
International Journal of Computer Applications (0975 – 8887)

Volume 52– No.10, August 2012

15

FPGA Implementation of Single Bit Error Correction

using CRC

Pramod S P
Department of ECE,

DSCE,VTU,Bangalore,India

Rajagopal A
Department of E&C, DSCE,

VTU,Bangalore, INDIA

Akshay S Kotain
Department of E&C, DSCE,

VTU,Bangalore, INDIA

ABSTRACT

Transferring data between two points is very essential, also

the accuracy of the transferred data is vital for some critical

applications, but an error during the transmission of data is

very common. The Cyclic Redundancy Check (CRC) method

is generally used for error detection and correction. In this

paper, we have proposed a new technique for error detection

and correction in case of CRC-16, which is hardware

optimized and works at relatively higher frequency and speed.

In the proposed method, it is possible to detect the exact place

of single bit error and correct them using minimum hardware.

This method involves no look tables and hence is memory

efficient. This paper focuses on effective implementation of

this method on FPGA.

Keywords
CRC, Field Programmable Gate Array, Single bit error

correction, Parallelism, non-lookup technique.

1. INTRODUCTION
The Internet is growing rapidly in terms of number of users

and amount of bandwidth used. Besides the transmission and

switching speeds, the per-packet operations necessary for

internet Protocol (IP) packet forwarding are the current

limiting factors. As transmission speeds are continually

increasing, IP packet processing overheads have become the

main bottleneck [5]. The received data may not be same as the

transmitted data because of noise and interference, which

leads to errors during the process of data transmission and

storage. Hence, to achieve better quality data transmission,

coding and detection methods are employed. CRC is very

simple and efficient method to detect and correct the errors. A

Cyclic Redundancy Check (CRC) is a type of function that

takes an input data stream of any length, and produces an

output value of 32-bit or 24 bit integer. Single bit error

correction using look up table technique was presented in [3]

and [4]. A CRC can be used as a checksum to detect

accidental alteration of data during transmission or storage. A

CRC theoretically can correct all single, double and odd bits

in error [6]. The process of encoding and decoding are

discussed in the following sections.

In this paper, we have introduced a new approach for the error

detection and correction using non-look up table technique

based on FPGA, in case of CRC. This approach is memory

efficient and operates at high frequency. Since most of the

methods currently employed are based on look up table

technique, they consume more space and also there will be a

reduction in speed because of the overhead required in

accessing the ROM which stores the look up table. We will

then review the Sunil Shukla [1] method that corrects single

bit error and also other look up table optimization techniques

presented in [2]. We have also discussed a method which

makes the algorithm hardware implementable and the results

obtained are tabulated.

2. PRINCIPLE
CRC is one of the most famous and robust error control

methods. Its computation resembles a long division operation

in which the quotient is discarded and the remainder becomes

the result, with the important distinction that the arithmetic

used is the carry-less arithmetic of a finite field or Modulo-2

addition. The length of the remainder is always less than or

equal to the length of the divisor, which therefore determines

how long the result can be.

In this method, the receiver divides the data by generator

polynomial and then gets the remainder. The receiver then

uses parallelism technique to correct single bit error by a

shifter circuit which will be explained in the following

sections. This improvised proposed method requires zero

memory and minimum hardware.

Before transmission, the frame produced by CRC encoder

consists of check bits cascaded with data bits. These check

bits which are redundant are used for error detection and

correction at the receiver. For the calculation of checksum

bits, a fixed generator polynomial is chosen. The data bits are

then divided with the generator polynomial and the resultant

remainder is the checksum bits. The division of the data by

the generator polynomial is performed using the circuit which

is shown in Figure 1.

Fig 1: Polynomial divider.

Initially, all the remainder registers are initialized to zero.

Then the data bits are shifted into the circuit with the order

such that the LSB of data is entered into the circuit first. Now

depending upon the generator polynomial, the data is just

shifted right or it is added with the feed- back value. Modulo-

2 addition is performed. Once all the data bits are shifted into

the registers, the remainder registers indicates the checksum

bits. These checksum bits are cascaded with the data bits

before the data is transmitted.

The codeword C(x) can be calculated using Equation 1.

 ()
 ()

 ()
 () (1)

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.10, August 2012

16

The first part of right hand side of Equation 1 represents the

checksum bits. Here ‘n’ represents the frame width and ‘k’

represents the data width. As an example taking n= 24 and

k=8 the calculation of checksum bits is shown below.

 x
5
+x

4
+x

2
+x

x
16

+x
12

 +x
5
+1 x

21
+x

20
+x

18
+x

16

 x
21

+x
17

+x
10

+x
5

 x
20

+x
18

+x
17

+x
16

+x
10

+x
5

 x
20

+x
16

+x
9
+x

4

 x
18

+x
17

+x
10

+x
9
+x

5
+x

4

 x
18

+x
14

+x
7
+x

2

 x
17

+x
14

+x
10

+x
9
+x

7
+x

5
+x

4
+x

2

 x
17

+x
13

+x
6
+x

 x
14

+x
13

+x
10

+x
9
+x

7
+x

6
+x

5
+x

4
+x

2
+x

Here:

Data, D(x):00010011

Check bits:00110011011110110

Codeword, C(x):00110011011110110__00010011

Similarly the codeword for CRC-16 can be calculated. The

CRC Encoder is designed to generate the codeword in a single

clock cycle with high speed and efficiency.

Frame Structure of CRC-16:
 Check bits (32 down to 17) Data bits(16 down to 1)

Frame Structure of CRC-8:
Check bits (24 down to 9) Data bits(8 down to 1)

3. PROPOSED METHOD FOR ERROR

DETECTION AND CORRECTION
In this paper, we will be presenting a unique way of

implementing multiple bit error detection and single bit error

correction using CRC for a frame width of 24 bits and 32 bits.

Let Ftr be the frame transmitted in which the checksum is

appended after 16 or 8 bits of data. We can express Ftr as

shown in Equation 2.

 Ftr = Dtr & Ctr (2)

Where,

& - concatenation operator.

Dtr- transmitted 16 or 8 bit data.

Ctr - transmitted 16 bit checksum.

At the receiver side, let Fre be the received frame as shown in

Equation 3.

 Fre = Dre & Cre (3)

Where,

Cre indicates received checksum.

Dre represents received data.

Receiver again calculates CRC on the received data. Let Ccal

indicates the CRC calculated over Dre at the receiver side. If

no error has occurred during transmission then Cre and Ccal

are equal. But if some bit(s) are in error, then Cre and Ccal

will be in mismatch. In such cases the error needs to be

detected and corrected .Hence we need to calculate the

syndrome which is given by:

 Syn=Cre XOR Ccal (4)

If the syndrome is calculated as proposed in [9] which uses a

circuit similar to the circuit as shown in Figure 1, only with

more number of registers, then it requires as many clock

cycles as the number of bits in the codeword. But by using

equation 4, the syndrome can be calculated in minimum

number of clock cycles .This method of syndrome calculation

was proposed in [1] and is an efficient one, hence we have

adopted it.

Table 1. Possible number of error patterns

This paper uses two standards CRC-16 and CRC-8 for

correcting single bit errors. Here we have designed the

algorithm to detect more than one error and we will raise a

flag indicating retransmission of the frame if there were more

than one error.

There are 2 cases in which the single bit error can occur. In

the first case, one bit error can occur in the data bits. In the

second case, one bit error can be in checksum bits. Hence the

total number of possible single bit errors in data for both the

standards is shown in Table 1.

For CRC-16 if ‘i’ is the position of the error then for case 1)

1≤ i ≤16 and for case 2) 17≤ i ≤32 . Similarly for CRC-8 only

the limits will change.

In our proposed method we have used a new technique for

detecting errors in both the cases (described in previous

paragraph). This method is an outcome of the fact that if an

error occurs as in case 2 then the syndrome pattern will have

1’s equal to no. of bits in error. As we know, we only have to

correct the error in the data bits, there is no need to correct the

error which has occurred in the checksum bits. But we need to

detect the errors in the checksum bits. This method of analysis

is advantages since it reduces memory requirements by 76%

and also we need to worry only about the errors in data, this

reduces the load on the computational block of the receiver.

The analysis of the two cases mentioned above is explained in

detail by using tables. The syndrome pattern for Case 2 for

CRC-16 is shown in Table 2. This pattern is similar even for

CRC-8. As we can see the pattern consists of only bit with

logical level 1. Similarly Table 3 represents the syndrome

patterns of the Case 1 for CRC-16 and CRC-8 standards.

In [1] only lower 8 bits are used for addressing leading to 256

memory locations. Also, the no. of patterns to be checked in

[1] is only 32. Hence the above type of addressing is not

applicable. Here we require the entire 16 bits of the syndrome

for locating and correcting the data. This results in 65536

memory locations. Considering a ROM with 65536 or 256

memory locations is not so efficient when compared to our

Standard Single Bit Error

CRC-8 24

CRC-16 32

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.10, August 2012

17

method of not using any memory block at all. We can analyze

the syndrome more effectively without using any memory.

The use of ROM [8] also introduces complexity into the

design, since we need to constantly read error patterns from it

and to take care of correct timing.

Table 2.

Syndrome patterns of single bit error in check bits

Syndrome pattern
Location of the bit in

error (i)

0000000000000001 17

0000000000000010 18

0000000000000100 19

0000000000001000 20

0000000000010000 21

0000000000100000 22

0000000001000000 23

0000000010000000 24

0000000100000000 25

0000001000000000 26

0000010000000000 27

0000100000000000 28

0001000000000000 29

0010000000000000 30

0100000000000000 31

1000000000000000 32

To explain the method of correcting single bit error that we

have proposed let us consider an example of (7,4) CRC

code as in [9]. The syndrome generator circuit for this

codeword is shown Figure. 2. This circuit of shift registers

is similar to the circuit shown in Figure 1 except that it has

only three shift registers corresponding to three check bits in

the codeword.

Fig 2: syndrome circuit for (7,4)

Here the generator polynomial used is g(x)=1+x+x3. The

received vector Z=1110101 with three check bits and a

nibble of data. In this codeword first three MSB bits are

check bits which is concatenated with a nibble of data. Here

the 3rd MSB or 3rd Check bit is in error. So we need to

detect it and correct it. In conventional method the output of

the circuit in Figure 2 which is syndrome is used to address

a look up table which actually stores the error pattern. This

error pattern is then XORed with the CRC frame to get the

correct data.

Table 3.

Syndrome patterns of single bit error in data bits

Syndrome pattern

The bit in

error for

CRC-8

The bit in

error for

CRC-16

1000010000001000 8 16

0100001000000100 7 15

0010000100000010 6 14

0001000010000001 5 13

1000110001001000 4 12

0100011000100100 3 11

0010001100010010 2 10

0001000110001001 1 9

1000110011001100 - 8

0100011001100110 - 7

0010001100110011 - 6

1001010110010001 - 5

1100111011000000 - 4

0110011101100000 - 3

0011001110110000 - 2

0001100111011000 - 1

But, in the proposed method the same circuit in Figure 2 is

used but more number of clock cycles are required. That is

when all the 7 received bits are entered into the syndrome

calculator, ‘0’s are now fed into it, from 8th shift onwards as

shown Table 4. Each time a ‘0’ is fed into the circuit, the shift

register contents are tabulated. This process of feeding ‘0’s

continues till the shift register contents read S0 S1 S2 =100. In

general for (n-k) shift register, the contents should read S0,

S1……. Sn-k-1 = 1 0 0………….0. i.e., 1 followed by (n-k-1)

number of 0s. In Table (4), we find that at the 12th shift we

get shift register contents as 100. The error is then located and

corrected as given below.

Table 4.

Contents of shift register in the syndrome calculator

No. of

shifts

Input

Z(x)

Shift Register Contents

S0 S1 S2

Initialization and

LSB of Z(x) enter

first

Shift register contents are

cleared

0 0 0

1 1 1 0 0

2 0 0 1 0

3 1 1 0 1

4 0 1 0 0

5 1 1 1 0

6 1 1 1 1

7 1 0 0 1

8 0 1 1 0

9 0 0 1 1

10 0 1 1 1

11 0 1 0 1

12 0 1 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.10, August 2012

18

As we can see from Table (4) after 7th shift we get the

syndrome from the circuit in “fig 2”. Since this syndrome is

not equal to “000” it indicates an error. Then the procedure

is continued as explained earlier until 12th shift when shift

register content is “100”. This shift number indicates the

position of the error as shown below.

The 5th bit counting from right is in error.

Therefore Error pattern is E=0010000

Corrected vector V= Z XOR E

 = 1110101 XOR 0010000

 V = 1100101

This is the same method employed in correcting single bit

error in CRC-8 and CRC-16.

4. IMPLEMENTATION ON FPGA
A parallel VLSI architecture of the decoder circuitry is as

shown in “Fig.3”. The syndrome calculator generates the

vector syndrome from the received frame based on the circuit

similar to “fig 1”. This operation requires 32 clock cycles and

hence this timing is kept track by a Timing and Control Unit

with the help of a 5 bit counter. Then if the syndrome is all

zero, it means that the corrected data is same as received data

or else if the number of 1’s in the syndrome pattern is equal to

1, it indicates an error in the check bits. Finally, if single bit

error is present in data bits which is indicated by the above

equations not being satisfied then 0’s are input into the

syndrome calculator circuit and after each 0 input the vector

syndrome is XORed with the pattern “0000000000000001”

and checked whether the result is zero or not. If it is zero then

the corrected data is obtained by XORing the received data

with the error pattern register content. If not then the

procedure is continued and error pattern register content is

shifted towards left by 1 bit. The initial content of error

pattern register is “0000000000000001”.

The Timing and Control Unit is designed using a state

diagram as shown in “fig 4”. It consists of four states, initially

in S0 we need to compute the syndrome. Hence we need a

delay of 32 clock cycles and received bits must be routed to

syndrome calculator circuit. This is achieved by setting the

mode pin to high and Sel1 pin to low which in-turn connects

clk input to the 5 bit counter and the CRC frame to the

syndrome circuit respectively. So when the Top signal of the

counter becomes 1, it indicates the completion of the delay

required. Then the state transition to S1 occurs where mode

pin turned low so that the counter can count the number of

1’s in the syndrome vector. The counter content C is sent back

to the control unit. Concurrently the vector syndrome is

checked whether or not it is equal to 0 using generic NOR

gate. If true NbE signal goes high. State jumps to S2 if C=1 or

NbE=1and the select pin Sel2 is made low which makes the

mux connect received data to corrected data. If C≠1 and

NbE=0 then the control jumps from S1 to S3 which indicates

that a single bit error is present in data bits. In S3 the control

unit sets the Sel1 to high which inputs 0’s into the syndrome

calculator. After each clock cycle syndrome is XORed with

“10000…..0” and checked if zero using the same Generic

NOR gate. If true SbE goes high indicating the completion of

the process, if false then error pattern register is shifted

towards left as explained in previous section. The control unit

stays in S3 until SbE is 0 . Once SbE is 1 then Sel2 is set as 0

to connect the output corrected data to a pattern obtained by

XORing received data with content of error pattern register.

The architecture for CRC-8 is similar to Figure 3” but it

requires a extra comparator circuit after 5 bit counter since

initially we need a delay of 24 clock cycles and hence Top

signal cannot be used. So we use a comparator to check if

counter has reached 24 or not.

Fig 3: VLSI Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 52– No.10, August 2012

19

Fig 4: state diagram of the control unit

The algorithm has been implemented and verified on Xilinx

Virtex-5 FPGA device. The code was written in VHDL and

synthesized using XST (Xilinx synthesis tool). The device

used for implementation is xc5vlx30 with speed grade 3. The

results obtained are summarized in Table 5. Simulation is

carried out using MODELSIM SE 6.5 and the simulation

results are shown in Figure 5.

Table 5. Device utilization of FPGA

Fig 5: Modelsim Simulation

5. CONCLUSIONS
CRC is the method that can detect the error in transferring

data between two points. In this paper a new method based on

CRC has been introduced for single bit error correction. We

have implemented on FPGA, for two different standards

CRC-8 and CRC-16. We have shown that hardware

implementation on FPGA can be effectively used to improve

the performance of CRC calculations.

Usually components, like shift registers, XOR and NOR gates

are used, so the entire circuit can be easily designed. This

approach is efficient both in terms of hardware and speed. The

additional hardware required is very simple. This technique

works efficiently in case of ASIC design also.

The hardware requirements are tabulated and the algorithm is

tested for all possible inputs using a test bench and the

algorithm performs as designed.

6. REFERENCES
[1] Shukla S, Bergmann N W. “Single bit error correction

implementation in CRC-16 on FPGA” In: IEEE

International Conference on Field-programmable

Technology. Brisbane,Australia, 2004: 319-322.

[2] PAN Yun, GE Ning, DONG Zaiwang. “CRC Look-up

Table Optimization for Single-Bit Error Correction”. In:

TSINGHUA SCIENCE AND TECHNOLOGY ISSN

1007-0214 18/19 pp620-623 Volume 12, Number 5,

October 2007.

[3] Johnston C A, Chao H J. “The ATM layer chip: An

ASIC for BISDN applications”. IEEE Journal on

Selected Areas in Communications, 1991, 9(5): 741-750.

[4] Peterson, W. W. and Brown, D. T. “Cyclic Codes for

Error Detection “Proceedings of the IRE 49: 228. doi:

10.1109/JRPROC.1961.287814, January 1961.

[5] W.W Peterson, E. J. Weldon. “Cyclic Codes for Error

Detection”.Second Edition Published by MIT Press,

1972 ISBN 0262160390,9780262160391.

[6] Norman Matloff. “Cyclic Redundancy Checking”.

[7] “Double Bits Error Correction Using CRC Method” by

Shahram Babaie, Ahmad Khadem Zadeh, Seyed Hasan

Es-hagi, Nima Jafari Navimipour.IN: Semantics,

Knowledge and Grid, 2009. SKG 2009. Fifth International

Conference. Oct. 2009, 254 – 257, 11050651.

[8] “FPGA implementation of one and two bit error

correction using CRC” by Pramod S P, Akshay S kotain,

Rajagopal A in International conference on recent trends

in computer science and engineering 2012,ISBN 978-81-

9089-807-2.

[9] Digital and analog communication systems, K. Sam

Shanmugam, John Wiley, 1996.

[10] Giureppe Campobello, Giuseppe Patane. Marco Russo,

”Parallel CRC Realization”.

[11] T. V. Ramabadran and S. S. Gaitonde. “A tutorial on

CRC computations”. IEEE Micro, Vol. 8, No. 4, 1988,

pp. 62-75.

[12] T. B. Pei and C. Zukowski “High-speed Parallel CRC

Circuits in VLSI” IEEE Tran.on Communications,Vol.

40, April, 1992, pp 635-657

Features
CRC-8 CRC-16

Encoder Decoder Encoder Decoder

of slice

LUT’s
8 111 16 174

of slices 22 28 32 41

Max Freq.

(MHz)
792.14 274.45 792.14 250.156

