
International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

28 

On Transforming Popcorn Fractals with Spherical and 

Other Functions 

 
T. Gangopadhyay 

XLRI 

C.H.Area(E), Jamshedpur, 

 India 

 

 

ABSTRACT 

Popcorn fractals are instances of Integrated Fractal Systems 

involving trigonometric functions. In this paper, we study the 

effect of spherical, swirl and pseudo-horseshoe functions on 

popcorn fractals to produce talismanic and tantric designs.  

General Terms 

Fractal, Algorithm, Turbo C++, Program. 

Keywords 

Popcorn, IFS, spherical, swirl, bailout. 

1. INTRODUCTION 
In an earlier paper (Gangopadhyay[5]) we have studied the 

effect of the average of two special transformations on 

standard escape-time fractals. In this paper we study their 

effect on popcorn fractals. Popcorn fractals were introduced 

first by Clifford Pickover ([7]). These are a type of IFS 

generated fractals. Usually in IFS generated fractals an 

arbitrary point is transformed repeatedly through multiple 

affine functions to produce fractal shapes. In popcorn fractals, 

however, there are two distinguishing features. Instead of 

affine functions trigonometric functions are used. Also, every 

kth  pixel(k>=2)  is iterated a finite number of times. The 

coloring scheme uses the number of hits. This paper’s 

distinctive features consist of applying a second ( sometimes a 

third) transformation before coloring the pixel. The 

transformations are of the type introduced by Scott Draves [4] 

in his flame fractal. The final image generated resembles 

sometimes a talisman, sometimes Tantric art. The effect is 

quite distinct from that of Pickover popcorn fractals[ ], and 

also from usual IFS fractals such as fern (Barnsley [1]), maple 

leaf (Barnsley [1]), dragon curves (Davis and Knuth [3]), 

Lissajous figures (Brill [2]) or those obtained through strange 

attractors (Hofstadter [6], Ruelle [8]).  

2. THE ALGORITHM 
In iterated function systems Michael Barnsley [1] used affine 

transformations repeatedly on a starting point to produce 

fractal shapes.  Draves [4] extended the scope of these 

transformations further.  He introduced seven functional 

variations of the original point. These are described below: 

Let )y,x(  be the coordinates of the original point.  Let  

).x/y(arctantandrs,yxr 222   

a) linear : )y,x()y,x(f  . 

b) sinusoidal :  )ysin,x(sin)y,x(f  . 

c) spherical : )s/y,s/x()y,x(f  . 

d) horseshoe : ))rt(sinr),rt(cosr()y,x(f  . 

e) swirl : sin(2t))r  cos(2t),(r   y) f(x,  .  

f) polar : )1r,/t()y,x(f   

g) bent : ))y(h),x(g()y,x(f   

where 

              0xifx)x(g   

                         x*c  otherwise 

and 

               0yify)y(h   

                          c/y   otherwise. 

In the present paper, we take standard Pickover popcorn 

fractals as our starting point.  For each complex variable  z  

that is iterated, we first separate real(z) and imag(z). We apply 

Pickover transformations two these parts separately. The 

standard transformations use sin and tan functions. We have 

varied these for some of the more startling effects. We next 

apply some of Draves transformations. In the code given 

below, we use the spherical transformation in the second 

stage. In our notation: 

z= (real(z), imag(z))  first by  

z=(x-h*real(g1(y+g2(a*y)))-h*imag(g1(x+g2(a*x))), 

y-h*real(g1(px+g2(a*px)))-h*imag(g1(y+g2(a*y)))) , 

and then by  

z=(x/norm(z),y/norm(z)) 

which is the spherical transformation. Finally we rotate the 

image by 45 degree. 

Using standard forms of bailout we colour each escaping pixel 

by its current hit number.. 

In the next section we submit a programme in  Turbo C++. 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

29 

3. THE CODE 
We use the variable names standardized in Stevens [9]. 

void fractal(double,double,double,double,int,int); 

 

void main() 

{ 

double xmax=1.7,xmin=-1.7,ymax=1.7,ymin=-

1.7,deltap,deltaq; 

int max_iterations=21;int max_size= 1124.0; 

fractal(xmax,xmin,ymax,ymin,max_iterations,max_size); 

getch(); 

closegraph(); 

} 

 

complex g1(complex x) 

{return (sin(x));} 

complex g2(complex x) 

{return (tan(x));} 

double cabs(complex z) 

{return sqrt(norm(z));} 

complex flip(complex c) 

{return complex(imag(c),real(c)); } 

 

void fractal(double xmax,double xmin,double ymax,double 

ymin,int max_iterations,int max_size) 

{complex c,z;    complex x,y,px,a=complex(3,0); 

int color; 

float col=0,row;float dist; 

double deltap,deltaq;float h=.05; 

deltap=(xmax-xmin)/480; 

deltaq=(ymax-ymin)/480; 

while(!kbhit()&&col<480){ col+=1; 

{for(row=0;row<480;row+=1) 

{z=c=complex(xmin+col*deltap,ymax-row*deltaq); 

color=0; 

while((color<max_iterations)&&(norm(z)<max_size)) 

{x=real(z),y=imag(z); px=x; 

x=x-h*real(g1(y+g2(a*y)))-h*imag(g1(x+g2(a*x))); 

y=y-h*real(g1(px+g2(a*px)))-h*imag(g1(y+g2(a*y))); 

z=(x)+flip((y)); 

x=x/complex(norm((z)),0.0),y=y/complex(norm((z)),0.0); 

z=(x)+flip((y)); 

color++; 

float angle=45.*3.14/180.; 

int x0=(real(z)*cos(angle)-imag(z)*sin(angle)-xmin)/deltap, 

y0=(ymax-real(z)*sin(angle)-imag(z)*cos(angle))/deltaq; 

if(getpixel(x0+50,y0)<224)putpixel(x0+50,y0,getpixel(x0+50

,y0)+1); 

}}}}} 

The output of this sample code is illustrated in Figure 1a. 

 

        Fig 1a : Output of the sample code 

The standard popcorn fractal for the same parameters is 

diplayed belowin Figure 1b for comparison 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

30 

 

        Fig 1b : Standard popcorn fractal 

4. VARIATIONS ON THE SAME THEME 
In the sample code we use two function: g1(x) = sin(x) and 

g2(x) = cos((x)+tan(x)). By changing these we generate a 

variety of images. 

VARIATION 1 

Let g1(x) = sin(x)+cos(x) and g2(x) = x+tan(x). 

The output is illustrated in Figure 2. 

   

                  

         Fig. 2 : Output of Variation 1 

VARIATION 2 

Let g1(x) = sinh(x+sin(x)) and g2(x) = cos((x)+tan(x)). 

The output is illustrated in Figure 3. 

 

 

                       Fig. 3 : Output of Variation 2 

VARIATION 3 

Let g1(x) = sinh(x) and g2(x) = sin((x)+tan(x)). 

The output is illustrated in Figure 4. 

 

                       Fig. 4 : Output of Variation 3 

 

VARIATION 4 

Let g1(x) = sin(x) and g2(x) = sinh((x)+tanh(x)). 

The output is illustrated in Figure 5. 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

31 

 

 

                       Fig. 5 : Output of Variation 4 

VARIATION 5 

Let g1(x) = sin(x)+cos(x) and g2(x) = sin((x)+tan(x)). 

Let h=.25. 

The output is illustrated in Figure 6. 

 

         Fig. 6 : Output of Variation 5 

4. THE EFFECT OF ADDING SWIRL  
A nice floral effect is created if we add the swirl 

transformation to the spherical. For this x = real(z) and y = 

imag(z) have to be declared as floating point variables rather 

than as complex ones. Also we take simpler versions of 

Pickover transformations, viz, 

x=x-h* (g1(y+g2(a*y))) 

y=y-h*(g1(px+g2(a*px))). 

Where px=x. 

With these changes the relevant section of the sample code 

reads as follows: 

x=x-(h*g1(y+g2(a*y))); 

y=y-(h*g1(px+g2(a*px)));  

z=cmplx(x,y); 

x=x/norm(z),y=y/norm(z); 

float r=sqrt(x*x+y*y); 

float t=atan(y/(x)); 

x=r*cos(2*t),y=r*sin(2*t); 

z=cmplx(x,y); 

There is now no need of the rotation by 45 degrees. 

With these changes the output of the sample code is displayed 

in Figure 7. Here h=.5,a=13, g1(x)= sin(x+tan(x)), g2(x) = 

tanh(x+tanh(x)). 

 

         Fig. 7 : Output of modified code 

Another example is displayed in figure 8. Here g1(x)= sin(x-

tan(x)), g2(x)= tanh(x+tanh(x)). 

 

         Fig. 8 : A variation of modified code 

5. CONCLUSION 
This paper presents the effect of applying a particular 

sequence of transformations on popcorn fractals. This 

sequence could be altered, or new transformations could be 

introduced to the sequence. Similarly transformations could 

also be used successfully on Chebychev fractals. These and 

other modifications would be explored in future work. 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.8, July 2012 

32 

6. ACKNOWLEDGMENTS 
The author wishes to acknowledge his debt to the referee(s) 

for their constructive suggestions and encouragement 

7. REFERENCES 
[1] Barnsley, M. 1983 Fractals Everywhere, Academic 

Press.  

[2] Brill, R. 1995 Embellished Lissajous Figures, The 

Pattern Book(ed. Pickover, C.). 

[3] Davis, C. and Knuth, D.E. 1970 Number representations 

and dragon curves,Journal of Recreational Mathematics 

3(1970) 66-81 and 133-149. 

[4] Draves, S.  1992 The Fractal Flame Algorithm, 

flame3.com/flame-draves.pdf. 

[5] Gangopadhyay, T. 2012  On generating skyscapes 

through escape-time fractals, International journal of 

Computer Applications 43(2012)17-19. 

[6] Hofstadter, D.R. 1982 Strange attractors: Mathematical 

patterns delicately poised between order and chaos, 

Scientific American 245(May 1982)16-29. 

[7] Pickover C. quoted in Fractint formula 

documentation,www.nahee.com/spanky/www/fractint/po

pcorn_type.html. 

[8] Ruell,D. 1980 Strange attractors, Math Intelligencer 

2(1980)126-137. 

[9] Stevens, R. 1989 Fractal Programming in C, M&T 

Books. 

 


