
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

22

 HWPDE: Novel Approach for Data Extraction from
Structured Web Pages

Manpreet Singh Sehgal

Department of information Technology, Apeejay
College of Engineering, Sohna, Gurgaon

Anuradha
PhD, Department of Computer Engineering, YMCA

University of Sc. & Technology, Faridabad

ABSTRACT

Diving into the World Wide Web for the purpose of fetching

precious stones (relevant information) is a tedious task under

the limitations of current diving equipments (Current

Browsers). While a lot of work is being carried out to improve

the quality of diving equipments, a related area of research is

to devise a novel approach for mining. This paper describes a

novel approach to extract the web data from the hidden

websites so that it can be used as a free service to a user for a

better and improved experience of searching relevant data.

Through the proposed method, relevant data (Information)

contained in the web pages of hidden websites is extracted by

the crawler and stored in the local database so as to build a

large repository of structured and indexed and ultimately

relevant data. Such kind of extracted data has a potential to

optimally satisfy the relevant Information starving end user.

Keywords

Hidden Web, Web page Extraction, Web Page Service.

1. INTRODUCTION
As per the survey [1, 2, 3] tremendous amount of the

information in the World Wide Web is hidden behind the

search query interfaces and is dynamically generated on user

request from the search interfaces, The current web crawlers

do not and cannot touch this repository as they only crawl

publically indexable web [2] also called Surface web.

Information in the surface web is purely unstructured and

static and thereby unable to meet the most of the user

requests. In an attempt to break the jinx „the step‟ is taken in

the direction of mining data for the better and improved

experience of internet browsing. An approach in „the step‟ has

been explained in the following sections and subsections.

Section 2 throws a light on the related work done in the same

direction. Section 3 highlights the proposed work, beginning

with a conceptual architecture and ending with a set of

algorithms (supported by the snapshots) used in „the step‟ this

section succeeds in justifying the proposed work in a neat and

simplified way. Section 4 shows the experimental results.

Section 5 draws the conclusion and leaves a space for future

work. The paper ends with a set of references referred in this

wonderful journey.

2. RELATED WORK
A plenty of work has been done in this area. Liu and

Grossman [4] proposed a novel method to mine data records

in a Web page automatically which is called as MDR The

technique is based on two observations about data records on

the Web and a string matching algorithm. The technique of

MDR is able to mine both contiguous and non-contiguous

data records. Its experimental results show that the technique

outperforms existing techniques substantially.

[5] Proposed effective policies for generating queries

automatically. It gave a theoretical framework to investigate

the query generation problem for the Hidden Web. This

research is based on single keyword.

DESP [6] presents an automatic deep extractor on Deep web

pages for book domain. which can extract data items and label

attributes at the same time. The case of DESP is to extract

books' information such as title, author, price and publisher

from result pages returned from bookstore web sites.

Although DESP is for a specific domain, the method used by

DESP is highly adaptive and can suit other domains.

 [7] Discussed the research that has been done in the area of

data extraction from Hidden Web sources. It elaborates on the

the advantages and disadvantages of currently existing

techniques of data extraction from Hidden webpages

[8] Proposed VIPS (VIsion-based Page Segmentation)

algorithm to extract the semantic structure for a web page.

Such semantic structure is a hierarchical structure in which

each node will correspond to a block. Each node will be

assigned a value (Degree of Coherence) to indicate how

coherent of the content in the block based on visual

perception.

[9] Proposed a novel approach that identifies Web page

templates and the tag structures of a document in order to

extract structured data from hidden web sources as the results

returned in response to a user query are typically presented

using template generated Web pages

Yalin Wang and Jianying Hu [10] proposed a machine

learning approach to detect data rich tables on a web page.

Tables are used to represent relational information in web

documents. Web designer choose <TABLE> tag not only for

relational information display but also to create any type of

multiple-column layout for easy viewing, thus the presence of

the <TABLE> tag does not necessarily indicate the presence

of a relational table. In their work,they defined genuine tables

to be documents where a two dimensional grid is used for the

logical relations among the cells.

3. PROPOSED WORK
In this paper a novel technique to extract table data from

structured databases has been proposed. Architecture and

detail of components is given in next section.

3.1 Architecture
Figure 3.1 shows the architecture of HWPDE. The data

extraction process is divided into eight steps. There are

multiple steps involved in filtering the desired data and

formatting in a format a database can accept. Subsections in

this section Illustrate these steps in a chronological order as

depicted in Figure 3.1

3.1.1 Hidden Web Data Miner
The role of a Hidden Web Miner is to recognize the relevant

data out of the web page and extract two type of data out of it,

one as an HTML (source code) and another as a TEXT (plain

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

23

text displayed on web page). The approach used In this paper

for this module is static, that is user has to select a relevant

data with the help of a mouse.

3.1.2 Comma Remover and Tag replacer (with

Comma)
This module takes source code copy (HTML) as an input and

removes all existing commas in the source code .

3.1.3 Text Trimmer
1,2

Text Trimmer1 takes plaintext copy of the extracted data and

does the same thing that Comma Remover does but alongside

it also removes white spaces. It first replaces all whitespaces

with commas and then removes all commas generated and

those already present in the plain text. The same algorithm in

the form of Line Trimmer2 is applied at the output of Line

Picker (explained in section 3.1.5)

3.1.4 Boundary Extractor
After getting commas and white spaces removed from

plaintext (TEXT) form of data, the top row (first boundary)

and the bottom row (second boundary) are picked up for later

comparison from the other copy (HTML) after processing.

3.1.5 Line Picker and Pattern Buffer
Tag less copy of a source code is fed to the Line Picker. This

algorithm parses the whole tag less copy as follows. It starts

with picking up first line of the file, and provides it to the Text

Trimmer which further converts it into a form comparable

Text

Trimmer2
………………..

Database

RDT

Data type Detector

& Updater

……,…,…….……,

…,…..……….,…,

…………,…,……

Data Sponger

and RDT

(Relational

Database Table)

Squeezer

Line Picker

……,…..,…..….,…

…

Output

Redundancy

Remover

……,……….,……,…

…..,……..,……….,

…,…,…,……,…

……,…..,…..….,…

…….., …,……

….,…………..,…….

,……,,…….,

……….,………….

Comma Remover

and Tag Replacer

(With Comma)

 Pattern

Buffer

Non Text Element

Remover

…………….,………

…..,,,,,……..,,,,,,,

……….,…,,,,,,……

……,…………,

No

Boundary

Extractor

Pour out pattern

Upper Boundary

….….…………

Lower

Boundary

……….….…….. HTML

<tag1>….<tag2>

…,……</tag2>

……… .,

……,…………,

……,…<tagn>

……… …,

…… ……

…;

;……</tagn>…

…,…,…,………,

………,………..

</tag1>

TEXT

…,…,….,….,…,

……,…………,…

…,……,………….

,…,….,….,

Text

Trimmer1
………………..…...

........................

........................

........................

.

Hidden Web Data

Miner

Web Page

Input

? Same

Yes

Figure 3.1 HWPDE: Hidden Web Page Data Extraction

Loop

Factor

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

24

With the output of the boundary extractor (Without Commas

and White spaces) and gives it to the pattern comparer which

compares the first boundary with the formatted line. Process

goes on till the match is found. On the first match the

corresponding pattern from the output of Comma remover and

tag replacer (with commas) is poured into the Pattern Buffer.

This Buffer will keep on accumulating the lines (Loop Factor)

until the lower boundary gets matched with the trimmed

textual output (from Text Trimmer2) of the Line Picker. On

this match the corresponding pattern is fed into the pattern

buffer and the process stops.

3.1.6 Non Text Element Remover
The unformatted line from Pattern Buffer might contain non

text html elements such as „ ‟. This module removes all

such elements from the pattern buffer and hands over the

resultant file to the Redundancy Remover

3.1.7 Redundancy Remover
This algorithm checks and replaces multiple occurrences of

commas with a single comma and marks it as a field

separator. This process also takes care of the fact that there

should not be any leading and trailing commas so it detects

such commas and removes them from the file

3.1.8 Data Type Detector and Updater
This algorithm assumes that the first line in a file is the perfect

candidate for the list of column headings in the relational table

in the relational database and rest of the lines are data to be

populated. Building on this assumption it starts with second

line and checks for the data type of each value and if it is

found to be of ‘string’ type or ‘date’ type it encloses the field

value in quotes so as to avoid any data type mismatch error

with sql insert query. The output generated is the text file

whose contents are guidelines and inputs to the target

database table. Let‟s call it vdata (for valid data) for future

reference

3.1.9 Data Sponger and RDT (Relational

Database table) Squeezer
This algorithm acts as a sponger for the formatted textual data

stored in a „vdata‟, and squeezes the sponged data onto the

table in a database. Before squeezing the data it first creates a

blank relational database and than a blank table inside the

database taking the first row of „vdata‟ file as a column

heading and from algorithm mentioned in 3.1.9 it forms a

metadata of datatypes of the columns. Once blank relational

table is generated it starts a loop from second line of sponged

textual data, fetches it, forms an Insert Sql Query and then

fires it. The result is populated table with squeezed data from

a sponger.

4. EXPERIMENTAL RESULTS
This section presents the snapshots of the proposed solution.

Figure 4.1 shows the front page of the proposed web

extractor. With eight command buttons, four text boxes and

one web browser it presents the simplistic view to the user.

Following sub sections illustrates the functions of all the eight

command buttons, four text boxes and a web browser in a

quick fashion. For a reference from now on, Command

Buttons will be referred as Commands. Text Boxes will be

referred as Containers until or unless specified otherwise.

4.1 Commands (Eight)
For better readability, adopted Format (italicized) for

describing the commands in this literature is (Command

Number)Name of Command. (1) Browse for HTML File’ lets a

user to select a webpage to mine. ‘(2) Select the Data and

Click this Button >>>>’ will automatically extract the HTML

TEXT

HTML

TEXT

Fig 4.1 Front Panel of HWPDE

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

25

and TEXT Part of the relevant data in two containers placed

up and below this Command. ‘(3) Process the Data>>>’ will

run processing algorithms mentioned in architectural diagram

in Figure 3.1 in partly sequential and partly concurrent order
on both type of the relevant data for a pattern comparison

motive. ‘(4) Prepare for table’ command will generate a file

we referred as „vdata‟ (valid data) in section 3.1.9.

Once the „vdata‟ is ready (Fig. 4.2 shows the format of the

vdata file) the only thing left is database creation and table

generation. The onus of doing this lies on the other four

commands. „(5) Create blank Database’ create a blank

database in a specified directory. ‘(6). Create Blank Table’

will create a table in the database. Columns of the table are

picked up from the first line in „vdata‟. Figure 4.3 shows the

snapshot for the Table Creation Form along with detected data

types of field values of the table to be generated. Dimmed

textbox entries are the detected data types of sponged data.

The Create button at the bottom lets one to create a table in a

database with the shown columns and data types. Here the

example webpage to be extracted is the index page of

www.autonagar.com which presents the query interface to the

user for listing the cars.

As an example query search string of city as Gurgaon is

provided and the resultant page (hidden web page) is shown in

the browser box (Fig 4.4). Fig 4.4 shows the source of this

finding (a hidden web page) generated from the query

interface provided by www.autonagar.com „(7) Populate

Table’ will pick up the rest of the lines from vdata one by one

and will form insert sql queries to be fired into the database

resulting in the table generation shown in Fig. 4.5 . (8) Open

Database will open the created database for viewing and

analyzing the result.

4.2 Containers (Four) and a Web browser
 These are the input and output descriptors of the work done.

Two Containers are for the Input (TEXT and HTML) from a

hidden web page, while other two displays the database name

and the table name of the output. Input Containers get their

contents from the web browser when user browses for the

hidden web file from command called „Browse for HTML

File‟. Once hidden webpage gets loaded into the browser user

Fig 4.3 Data Type Detection and Updation Module

Fig 4.4 Hidden Web Page

Figure 4.2 Format for Textual Data

Storage (vdata)

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

26

has to select the relevant data and then execute the command

called „Select the data and press this button.‟ The selected

contents (Text only) gets as it is transferred into TEXT

contents Container, while the source code goes to an HTML

Container from where these are processed by the commands

mentioned in section 4.1

5. CONCLUSION AND FUTURE SCOPE
In this paper a hidden web page data extractor has been

implemented that successfully extracts the contents of users

interest and stores it into the relational database. This system

needs user to act as a data selector for Hidden Web Data

Miner. After filling the query search interface of particular

site, user will open up the hidden webpage and select the

relevant data. Now, Hidden web data miner will fetch the

table from webpage and store it into the local database for

further use or analysis. In this the user selected text is scanned

and processed to remove all the punctuation marks and spaces

by the text trimmer module of type 1 (Text Trimmer1). The

source code of the hidden web page is captured and fed to the

comma remover and tag replacer before it finds its place as an

input to the Line Picker which picks up the processed line of

html source and Text Trimmer version 2 (Text Trimmer2)

produces the line in the same format as that of the Text

Trimmer1. Boundary Extractor extracts the first line and the

last line so that these can be compared with the Text

Trimmer2 Output. Getting a match is the hint to the Pattern

Buffer to keep on buffering the contents from Comma

Remover and Tag Replacer till (loop factor) the match with

the last line from the boundary extractor does not happen and

then pour out the pattern captured so far on to the Non Text

Element Remover. This module filters out any if any.

The output is checked for any redundancy of commas

(commas in sequence) and the same is removed by

redundancy remover. The output is a symmetrical text file

containing entries separated by commas (Figure 4.2). Where

first line is a column head and rest of the lines represent data

to be fed to the database. Data type detection on these entries

is done by simple format comparison and correspondingly the

entries are updated (date and text entries are enclosed in single

quotes) so that sql insert commands can be fired by the Data

Sponger and RDT Squeezer without any syntax error.

Although this system works efficiently, this work could be

made automated with no intervention of user. In future, this

work can be extended for other domains and for multiple web

pages also.

6. REFERENCES
 [1] The Deep Web: Surfacing Hidden Value.

http://www.completeplanet.com/Tutorials/DeepWeb/.

[2] S. Lawrence and C. L. Giles. Searching the World Wide

Web. Science, 280(5360):98, 1998.

[3] S. Lawrence and C. L. Giles. Accessibility of information

on the web. Nature, 400:107{109, 1999}

[4] Bing Liu, Robert Grossman, and Yanhong Zhai. Mining

data records in web pages. In KDD ‟03: Proceedings of

the ninth ACM SIGKDD international conference on

Fig 4.5 Achieved Output in the form of relational database repository

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.8, July 2012

27

Knowledge discovery and data mining, pages 601–606,

New York, NY, USA, 2003.ACM Press.

[5] Ntoulas, A., Zerfos, P., Cho, J. Downloading Textual

Hidden Web Content Through Keyword Queries. In

Proceedings of the 5th ACM/IEEE Joint Conference on

Digital Libraries.

[6] Ji Ma; Derong Shen; TieZheng Nie DESP: An Automatic

Data Extractor on Deep Web Pages Web Information

Systems and Applications Conference (WISA), 2010 7th

Publication Year: 2010, Page(s): 132 - 136

[7] Anuradha, A.K Sharma. “Structure based Data Extraction

from Hidden Web Sources ” Published in International

Journal of Computer Applications (0975-8887) Volume

25-No. 3 July 2011 pages 32-37

[8] Cai, D., Yu, S., Wen, J.-R., and Ma, W.-Y. 2003. VIPS: a

Vision-based Page Segmentation Algorithm. Tech. Rep.

MSR-TR-2003-79, Microsoft Technical Report.

[9] Anuradha, A.K Sharma. “A Novel Technique for data

extraction From Hidden Web Databases Published in

International Journal of Computer Applications (0975-

8887) Volume 15-No. 4 February 2011 pages 45-48

[10] YalinWang and Jianying Hu. A machine learning based

approach for table detection on the web. In WWW ‟02:

Proceedings of the 11th international conference on

World Wide Web, pages

