combination. Out of

10 trials, there was only 1 failure when the maximum epoch

was set at 7000. The analysis was done keeping LR and MC

constant. LR value is update from the previous analysis and is

set at 0.75 whereas MC is set at 0.95 which was the initial

value.

4.2.3.3 Analysis of Momentum Constant
Since the LR and Maximum Epoch are optimized, the training

time now solely depends upon the momentum constant. Like

learning rate, it determines how fast it converges.

MC reduces the chance of giving wrong inputs (while

learning) when unusual inputs are processed. In a way MC

eases the function of Learning Rate. Since LR is kept at 0.75,

it is essential to choose a value greater than 0.5 so that in

effect the LR is reduced to half. If MC=0, there is no effect of

MC and if MC=1, there is no effect of LR. Both these

conditions are not desirable and hence the values of MC range

from 0.5 to 0.95.

Table 3: Analysis of Momentum Constant

Analysis Of Momentum Constant (Keeping LR at

0.75)

 MC 0.5 0.65 0.8 0.95

Epoch 3643 7000 2347 4357

Goal Met Yes No Yes Yes

Time (s) 21 34 15 22

From Table 3 it is very clear that the optimum value is 0.8, as

the average training time is just 15s (the lowest time with any

other combination). The performance is 0.454 and suggests

improvement from the original case when LR was kept at

0.75. The performance curves (Fig 5) converge much quickly

and show steepness at regular interval. The mean squared

error is dropped to a staggering 10-2 at just about 40 epochs,

which means even if the goal is met, this would give the best

results

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

5

Fig 5: Performance Curve for the best training

5. RESULT
The training was carried out and was highly successful. In

addition to meeting the performance goal, it only took 21

seconds to finish the training. The result is shown below. The

problem was then presented to the trained model to recognize

the characters. It came out with 100% accuracy. The

simulation results using Matlab software is shown in Figure 6.

Fig 6: Simulation Result of Problem 1

All the characters were correctly decoded. The spacing

detection and new line detection was accurate. To test the

accuracy with handwritten characters, the following problem

(Figure 7) was taken as the sample.

Fig 7: Handwritten Character

In order to recognize the characters, the training set was

created from the same handwriting. In order to test the

effectiveness of the present approach, full alphabets were

trained though adhering to the principle would require only 8

characters. The training set is shown in Figure 8.

Fig 8: Training set for Handwritten Character

Following the exact steps a 90% accuracy was obtained.

After tweaking the space and line detection and with low

learning rate, 100% accuracy was obtained. This means a low

value of LR favors handwritten characters. Figure 9 shows the

simulation results of handwritten character using Matlab

software. The training time took only 11 seconds to complete

with an LR of 0.5.

Fig 9: Simulation Result of Handwritten Character

6. CONCLUSION
OCR has a wide variety of applications and there exists

various ways to achieve it. In the present work, an attempt has

been made to implement neural network technique for

character recognition. Neural Network is a very effective

method to decipher any character of any language given the

right set of training. In cases such as preserving old

manuscripts where accuracy is more important, then this

method can be employed. Also it is possible to improve the

accuracy by adding probability to each character. For example

a capital Q is very less likely to be found. Q is often mistaken

with O in most of the OCR software. The results then can be

forwarded for human review as nothing is full proof.

Custom training set is more effective than a Universal trained

set. For better results, different parameters should be adjusted

for printed character recognition and handwritten characters.

This also means addition of new characters for recognition is

easy.

Certain improvements such as a GUI based interface that can

make training set by choosing the individual character would

automate the process and save large amount of time. Many

custom training set can be tweaked and saved for specific

purposes. These can be used on less important documents and

get accurate results.

7. REFERENCES
[1] AJ Palkovic. “Improving Optical Character

Recognition.” Proceedings of the 2nd Villanova

University Undergraduate Computer Science Research

Symposium (CSRS 2008). December 5, 8 & 10, 2008,

[Online], USA.

[2] Omid Rashnodi, Hedieh Sajedi and Mohammad Sanjee

Abadesh. “Article using Box approach in Persian

Handwritten Digits Recognition.” International Journal

of Computer Applications, vol.32, no.3, pp 1-8.

[3] Sameeksha Barve. “Optical Character Recognition Using

Artificial Neural Network.” International Journal of

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.12, August 2012

6

Advanced Research in Computer Engineering &

Technology”, Vol.1, No.4, 2012.

[4] Anuja P. Nagare. “License Plate Character Recognition

System using Neural Network.” International Journal of

Computer Applications, Volume 25, No.10, July 2011,

pp. 36-39.

[5] V.Kalaichelvi, D.Sivakumar and R.Karthikeyan.

“Prediction of flow stress of 6061 Al-15% SiC MMC

composites using adaptive network based fuzzy inference

system.” International Journal of Materials and Design,

volume 30, issue 4, April 2009, pp 1362-1370.

[6] Laurene Fausett. “Fundamentals of Neural Networks:

Architecture, Algorithms and Applications.” Prentice

Hall, 1994.

[7] S.N.Sivanandam, S.Sumathi and S.N.Deepa.

“Introduction to Neural Networks using MATLAB.”

Tata McGraw Hill, 2006.

[8] Neural Network toolbox user’s guide, The Math works

Inc.; 1998, Version 4.0.

[9] Danilo Octavio [Online]. Available:

http://wwweurope.mathworks.com/matlabcentral/fileexc

hange/18169-optical-character-recognition-ocr. 2009.

[10] Li, Fuliang and Gao, Shuangxi. “Character Recognition

System Based on Back-propagation Neural Network”,

International Conference on Machine Vision and

Human-machine Interface. 2010.

[11] Hussain, B and Kabuka, M. R., “A novel feature

recognition neural network and its application to

character recognition”, IEEE Transactions of Pattem

Recognition and Machine Intelligence, Vol. 16, No.1,

1994.

[12] Yingqiao Shi, Wenbing Fan, Guodong Shi. “The

Research of Printed Character Recognition based on

Neural Network”, Fourth International Symposium on

Parallel Architectures, Algorithms and Programming.

2011.

[13] Srinivasan, B and Mani, N. “Application of artificial

neural network model for optical character recognition”,

Systems, Man, and Cybernetics, 1997.

..

