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ABSTRACT 
We considersemitotal-block graph, total-block graph of a 

graph G (respectively, denoted as Tb(G), TB(G)). We prove 

that the number of edges in a semitotal-block graph of a given 

graph G is equal to |E(G)| + |V(B1)| + |V(B2)| + … + |V(Bm)|, 

where B1, B2, …, Bm are the blocks of G. Further, we obtain 

that  TB(G) is the ring sum of  Tb(G) and the block graph 

B(G).  We introduce the concept “vertex-block graph 

(denoted by Bv(G) of G)”, andwe prove thatTb(G) is the ring 

sum of G and Bv(G). We also present some related 

fundamental results along with illustrations.  
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1. INTRODUCTION 
A finitegraph G = (V, E) consists of a finite nonempty set of 

objects, V = {v1, v2, …}  called vertices and another finite set, 

E = {e1, e2, …} of elements called edges such that each edge 

ek  is identified with an unordered pair {vi, vj} of vertices.   

An edge associated with a vertex pair {vi, vi}   is called a self-

loop.  The number of edges associated with the vertex is the 

degree of the vertex, and (v) denotes the degree of the vertex 

v. If there is more than one edge associated with a given pair 

of vertices, then these edges are called parallel edges (or) 

multiple edges.  A graph that has does not have self-loop or 

parallel edges called a simple graph.  Two vertices are said to 

be adjacent if they are the end vertices of the same edge. A 

finite alternating sequence of vertices and edges (no repetition 

of edge allowed) beginning and ending with vertices such that 

each edge is incident with the vertices preceding and 

following it, is called a walk  and an open walk in which no 

vertex appears more than once, is called a path. A graph said 

to be connected if there is at least one path between every pair 

of vertices in G, otherwise it is called disconnected.  In a 

connected graph, a vertex whose removal disconnects the 

graph is called a cut-vertex.   The authors in [9] studied the cut 

vertices and a special type of symmetry in graphs.  The n-cube 

defined as, for a set X with |X| = n and (X) be its power set. 

Then a graph having (X) as its vertex set; and there is an 

edge between two vertices A, B if and only if |A  B| = 1 

where A  B = (A \ B)  (B \ A), is called the n-cube.   The 

graph n-cube is characterized and obtained an isomorphism 

theorem in  [6, 7, and 10]. 

For any two graphs G1 = (V1, E1)  and  G2  =  (V2, E2), we 

define their union as   the graph G  =  (V, E)   where  V =  

V1 V2  and  E  =  E1 E2,   their intersectionwhen V1 

V2  is defined as the graph  G  = (V, E)  where V  =  V1 

V2   and   E  =  E1 E2 , and the ring sumG1 G2 of two 

graphs  G1  and   G2  is defined as the graph  G = (V, E)  

where  V  =  V1  V2   and   E  =  (E1 E2)  \  (E1 E2).  

In this paper,  we consider only finite simple graphs.   

 

For the remaining fundamental definitions and results which 

are used in the paper, we refer [1, 2, 5, and 7].  
 

2. SEMITOTAL-BLOCK GRAPHS  
In this section, we define semitotal-block graphs and provide 

some examples.  We prove that the number of edges in a 

semitotal-block graph is equal to the sum of the edges in a 

graph and the number of vertices in all the blocks of a graph. 

1.1Definition [2]: A connected non–trivial graph having no 

cut point is a block.  A block of a graph is a sub-graph that is 

a block and is maximal with respect to this property. 

1.2 Note: The set of all Blocks of G is denoted by SB(G) 
 

1.3 Example: (i). Consider the graph G in figure 1.  

 

Figure 1 

 

There are five blocks in G.  They are B1(G), B2(G), B3(G), 

B4(G), B5(G).  These blocks are shown in figure 2.  

In this example, SB(G) = {B1(G), B2(G), B3(G), B4(G), 

B5(G)}.  
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Figure 2 

(ii) Observe that n-cube contains no cut point; and so it 

contains no other blocks except itself. That is, n-cube has just 

one block. 

1.4 Definition [4]: The semitotal–block graph (denoted by 

Tb(G)) of a given graph G is defined as the graph having point 

set  V(G)  B(G), with two points adjacent if they correspond 

to two adjacent points of G or one corresponds to a block Bof 

G and other to a point v of G and v in B 

1.5 Example: Consider the graph G given in Figure 3.  

 

 

 

 

 

 

 

 

Figure 3 

There are two blocks B1 and B2 of G are given in figure 4.  

 

 

 

 

 

 

Figure 4 

 

Then B(G) ={ B1,  B2}.  We construct the semi total-block 

graph Tb(G).Now V(Tb(G)) = The vertex set of Tb(G) = V(G) 

 B(G) = {v1, v2, v3, v4, B1, B2}.  Following the definition, we 

draw the semitotal-block graph Tb(G) of G is given in figure 

5.  

 

 

 

 

 

 

 

Figure 5 

 

1.6 Note: Let G be a graph.  By the definition of Tb(G), it 

follows that every edge in G is also an edge in Tb.  Therefore 

E(G)  E(Tb(G)).  Thus G is a subgraph of Tb(G). 

 

1.7 Definition: Let G be a graph and B a block in G.  An edge 

e in Tb(G) is said to be an edge related to block B if one of the 

end points of  e is B. 

 

1.8 Lemma: Let B be a block in the given graph G.  Then 

 

(i). The degree of the vertex B (of the semitotal-block graph) 

is equal to the number of vertices in the block B (of the given 

graph G). 

(ii). The number of edges in Tb(G) related to block B is |V(B)|. 

 

Proof:  (i) Suppose that the block B consists of „k‟ vertices 

and V(B) = {v1, v2, … vk}. 

Since each vi is in the block B, by the definition of semitotal-

block graph, we get an edge between the vertex vi and B (in 

the semitotal-block graph Tb(G)).  This is true for all i with 1 

i k.  Thus there are „k‟ edges with end point B in Tb(G). 

Any edge with an end point B in Tb(G) is obtained in this 

way.  Hence we get (i). 

 

(ii) From (i), we get that degree of B (in Tb(G)) is k. 

 

1.9 Theorem: Let G be a connected graph.  Then 

|E(Tb(G))| = |E(G)| + 

m

i

i =1

| V(B ) | ,where B1, B2, … Bmare the 

blocks of G. 

 

Proof:  Suppose SB(G) = {B1, B2, …, Bm}.  Let e be an edge 

in Tb(G). 

If e is an edge between two vertices in V(G), then e  E(G).  

Otherwise, the edge formed in between a vertex and a block 

Bi (of G).  Let B be a block in G with k vertices.   

By Lemma 1.8, the number of edges related to block B is 

|V(B)| = k.  Therefore the number of distinct edges (related to 

block B) that exist in Tb(G) is |V(B)|.  

This is true for each block B in G.  Thus there are 

m

i

i =1

| V(B ) | edges in Tb(G) that are related to different 

blocks of G. Hence the number of edges in Tb(G) is |E(G)| +

m

i

i =1

| V(B ) | .  The proof is complete. 

1.10. Theorem:  Let v be a vertex in a given graph G, then the 

degree of v in Tb(G) = (v) + |{B  B is a block in G such that 

v lies in B}|. 
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1.11 Corollary: Let G be a graph and v a vertex in G.  Then  

(i) degree of v in Tb(G)  degree of v in G 

(ii) degree of v in Tb(G) = degree of v in G  

v is not contained in any block of G. 

Observe that every vertex lies in a block.  So the degree of v 

in Tb(G)  degree of v in G.  Hence degree of v in Tb(G) > 

degree of v in G. 

1.12 Definition:  Let G be a graph.  The vertex-block graph 

(denoted by Bv(G)) of G is defined as follows:  

(i) V(Bv(G)) = V(G)  SB(G) 

(ii)E(Bv(G)) = { xy x  V(G) and y  SB(G) such that x is a 

vertex of the block y}. 

1.13 Note:  (i) Bv(G) is a spanning subgraph of Tb(G). 

(ii) G is not a spanning subgraph of Tb(G) if G contains a 

block. 

1.14 Theorem:  Tb(G) = G Bv(G). 

Proof:  Let G be a graph.  Since G and Bv(G) are subgraphs of 

Tb(G), it follows that G Bv(G)  Tb(G).    

By the definition of Tb(G), every edge in Tb(G) is either in G 

or in Bv(G).  So Tb(G)  G Bv(G).  Hence Tb(G) = G 

Bv(G).  By the definition of Bv(G), no edge of G is in Bv(G).  

Therefore Hence E(G Bv(G)) = (E(G) \ E(Bv(G)))  

(E(Bv(G)) \ E(G))  = E(G)  E(Bv(G)).  Hence G Bv(G) = G 

Bv(G), which shows that  Tb(G) = G Bv(G). 

3. TOTAL BLOCK GRAPH  
In this section, we study „total-block graph‟ and related results 

with illustrations.   

2.1 Definition: The total–block graph (denoted as TB(G)) of a 

given graph G is defined as the graph having the point set 

V(G)B(G), with two points adjacent if they corresponds to 

either two adjacent points of G or two blocks of G which have 

a common cut point or one corresponds to a block Bi of G and 

the other to a point vj of G with vj is in Bi. 

2.2 Example: A graph G and its total-block graph TB(G) is 

given in figure 6 and figure 7 respectively.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 7 

2.3 Note: Let G be a graph.  By the definition of TB(G),  it 

follows that every edge of G is in TB(G).  So E(G)  

E(TB(G)).  Thus G is a subgraph of TB(G). 

2.4Definition: Two blocks B1 and B2 in a given graph G are 

said to be adjacentblocks if they have a common cut vertex. 

2.5 Theorem: (i) The number of edges in TB(G) related to 

block B is equal to |V(B)| + (the number of  adjacent blocks to 

B). 

(ii) The degree of B in TB(G) = |V(B)| + (the number of  

adjacent blocks to B). 

Proof: Let B be a block and e be an edge in TB(G) related to 

block B 

Then either e =vB    for some v  B or  e =BB1     , for some 

adjacent block B1 of B. 

The number of edges of the form vB    is |V(B)|.  The number of 

edges of the formBB𝑖
     , is equal to the number of distinct blocks 

Bi, which are adjacent to B.  

Hence the number of edges in TB(G) related to block B is 

equal to |V(B)|+(the number of  adjacent blocks to B).  Thus 

we get (i). 

(ii). Follows from (i). 

2.6 Definition ([3]): Let G be a graph.  The block graph 

(denoted by B(G)) is defined as follows: 

V(B(G)) = SB(G), the set of all blocks of G; and E(B(G)) = 

{B1B2        B1,  B2
  V(B(G)) and B1 and B2 have a common cut 

vertex}. 

2.7 Remark: Let G be a graph and B be a block.  Then degree 

of B in B(G), (the block graph) is equal to the number of 

distinct adjacent blocks to B in G. 

The following theorem states a relation between the graphs: 

total-block graph; semitotal-block graph; vertex-block graph; 

and block graph. 
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2.8 Theorem: For a connected graph G, (i) TB(G) = Tb(G) 

B(G), and 

 (ii) TB(G) = G Bv(G) B(G).  

Proof: By the definition of TB(G), it follows that Tb(G) and 

B(G) are subgraphs of TB(G). 

V(TB(G)) = V(G)  SB(G) = (V(G)  SB(G))  SB(G) (by 

idempotent and associative laws of  sets) = V(Tb(G))  

V(B(G)). 

Let s be an edge in TB(G).  Then s  E(G) or s =vB    for some v 

 V(G), B  SB(G) with  v  B or  s = B1B2        for some B1, 

B2 SB(G) with B1, B2 are adjacent blocks in G. 

Now s  E(G) or s  E(Bv(G)) or s  E(B(G))  s  E(G) + 

E(Bv(G)) = E(Tb(G))  or     s  E(B(G)).  Therefore E(TB(G)) 

 E(Tb(G))  E(B(G)). 

Since Tb(G) and B(G) are subgraphs of TB(G) we have  

E(Tb(G))  E(B(G))  E(TB(G)). 

Hence E(TB(G)) = E(Tb(G))  E(B(G)). This shows that 

TB(G) = Tb(G)  B(G), the union of the graph Tb(G) & B(G). 

Since TB(G) and B(G) have no edge in common, we conclude 

that  TB(G) = Tb(G)  B(G), the ring sum of the graphs Tb(G) 

& B(G). 

(ii). By Theorem 1.15, we have that Tb(G) = G Bv(G).  

Now TB(G) = Tb(G)  B(G)  (by (i)) = G   BV(G)   B(G)   

(by the Theorem 1.15) 

The proof is complete. 

The following Corollary answers the question “How many 

edges are there in total-block graph”. 

2.9 Corollary: |E(TB(G))| = |E(G)| + |V(B1)| + … + |V(Bm)| + 

|E(B(G))|,  where B1, B2, …, Bm are the  blocks of G. 

Proof: By Theorem 2.8, we have that TB(G) = Tb(G)   

B(G). Therefore |E(TB(G)) = |E(Tb(G))| + |E(B(G))| = |E(G)| + 

|V(B1)| + … + |V(Bm)| + |E(B(G))| =                                                                    

(by the Theorem 1.9).  The proof is complete. 

A straightforward observation leads to the following.  

2.10 Corollary: Let v be a vertex in a given graph G. Then (i) 

Degree of v in TB(G)  =  degree of v in Tb(G), (ii) Degree of v 

in TB(G)  = (v) + |{B / B is a block in G such that v lies in 

B}|.    

2.11 Corollary: Let G be a graph and v a vertex in G.  

(i) degree of v in TB(G)  degree of v in G 

(ii) degree of v in TB(G) = degree of v in G  degree of v in 

Tb(G) = degree of v in G  v is not contained in any block of 

G.  
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