
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

5

Leader Election using Modified Heap Tree Method

Dinesh Kumar Yadav
 Deptt. of IT

IPEC,Ghaziabad

C. S. lamba
Deptt.of CS
RIET,Jaipur

Shweta Shukla
Deptt.of CS
RIET,Jaipur

ABSTRACT
In distributed system field, there are many challenges, and

one of them is leader election. It is really tough task to find

suitable and efficient algorithms for leader election. The

main role of an elected leader is that it performs a

centralized coordination after being selected and manages

the use of a shared resource in an optimal manner.

Whenever a failure occurs the new leader is elected by

nodes using various algorithms so that nodes can continue

working. In this paper, the proposal is a new approach, the

improved heap tree mechanism for electing the

coordinator. The higher efficiency and better performance

in the presented algorithms with respect to the existing

algorithms is validated through results

General Terms

Algorithm, Heap tree, MAX-HEAPIFY.

Keywords

Modified Heap tree, Modified Heap tree method

1. INTRODUCTION
A Leader is a member of n nodes that all other nodes

acknowledge as being distinguished to perform some

special task [1]. The Leader election problem is the

problem of choosing a leader from a given set of

candidates. Each node has a unique id. A distributed

system is collection of autonomous computing nodes

which can communicate with each other and which

cooperate on a common goal or task [2].

A leader performs a centralized coordination after being

selected [1]. This may be necessary if some problems there

a completely distributed solution in either not available or

offers less attractive performance whenever some failure

occurs it is necessary for the nodes to adapt new condition

so that they can continue working. This requires some kind

of reorganization. Leaders are elected to manage the

reorganization.

 In any leader election algorithm, a leader is usually chosen

based on some criterion such as choosing the node with the

largest identifier [3]. Once the leader is elected, the nodes

reach a certain state known as terminated state. In leader

election algorithms, such states are partitioned into elected

states and non-elected states [4].When a node enters either

state, it always remains in that state. Every leader election

algorithm must be satisfied by the safety and liveness

condition for an execution to be admissible [5]. The

liveness condition states that every node will eventually

enter an elected state or a non-elected state. The safety

condition for leader election requires that only a single

node can enter the elected state and eventually, become the

leader of the distributed system.

Several leader election algorithms such as the Bully

algorithm [2], Ring algorithm [6], Chang and Roberts’

algorithm [7], Peterson’s algorithm [8], LeLann’s

algorithm [9], and Franklin’s algorithm [10] have been

proposed over the years. These algorithms, however,

require nodes to be directly involved in leader election.

Information is exchanged between nodes by transmitting

messages to one another until an agreement is reached.

Once a decision is made, a node is elected as the leader

and all the other nodes will acknowledge the role of that

node as the leader.

In this paper there is a proposal of modified heap tree

method in electing the leader nodes by imposing lesser

complexity in terms of time and message passing

comparing to earlier proposed heap tree method for leader

election [3]. Also there is a comparison in proposed

algorithms with the existing algorithms.

2. RELATED WORK
There are lot of work already have done in the field of

leader election. Several leader election algorithms such as

the Bully algorithm [2], Ring algorithm [6], Chang and

Roberts’algorithm [7], Peterson’s algorithm [8], LeLann’s

algorithm [9], and Franklin’s algorithm [10] have been

proposed over the years. These algorithms, however,

require nodes to be directly involved in leader election.

Information is exchanged between nodes by transmitting

messages to one another until an agreement is reached.

Once a decision is made, a node is elected as the leader

and all the other nodes will acknowledge the role of that

node as the leader.

There is also a new approach has been proposed for leader

election using heap tree method [3]. In this approach

formal heap tree method is used. Here MAX-HEAPIFY ()

procedure is used which runs in O(log(n)) is the key of

maintaining MAX-HEAP property.

3. PROPOSED ALGORITHM FOR

LEADER ELECTION USING

IMPROVED HEAP TREE

METHOD
In this section, there is a description of a modified heap

tree-based algorithm for leader election. In this approach,

each node of the tree corresponds to an element of the

array that stores the value in the node. The tree is

completely filled on all levels except possibly the lowest,

which is filled from the left up to a point. An array A that

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

6

represents a heap is an object with two attributes:

length[A] and heap-size[A], which are the number of

elements in the array and in the heap stored within array A,

respectively. Although A[1..length[A]] may be valid, no

element past A[heap-size[A]] is an element of the heap,

where heap-size[A] ≤ length[A]

The root of the tree is A[1], and given the index i of a

node, the indices of its parent PARENT(i), left child

LEFT(i), and right child RIGHT(i) can be computed

easily. Based upon the type of heap being used, the values

in the nodes satisfy a modified heap property.

The MAX-HEAPIFY() procedure, which runs in O(log n)

time, is the key to maintaining the max-heap property. The

BUILD-MAX-HEAP() procedure, which runs in linear

time, produces a max-heap from an unordered input array.

The MAX-HEAP-INSERT(), HEAP-EXTRACT-MAX(),

HEAP-INCREASE-KEY() and HEAP-MAXIMUM()

procedures, which run in O(log n) time, allow the heap to

be used as a priority queue

A new variant of Heap Sort is modified heap sort [11].

Basic idea of new algorithm is similar to classical Heap

sort algorithm but it builds heap in another way. This new

algorithm requires nlogn-0.788928n comparisons for worst

case and nlogn-n comparisons in average case. This

algorithm uses only one comparison at each node. With

one comparison we can decide which child of node

contains larger element. This child is directly promoted to

its parent position In this way algorithm walks down the

path until a leaf is reached.

In this way we can reduce one comparison at each step,

because there is no need of comparison between children

and it is well known that LEFT(i) ≥ RIGHT(i) so left child

will be directly promoted to its parent position.

In this structure when the root is deleted from the tree, It is

clear that the leader has crashed. As shown in Figure 3,

when a node realizes that the leader has crashed, it sends

the election message to its father. This message traverses

up to the children of the deleted root where the left or right

children of the deleted root whosoever receive the election

message no need of comparing their IDs with each other to

determine the new leader because In Modified Heap

Structure left child ID is greater than or equal to right child

ID. So any child either left or right whosoever receive

election messages elect, left child of deleted father as a

leader. So In this way we can minimized and optimized the

execution time as well as message passing as compared to

normal heap tree method

It is not necessary for all nodes to start sending their own

IDs or election message in the tree. The election message

sent by the node reaches its direct father in the tree and at

this moment, the receiving node analyzes this message to

determine whether it is a duplicate message or not. If

duplicate, it is dropped by that node, otherwise it is sent to

the next father in the tree. By doing so, the leader can be

selected in less than O(log n) time at the expense of a

comparably reduced number of messages. In this method,

each node should save the information of its father, left

and right children, and its sibling. This approach requires a

same memory space 4n equal to the heap tree method.

Table1: AVERAGE SORTING TIME (IN MSEC) OF ALGORITHMS ON RANDOM DATA AVERAGED 50 RUNS

No.of

data

item-----

>

1000 5000 10000 50000 100000

Heap sort .0003 .0045 .0033 .0848 .0895

Modified
heap sort

.0003 .0057 .013 .0454 .051

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

7

Fig1: Average Sorting Time (In MSEC) Of Algorithms On Random Data Averaged 50 Runs

The above graph shows that modified heap sort algorithm

performs better than heap sort algorithm for larger data

items [12] and requires nlogn-0.788928n comparisons for

worst case and nlogn-n comparisons in average case [11] if

it uses Gonnet and Munro’s [13] fastest algorithm for

building heaps. This algorithm uses only one comparison

at each node but normal HEAPSORT needs 2nlogn

comparisons.

4. ANALYSIS OF MODIFIED HEAP

TREE METHOD FOR LEADER

ELECTION

Let’s take an example of modified heap tree method of

leader election, number of nodes=20.At some time leader

crashed and node A[8] =17 came to know about that after

that it sends an election message to its father A[4]=23 then

A[4] send it to its father. A[2]=27 which is the child of

crashed father. In modified heap tree method in this case

 1

 2 3

 4 5 6 7

 8 9 10 11 12 13 14 15

16 17 18 19 20

Fig 2: Leader Election using modified heap tree method when leader has crashed

only two messages will be required for leader election

because when child of crashed father received election

message from its child it does not send election message or

does not compare the ID with its sibling it just elect left

child of crashed father as a leader and broadcast this

30

27 25

20
18

17 16 14 13 12 11 10 9

8 7 6 5 4

23 22

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

8

selection message. So total message send in this case =2

for leader election.

In the case of heap tree method

 When A[8]=17, came to know about leader failure it sends

a message to its father A[4]=23 and A[4] send it to its

father A[2]=25 which is the child of crashed leader after

that A[2] sends message to A[3] and both compare their

IDs and node with larger ID promote as a leader and after

that selection message broadcast. In this way in Heap tree

method total message send = 3 and one comparison extra

as compared to modified heap tree method.

In this way time as well as message can be reduced by

using modified heap tree method in place of heap tree

method.

Maximum Number of message sent at the time of

leader election

At any time T leader election starts and we assume that

every node send a message to its father for leader election

except root. So if total number of nodes =n and no nodes

send any duplicate method then maximum number of

message sent at the time of leader election will be (n-1).

So Mmax = n-1 where Mmax is the maximum number of

message sent at the time of leader election

M=3

 M=2

 M=1

Fig 3: Leader Election using heap tree method when leader has crashed

30

25 27

18
20

17 16 13 14 12 11 9 10

7 8 6 5 4

23 22

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

9

Fig 4: maximum number of message sent at the time of leader election using heap tree method.

Table1: AVERAGE SORTING TIME (IN MSEC) OF ALGORITHMS ON RANDOM DATA AVERAGED 50 RUNS

Method Total

memor

y

needed

Order Minimum

message

Maximu

m

message

Approximate no of message when leader is

crashed

Modified

Max

Heap

4n log(n) log(n) n-1

 }0|)]2/(,[)({

}0|)]2/(,[)({

;1]))log(max([)log(
;1,1

CjCjfCjCjfBj

andCiCifCiCifAi

BjAiCi
k

jiji

k

i

Max

Heap

4n log(n) log(n) log(n)+(n-

1)

 }0|)]2/(,[)({

}0|)]2/(,[)({

;]))log(max([)log(
;1,1

CjCjfCjCjfBj

andCiCifCiCifAi

BjAiCi
k

jiji

k

i

Bully n
2
 n

2
 2n-2 n

2
 1))(1(nininNi

Ring n
2
 n

2
 n n

2

n

i

ininin
1

)]1)([(2/1)(

30

27 25

20
18

17 16 14 13 12 11 10 9

8 7 6 5 4

23 22

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.9, July 2012

10

Fig 5: Leader Election using heap tree method when leader has crashed

5. CONCLUSION AND FUTURE

WORK
Selection of leader election algorithm in a distributed

system plays a vital role in the performance of the system

and there should be a proper tradeoff between time and

message complexities. The proposed algorithm in this

paper is an attempt to improve leader election algorithm

(using heap tree method) by using modified heap tree

method. Lesser complexity and less number of message

send in modified heap tree method shows that it will

perform better than earlier proposed algorithm. It has

already proved that modified heap tree perform better than

heap tree for large number of data items. By using

proposed algorithm proper balance between time and

message can be obtained. Proposed algorithm sends n-1

maximum message which is quite less from earlier

proposed algorithms.

In proposed method Build heap procedure can be further

optimized so that it takes lesser time and this will improve

the performance of proposed algorithm of leader election.

In future we tend to adopt this approach in ad hoc and

sensor environment.

6. REFERENCES
[1] Princy Francis and Sanjeev Saxena ,IEEE conference

,1998,Optimal Distributed Leader Election Algorithm

For Synchronous complete Network.

[2] H. Gracia-Molina, IEEE Trans. on Computers, vol. C-

31, no. 1, Jan. 1982 “Elections in a distributed

computing system”

[3] Mohammad Reza EffatParvar , Nasser Yazdani, Mehdi

EffatParvar , Aresh Dadlani and Ahmad

Khonsari,IEEE conference,2010, Improved

Algorithms for Leader Election in Distributed

Systems .

[4] E. Korach, S. Moran, and S. Zaks, in Proc. 3rd ACM

Symp. on Principles of Distributed Computing,

Vancouver, Canada, pp. 199-207,Aug. 1984, “Tight

lower and upper bounds for some distributed

algorithms for a complete network of processors”.

[5] P. M. B. Vitanyi, “Distributed election in an

Archimedean ring of processors”, USA, pp. 542-547,

1984,in Proc. 16th ACM Symp. on Theory of

Computing, Washington.

[6] N. Fredrickson and N. Lynch,Journal of ACM, vol. 34,

no. 1, pp. 98-115”, 1987 “Electing a leader in a

synchronous ring”

 [7] E. Chang and R. Roberts, Communications of the

ACM, vol. 22, no. 5, pp.281-283, May 1979 “An

improved algorithm for decentralized extrema-finding

in circular configurations of processes”.

[8] G. L. Peterson, ACM Trans. Programming Languages

and Systems, pp. 758-762, Oct. 1982 “An O(n log n)

unidirectional algorithm for the circular extrema

problem”.

[9] G. LeLann, Information Processing Letters, pp. 155-

160, 1977 “Distributed systems - towards a formal

approach”.

[10] W. R. Franklin, Communication of the ACM, pp.

336-337, 1982 “On an improved algorithm for

decentralized extrema finding in circular

configurations of processors”.

 [11] Xio Dong Wang, Ying Jie Wu, Journal of Computer

Science and Technology. 22(6): 898-903 An

improved heap sort algorithm with nlogn –0.788928n

comparisons in worst case.

 [12] Vandana Sharma, Parvinder S. Sandhu, Satwinder

Singh, and Baljit Saini, World Academy of Science,

Engineering and Technology 42, 2008,Analysis of

Modified Heap Sort Algorithm on Different

Environment.

[13] Gonnet G H, Munro J I, 1986, 15(6): 964-971, Heaps

on Heaps. SIAM Journal on Computing.

[14] McDiarmid C J H, Journal of Algorithms, 1989,

10(3): 352~365,Reed B A. Building Heaps Fast.

