
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

32

ZLang: A Scripting Language for Digital Content
Creation Applications

MohamedYousef Ahmed Hashem

Hassan Saad Khaled Hussain

Faculty of Computers and Information, Assiut University, Assiut, Egypt

ABSTRACT

Digital Content Creation (DCC) Applications (e.g. Blender,

Autodesk 3ds Max) have long been used for the creation and

editing of digital content (e.g. Images, videos). Due to current

advancement in the field, the need for controlled automated

work forced these applications to add support for scripting

languages that gave power to artists without diving into many

details. With time these languages developed into more

mature languages and were used for more complex tasks

(driving physics simulations, controlling particle systems, or

even game engines).For long, these languages have been

interpreted, embedded within the applications, lagging the UIs

or incomparable with real programming languages (regarding

Completeness, Expressiveness, Extensibility and

Abstractions). In this paper, we present a high level scripting

language (Zlang) and a DCC Engine that addresses those

problems. The language can be interpreted, compiled,

extended in C/C++ and has a number of constructs, and

optimizations dedicated to DCC domain. The engine provides

geometric primitives, mesh modifiers, key-framed animation

and Physics Simulations (Rigid Body, and Cloth Simulations).

The engine is designed and implemented as a library so it can

be used alone or embedded.

General Terms

Digital Content Creation, Computational geometry, Scripting

Languages.

Keywords

Three-DimensionalGraphics and Realism, modeling

Packages, Methodology and Techniques-Languages.

1. INTRODUCTION
Digital Content Creation (DCC) is a general term usually used

to refer to the creation and editing of any form of digital

content (e.g. images and videos). Since the dawn of computer

graphics, DCC software has played an integral role in

automating the process and simplifying it to artists with no

scientific background. The need to manage many details in a

repetitive and accurate way, lead to the design of Domain

Specific Languages (DSLs) targeting the DCC domain, which

provided an intuitive interface User Interface (UI) at time,

with special interest given to being accessible to artists with

poor/no scientific background in computer graphics.

Gradually these languages developed into more complete and

mature languages and were utilized in more complex DCC

tasks (driving physics simulations [1], controlling particle

systems [2], simple/experimental Mesh processing algorithms

or even game engines).

A Challenge faced by all DCC languages is how to be simple

and easy to use for non-experienced programmers without

compromising being general and familiar to regular,

experienced programmers. A practice used widely by today

scripting languages [3] in general, is to be dynamically typed,

provide very high level constructs, extensive standard library,

and a powerful extensibility mechanism. A similar means

have been adopted in DCC languages with problems arising

particularly in being general and extensible, thus supporting

wide spectrum of users. This is specifically true for

commercial, custom-users driven packages.

Two approaches were used to implement those languages.

Either build a DSL that wraps the UI (like MAXScript[4] and

Maya Embedded Language (MEL) [5]), or use an existing

popular language and write a set of extensions to it to wrap

the UI and embed it (like Blender [6]). In practice, both those

solutions suffer. The first method produces languages lacking

being general, competitive languages and are generally very

inefficient. The second method has problems arising from not

being dedicated in first place for that kind of applications. So,

they lack expressiveness facilities (like dedicated constructs)

that facilitate supporting the DCC domain, also it is very hard

to optimize these languages for specific situations frequently

encountered in a domain like DCC.

In this paper, we present a system that addresses those

problems. A high level scripting language (ZLang) and a DCC

Engine, the language can be interpreted, compiled, extended

in C/C++ and has a number of constructs and optimizations

dedicated to DCC domain. The engine provides geometric

primitives, mesh modifiers, key-framed animation and

Physics Simulations.

ZLang has three major design decisions that make it distinct

from existing systems, with the goal of solving practical

problems that existing systems suffer from. First, ZLang is a

general purpose programming language oriented to DCC

applications. Thus, it has all tools assisting it as a general

purpose language while complementing this with DCC

specific constructs and optimizations (which can't be

supported by embedding Python in Blender, as Python is a

general purpose language that can't provide any intrinsic

support for a particular domain), and supporting library which

interfaces with the DCC engine. This makes ZLang usable for

DCC complementary deployments not originally planned for

at time of designing. Second, ZLang is imperative language,

most of the previous research systems are based on functional

languages ([7], [8], [9]). A strong feature of imperative

languages is that they are familiar to every programmer,

anybody with previous experience with any of main-stream

production languages (e.g. C++, Java, C#, Python) will find

that ZLang is very intuitive and easy to learn and use. This

coupled with special DCC constructs, makes ZLang Syntax

perfect for its particular domain and user-base. Third, ZLang

is cross-platform, free, and open source. Unlike current

famous systems like MAXScript and MEL that are closed

source and commercial. Also ZLang scripts are dependent

only on the ZLang interpreter, which itself can be both

embedded in other applications and extended by writing

modules to it.

In following sections, we first provide an overview of related

work in computer graphics literature. Then, we describe

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

33

ZLang syntax and semantics, its type system, programming

paradigm, and methods of extensibility. After that, we

describe the ZLang DCC Engine, how we construct

primitives, apply modifiers, texture map objects, and produce

key-frame and game physics animation. Finally, we describe

our C++ implementation of ZLang, its system architecture,

and our future plans for it.

2. RELATED WORK
The literature describes many previous DCC systems which

used a programming language (a full language or just a

limited sub-set) as its user interface. Here, we try to shade

light on some of the most related and influencing to our work

in ZLang. Before we dig in literature, we mention current

production-ready systems that had direct influence on ZLang.

MEL is a scripting language that is syntactically similar to

TCL and Perl, used for automating tasks in Maya [10]. MEL

is not object oriented, and lacks advanced features such as

associative arrays. Very few improvements have been made to

it in recent years. Autodesk 3ds Max [11] uses MAXScript for

the same role of MEL. In contrast to MEL, MAXScript is

object oriented and has many high level data structures suited

to DCC domain. The main drawbacks of MAXScript are: it's

closed, commercial, tied to 3ds Max, and lacks the

expressiveness and generality of main stream scripting

languages such as Python [12] and Ruby. Python is a main

stream general purpose scripting language, used extensively in

many fields and platforms. Due to its stability and proved

success, it was incorporated in Blender [13] as a scripting

language. Its main drawbacks, are the drawbacks of deploying

a general purpose language for a specific domain: no compiler

support (e.g. no domain specific optimizations), and no

dedicated constructs.

2.1 Procedural Modeling
Procedural modeling is an umbrella term for a number of

techniques in computer graphics to create 3D models and

textures from sets of rules. It ranges in complexity from

parameterizing simple algorithms to full programming

languages, and remains as root of utilizing power of

automations in creating digital content such as describing

complex shapes or animations that are too tedious to describe

explicitly (through other interfaces such as a GUI).

L-Systems are a common solution to modeling plants [14],

[15], and can also be used for streets and buildings [16].

These systems are based on rules for replacing string parts to

derive a high-level description of the model, for example the

skeleton of a plant, and generate the geometry in a second

step. An alternative technique for modeling buildings is shape

grammars [17], [18], [19]. The drawback of grammars is that

they are usually limited to a specific class of models and they

require a lot of training and time for experimenting.

Furthermore, it is not obvious how to parallelize the rewriting

of context sensitive grammars to make use of modern

multicore CPUs. John Snyder introduced the GenMod system

for generative modeling[20]. The system produces 3D shapes

from several curves without an intermediate step. It is based

on a C interpreter with overloaded operators. Thus, it has

variables, arrays, loops and formulas in infix notation. More

recently, Sven Havemann implemented a similar system that

employs a stack-based postfix notation to avoid the need for

variables and a parser [21]. His system is called GML, for

Generative Modeling Language. GML’s applications focus on

architecture and its most interesting feature are programmable

gizmos. Gizmos are special points that allow the user to edit

the parameters of a primitive by moving a handle in the

viewport. GML’s gizmos allow the user to define how the

gizmos are mapped to parameters of an object.

Several authors [22], [23], [8], [24] have taken procedural

modeling to another level by creating procedural modeling

(and shading) languages. The procedural modeling languages

are generally based on existing languages. This allows the

procedural modeling language to inherit the functionality and

constructs of the underlying language. Each of the procedural

modeling languages presents the programmer with different

tools and data structures. The Renderman Shading Language

[25] is a procedural shading language that embodies several of

the desirable aspects of a procedural modeling language.

Some procedural modeling facilities, such as displacement

shaders, are available. The shading language provides domain

specific functions and operators which facilitate commonly

used shading operations. The operators provided by

procedural modeling languages include union, intersection

and subtraction [22], [23], the synthesis of shapes on existing

geometry [26], [27], Weathering of geometry [28], [23],

cutting operations [29] and extrusion [8], [16], [24], [30].

Model representations include both surface and volumetric

models. Surface models can be explicit sets of polygons,

implicit surfaces [22], patches, quadric surfaces and spheres

[8], [24]. Volumetric representations include tetrahedral

meshes and signed distance fields [23] and particles [2], [29].

2.2 Animation
The literature describes many previous animation systems,

often with a procedural component. Early systems, such as

Scripts and Actors [7], provided a language for defining

modeling and animation. Independent actors control different

visible elements in a scene and are invoked every time-step.

MENV [24] controls animation by changing the value of

avars, articulated variables which look like regular scalar

variables and as such can be used as arguments to functions,

as conditions in if/then statements, etc. However, unlike

typical variables, the value is externally defined (from the

program), and time-dependent. The value of an avar at the

current time is determined by interpolating a spline through a

set of interactively, or procedurally, specified key frames.

Improv[31] combines two procedural components: a Behavior

Engine for deciding what actions a character should perform,

and an Animation Engine for controlling these movements.

Actions can be layered and movement transitions are normally

specified using either sinusoids or different frequency noise

functions [32]. AL [8] is another language that builds on

concepts from MENV and others and extends by adding a

generalization of avar concept known as articulated functions

(Afuncs). ZLang on the other side implements another means

to achieve full control on key-frame specification, this is done

through the animate construct which creates a context in

which all actions (variable setting, function call, etc.) have

effect on particular specified key-frame. AL is based on

Scheme. Another similar language, Fran [33] is based on

Haskell.

3. ZLANG
ZLang is a dynamic-strongly typed, hybrid paradigm

(supporting both object oriented and procedural paradigms),

memory managed language. These combinations of features

were carefully picked to support goals of the language related

to expressiveness, completeness and simplicity.

ZLang is divided into two main parts: the Interpreter and the

DCC Engine. Here, we describe the details of the first of

these, focusing on the syntax, type system, extensibility

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

34

model, and design decisions of the language. An example for

general ZLang code is given in Listing 1.

Listing 1: ZLang code that converts a number from

decimal, to any other base from 2 to 36.

Figure 1: Output from code Listing 1.

3.1 ZLang Syntax and Semantics
The syntax of ZLang resembles in a number of aspects

scripting languages like Python and alike DSLs like

MAXScript. This stems from the need of ZLang to be both

familiar to users and programmers familiarized with current

technology.

ZLang is an Expression-based Language; that is every

statement in ZLang is an expression and every expression

must have a value which can be simply, the value associated

with name for a variable, or return from a function or even the

last statement in a group of expressions. Groups of

expressions are enclosed between two parentheses "("")". This

is one of the greatest sources of flexibility of ZLang.

As for control flow constructs, ZLang provides: If and Case as

decision taking constructs. Case comes in two flavours: One

that is static, the usual form provided by languages, and hence

allowing for optimizing it at run-time. The other flavour is a

dynamic one, accepting any type and allowing expressions as

case values. For, While, Do...While and exit/continue are

provided as looping constructs. For comes in a variety of

ways, either the usual direct form with start, end, and

increment values, or looping over elements of a List (more on

ZLang built-in types in subsequent sections), also a collect

option groups results from each loop in a List. exit/continue

statements can be applied over a chosen number of enclosing

loops.

Functions in ZLang have a dynamic number of arguments.

Arguments can have default values, and return values can be

specified explicitly through a return statement or implicitly as

the value of last expression. An important feature of ZLang

functions is that they are first class data-types. So, they can be

passed around (e.g. for using as callbacks) and can be

constructed in-place, without names (however they aren't

complete lambdas, as they don't preserve state).

As ZLang is an object-oriented language, a programmer can

construct classes containing functions, and variables and later

instantiate objects from these classes. Single inheritance is

supported. After instantiation every object has an independent

symbol table accessed through the dot "." operator. Thus any

properties of a specific object can be modified, without

affecting other objects belonging to same class. ZLang comes

with an object oriented standard library, covering a wide

range of topics, written in C++ as an extension module to the

interpreter. The ZLang DCC Engine is exposed to the

language through a rich OO API.

ZLang is statically scoped, every group of expressions

represent a specific scope, except for the body of the If and

Case to give programmer flexibility to define new variables in

them. Every scope is linked to the enclosing scope. Every

object has an associated scope. A hash table is used to

associate names with values in a scope.

ZLang is memory managed, Mark and Sweep [34] is used to

track unreferenced regions of memory (e.g. objects that goes

out of scope). As opposed to Reference Counting, Mark and

Sweep is unaffected by cyclic references, which is an

important feature for an object oriented language and the fact

that it's a non-deterministic algorithm doesn't affect ZLang

operation.

ZLang supports single and multi-line comments. Line

terminals (e.g. semicolons) aren't needed to separate lines.

White spaces works as a separators, they can even be

neglected when token end can be determined unambiguously

from its lexical structure (e.g. a number).

3.2 ZLang Type System
A central component to any language is its type system. This

single feature plays integral role in the usability,

expressiveness, interoperability and extendibility. ZLang is a

dynamic-strongly typed language [3]. We choose a dynamic

type system [35] because of its expressiveness and for

relieving user from burden of static typing (at cost of

optimizability). We choose a strong type system to enable a

subset of type-based optimizations, and keep language

behavior much predictable.

Since ZLang is strongly typed, every reference to a variable is

mapped to one of the set of ZLang's internal data-types.

Internal data-types are most basic data-types of ZLang over

which other types (through OO) and operations are built.

ZLang adopts the idea of providing some high-level internal

data-types (implemented in other scripting languages like

Python and Ruby) for the convenience of the programmer.

ZLang's internal data-types are Integer, Float, Boolean,

String, Function, List, Dictionary, Matrix, Instance. We call

the type exposed to language as union of these a ZTvar and a

pointer to it a ZTvarp.

Function represents the function basic data-type giving

functionality of a first class function data-type previously

described. List is a list of elements. Since, ZLang is

dynamically typed; the List elements can be a mix of a variety

of types. Thus a multi-dimensional list is a list of lists.

Dictionary is a hash table indexed by strings, each pointing to

a ZTvar. Matrix is used for representing matrices and vectors

and their operations, this type came from the necessity in

DCC to be not just a module, but built-into the language with

syntactic support. Instance is an instance of any class in

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

35

ZLang. Operations on simple data-types (Integer, Float and

Boolean) are carried by value, while on the rest of types they

are carried by reference. Respective meaningful operators are

overloaded for each type.

3.3 ZLang Extensibility
Another central feature for today's scripting languages is the

ability to make use of existing components written in other

languages (most importantly C and C++). This is usually

implemented as an extension module to the language that

works as glue code connecting the external library and the

language. The amount and complexity of glue code and type

mapping to and from language's type system, largely

determines how extensible the language is.

Another factor also is how much of the language is construct-

able and modifiable from within an extension module.

Generally, ZLang can be extended in two ways: by adding a

function, or a class.

Modules can be either: statically linked with the interpreter, so

that they are permanent part of the interpreter, or dynamically

linked at runtime (the module is loaded at runtime upon

request).

Functions
The first way to extend ZLang is to add a function to ZLang

that is accessible from global scope. This can be done from

C++. For functions to be invocable from ZLang they must

adhere to a specific signature which takes an input as a vector

of ZTvarp and returns a ZTvarp. This way, we can simply

mimic void functions (null ZTvarp), multi-return (a ZTvarp of

type List), variable number of arguments (as vector size is

dynamic and query-able) and default values for arguments

(through querying types and number of arguments). Listing 2

shows a template for such a function in C++.

Listing2: Template for a C++ function that is invocable from
ZLang.

Adding Classes
The second way to extend ZLang is to add a complete abstract

data-type to the language, with all its set of methods and data

members. This is specially crafted to be done seamlessly easy

from C++. To write a C++ class that is exposed to ZLang, all

methods have to be defined according to rules previously

stated in function section, and all data members to be exposed,

must be ZTvar's. After that, an initialization function is used,

to set names of all methods, and variables to be used from

ZLang as class members. This pipeline simplifies and greatly

reduces effort to export complex classes and data structures so

as to be used from ZLang. Listing 3 shows a template for such

a class in C++.

Listing 3: Template for a C++ class that can be used from
ZLang.

Standard Library
Existence of a well-designed Standard library is a central

feature to the success of any scripting language. Pre-packaged

standard libraries (an idea that first demonstrated its success

with the appearance of Java [36]) greatly reduces effort on

part of programmer and increases efficiency of the

development life cycle.

Currently ZLang Standard Library (ZSL) includes I/O,

Mathematics, File-System, and Matrix libraries. The DCC

Engine itself is part of the ZSL, a set of wrapping classes is

written for every class in the engine, and designed to have as

simple and intuitive API as possible.

The output from ZLang can be: a model, a key-framed

animation, or a physics simulation. There are two controlling

objects KeyFrameAnimation and PhysicsSimulation these are

used for managing both types of animation. Every primitive is

an independent class that can be instantiated and added to the

controllers (with a variety of convenience constructors). Every

Modifier is an independent class. Modifiers can be either

applied directly on primitives changing the original mesh, or

calculated progressively as in key-frame animation using the

animate construct. Texture and light effects can be applied

when adding any primitive to the scene through any

controller.

4. ZLang DCC Engine
The second integral part of ZLang is its DCC Engine. The

engine provides geometric primitives, mesh modifiers, key-

framed animation, physics simulations and visualization

effects (Texture and lighting). The engine is implemented in a

modular fashion. Every one of previous features is an

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

36

independent module that interacts with others through a

predefined reusable interface.

In each of the following sections, we present a primitive class

supported by the engine along with an example demonstrating

how an instance of that class is implemented (e.g. how a Box

which is a geometric primitive is constructed). A list of all

primitive classes and their instances is presented in Figure 2.

4.1 Geometric Primitives
We use half-edge data structure [37], [38] to store meshes in

ZLang. Half-edge data structure's biggest feature for our

usage is the efficiency of local updates and queries. This

enables for a very fast construction of primitives, application

of modifiers, and also practical export and import time of

meshes.

To construct primitives, we employed two techniques. The

first one was to use Euler operations directly on the half-edges

and progressively sculpt the mesh. The second method is the

standard way of defining the mesh step by step by specifying

the faces of the mesh vertex by vertex (we called it delegate

method). While the second way is generally high-level and

simpler, for some shapes it's simpler and more efficient to

construct primitives directly using Euler operations, because

of the complexity associated with correctly connecting shape

points into faces. The engine supports following primitives:

Box, Cylinder, Cone, Pyramid, and Plane (through Euler

operations), and Sphere, Spindle, Torus, Spring, Tube, and

Lathe (through vertex-face setting). Associated with each

primitive is a Modifier stack, at each frame all modifiers in

stack are all applied to the primitive in order.

As an example of Euler-operations based primitives we use

the Box, Figure 3 illustrates the series of Euler-operations

involved in constructing a Box.

Figure 3: Steps for sculpturing a box through Euler-

operations.

As an example for delegate-based primitives, we demonstrate

constructing a sphere. First we generate sphere points ;since a

sphere can be described as a group of circles with increasing

and then decreasing radii on the direction of increase of Z

axis, the x, y, z values for sphere points can be generated by

following equations; Where r is the sphere radius. φ is

constant and θ changes from 0 to 2π for every z value

After that we connect these points into faces, we will use quad

faces only for the case of the sphere, we use algorithm in

Listing 4. A progressive construction of a sphere is shown in

Figure 4.

Listing 4: Constructing sphere's faces.

Figure 4: Step-by-Step sphere construction in increasing
values of Z and φ, a final step not discussed here for brevity is
the adding of final points that connect upper and lower holes
that will be left in sphere (representing zero-radius circles).

4.2 Mesh Modifiers
Modifiers are indispensable tools in the hands of the designer

in any DCC applications. Modifiers implementation in ZLang

relies on Euler operations to perform face level modifications

and queries. Modifiers can be applied on primitives on two

ways: the first way is to change the underlying mesh

permanently with no way back, this optimizes on space and

time but loses flexibility, and the other way is to add the

modifier to the modifier stack of respective primitive. A

single modifier can be applied to many primitives

concurrently, resulting in similar modifications on all.

Two types of modifiers are implemented in ZLang. The first

is global modifiers [39], these modifiers work on all vertices

of the mesh, modifying them one by one (the input to each

iteration of execution is a vertex in the mesh) finishing with

the whole shape or part of it transformed in a certain way

(actually this is a space transformation, we end up with the

image of our original mesh in the transformed space as seen

from our space). Our global modifiers are Bend, Bulge, Twist,

Taper, Skew, Spherify, Cylindrical Wave, Linear Wave,

Squeeze, Stretch, and Noise. The second type is Facet

modifiers, these either modify a certain facet, or work on a

facet by facet basis on the input mesh (the input to each

iteration; is a whole facet not a single vertex). Our facet

modifiers are Outline, Extrude, Bevel, Triangulate and

Smooth.

As an example for the global modifiers we discuss the Taper

modifier, which has an effect like bumping the shape. It takes

as input the amount of tapering, the tapering axis, and tapering

limits which define part of mesh where tapering takes effect.

Since this is a global modifier, each vertex is treated

individually, and we have an equation for calculating the

position of vertex after the application of the modifier, based

solely on its current value. For taper we use following

equations

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

37

Figure 2:DCC Engine Primitives. The figure illustrates most of the primitives supported by ZLang DCC Engine, categorized

by their types.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

38

Figure 6: The Key-Framed animation pipeline in ZLang, it consists of two stages, the first stage (left to right) fills the

AnimatableProperities with appropriate key-frame values, and in the second stage (right to left) these values are interpolated

to produce value for every frame, these values are set during animation at every frame and their effect applied.

Where W is the Taper Axis, U and V are the other two axes

and U≠V≠W. u', v' and w' are the old U, V and W position of

each vertex in the mesh and u,v and w are the new values. TM

is the taper amount. UL and LL are the upper and lower limits

of applying the taper modifier. wMin and wMax are the

minimum and maximum value of the W component of any

vertex in input mesh. Figure 5 illustrates the result of applying

a taper modifier with amount 1.5 on Z Axis on a sphere.

Figure 5: The effect of applying the taper modifier on a

sphere.

4.3 Texture Mapping
Texture mapping [40] is the process of adding details, textures

to the surface of a 3D object. The core of the process is a

projection operation from 3D space (the 3D object) to 2D (the

texture). So, every (x, y, z) point is given a (u, v) texture. This

process improves a lot on realism of output object, and is used

also for adding detail and improving quality of a low polygon

meshes.

ZLang provides two ways to texture map an input 3D object.

The first is a general algorithm [41] that works with arbitrary

shapes and achieves plausible mapping results. The need for a

second method, stemmed from the fact that the first method

doesn't produce good results with all our primitives and

nogeneral method will. So, we used specialized algorithms for

some of our primitives to achieve optimal results for them.

We provide specialized texturing ways (calculating uv values

for each vertex) for followingBox, Pyramid, Plane, Cylinder,

Sphere, and Tube.

As an example for specialized texturing algorithms, we

demonstrate texturing a sphere. The most important part of

texturing process is the algorithm that transforms (x, y, z)

coordinate into (u, v) coordinates. For the sphere case we use

following equations

Where p is any vertex on sphere and p.y is the Y component

of vertex p. Figure 7 shows result of texturing a sphere.

Figure 7: Texturing a sphere using a checker-board

texture.

4.4 Animation
Producing animation from the shapes that we generated in

previous sections is a key DCC application and is a source of

much of appeal to the DCC industry. ZLang provides two

methods to animate objects. The first is key-framed

animation, where animation illusion is achieved through

interpolating user-supplied values, to get intermediate frame-

wise values for specific properties. The change of these values

creates animation. The second way approximates laws of

Physics and applies them to simulation objects to create

realistic looking animation.

4.4.1 Key-Framed Animation
To create key-frame animation, the user supplies values for

specific variables that control shape, or properties of objects at

specific key-frames. The system then interpolates to get

values at rest of frame and then creates the animation by

setting each variable's value at the specific frame. In ZLang a

user supplies values for what is called AnimatableProperities

inside the animate construct. AnimatableProperities span three

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

39

regions in ZLang: they are either a modifier property (e.g. angle of Bend modifier) or a Primitive property (e.g. width of

a Box), or scene node property (rotation of a node in the

scene). After setting those values by user, the system

interpolates to calculate the value of every

AnimatableProperity at each frame (within range of

animation), then the system is responsible for setting values

for AnimatableProperities at animation run-time and forcing

its application (e.g. re-apply modifier for an

AnimatableProperity associated with modifier, or re-construct

primitive for an AnimatableProperity associated with

primitive properties). The whole pipeline is illustrated in

Figure 6.

4.4.2 Physics Animation
To create Physics animation the pipeline goes in following

steps. First, we set up the properties of world (e.g. gravity,

friction). Then, we calculate and determine properties of

shapes to be added to simulation, most importantly a

bounding volume representation, and supply these to a

physics engine that will be used for applying physics laws,

and calculating object's translation and rotation at each frame

(also position of each vertex for soft-body and cloth

simulation). Lastly, in simulation loop at each frame the

engine is queried to get data about objects and interaction

from users are supplied to it (e.g. objects added, forces

applied).

The challenge thus, is to correctly define arbitrary meshes to

the physics engine. The idea is that these primitives should

provide various options that, either balance speed and

accuracy, or go only for one of them. Three groups of types of

physics primitives are provided by the ZLang DCC Engine.

These are convex, concave, and soft primitives.

Convex primitives are the most efficient (due to existence of

optimized algorithms for collision detection of convex

shapes), and can be used even for concave meshes

toapproximate them to the physics engine. There are four

kinds of primitives which can be represented in physics world

as convex shapes these are Box, Sphere, Plane,

GeneralConvex. The first two depend on bounding volumes

[42], for the plane we use PCA [43] to fix a plane to the mesh.

The last one is a general convex primitive used to

approximate arbitrary shaped convex or concave meshes. Two

methods are used for these, the first is by calculating an

approximate (fast to calculate) convex hull of input mesh

using quick hull algorithm [44], and the second method is

using a geometry simplification algorithm [45], [46] that tries

to reduce the number of edges in the input mesh without

changing its shape.

Concave primitives, are the other less efficient option that

preserves shape properties of concave primitives, like holes,

as efficiently as possible. Two methods are provided for these

primitives. The first method is a general algorithm for

arbitrary concave meshes, the algorithm is Approximate

Convex Decomposition [47], which tries to split a given

concave mesh into a number of convex shapes and feeds them

to the physics engine, as a connected group of convex shapes.

The second method, utilizes our information about the

structure of our primitives to construct a variable quality, near

optimal convex decomposition of our concave primitives, the

Tube, Spring, and Torus.

Soft primitives are those that represent meshes given special

meaning and special prosperities in physics world. They

include, Cloth, and Soft bodies, they can represent both

convex and concave meshes.

As an example for convex-decomposition of ZLang concave

primitives, we demonstrate decomposing a Tube. We use the

algorithm in Listing 5, an example result is presented in

Figure 8.

Listing5: Pseudo-code for tube convex-decomposition.

Figure 8: Result of convex decomposition of a tube, the

right picture represents the tube as perceived by physics

engine.

4.5 Scene Management
In order to manage and design a multi-object scene, special

interest must be given to how to store pose information for

each object, and how to efficiently draw the scene afterwards.

We employ a scene graph data-structure for storing scene

data. Every mesh is stored as a special scene node called

PolyhedronNode, whose pose is controlled by a

transformation matrix. The scene management component is

also responsible for initiating scene update every frame (by

calling update procedure of every object depending on type of

animation applied on it), controlling frame rate, and

responding to user input. Another important aspect of scene

management is optimizing the drawing process, so that any

object that is not currently in the viewing frustum is culled

from scene.

PolyhedronNode stores object pose (with its Animate-able

Properties), color, texture, and half-edge data-structure. On

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

40

drawing, every face of the half-edge is drawn as a separate polygon. To draw a non-triangular wire-frame we iterate over

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

41

every edge and draw it separately. Listing 6 andListing 7

show examples for ZLang code utilizing the DCC engine.

5. IMPLEMENTATION
Performance considerations and tools availability were

primary reason for choosing C++ as an implementation

language. In choosing tools for the system, we focused on

high performance, open source or free, cross platform tools

with large communities. Modular reusable design was a main

goal. Every module in the DCC Engine compiles to an

independent shared library, and those shared libraries are then

used from the plug-in code that glues the Engine and the

interpreter.

We implemented a cross-platform interpreter for ZLang,

where we built a scanner for ZLang that feeds a parser that

generates an Abstract Syntax Tree (AST). A tree walker

interprets each statement in the AST individually and executes

it. Our type-system implementation makes heavy use of C++

templates and policy-based design [48], all internal data types

are used as policies that sculpt specific functionalities of a

general object, and these general objects are grouped in

ZTvar. For the DCC engine, we implemented algorithms for

the construction of primitives, application of modifiers, and

connecting geometric primitives to a chosen physics and

texture primitive. We also implemented a system for

managing both types of animation (key-framed and physics).

Each primitive added to scene can have only one of these

animation types applied to it. At each frame, all added

primitives are enumerated and the system delegates to the

primitive, applying effect of its respective animation type and

then draws the scene. Figure 9 shows the system architecture

of ZLang.

For the DCC Engine, we used CGAL Polyhedron [49] (that

acts as a high level interface to CGAL's half-edge

datastructure [50]) for storing meshes. We used

OpenSceneGraph[51], to manage the scene graph, draw our

objects, and apply special effects to the scene (colors, lights,

and textures). We used PhysX [9], as a physics engine (we

preferred it over Bullet [52] due to its current GPU

acceleration). We used Eigen [53], for efficient, complex

matrix manipulations. We used GSL [54], for interpolating

values for key-framed animation using cubic splines. We used

GMP [55], to maintain precision of predicates in CGAL [56].

We used OpenNL[57], for solving differential equations

associated with general method of texture mapping objects

[58]. We used BOOST BGL [59], for a number of graph

algorithms used by the geometric simplification algorithm.

For the interpreter, we used ANTLR [60], as alexer and parser

generator. We used Google Sparse Hash [61], as a very

efficient hash table used for implementing the symbol table.

We used BOOST Variant [62], as an efficient, templated, and

well managed union type that simplified generalizing the

interpreter's source code. We used Boehm GC [63], for

managing memory and efficiently reclaiming unreferenced

memory locations during system operation.

6. CONCLUSION AND FUTURE WORK
We have presented ZLang, a scripting language for DCC

applications. ZLang is general purpose, imperative, dynamic-

strongly typed, hybrid paradigm and memory managed

language. ZLang can be interpreted, compiled, extended, and

embedded in C/C++. ZLang interpreter is cross-platform, free,

and open source. We have demonstrated the reasoning behind

each of these properties of ZLang, and how they are used

together to fill holes that existed in previous systems.

ZLanginteracts with a DCC engine through its standard

library. The DCC engine provides geometric primitives, mesh

modifiers, key-framed animation, physics simulations, and

visualization effects (Texture and lighting). We have

discussed each of these capabilities and provided one sample

on construction of each of them. We provided ZLang

examples that demonstrate some of its DCC features and

show its general purpose abilities. ZLang is available online

[64].

There are many interesting avenues for future work. First, we

are investigating methods of integrating a GPU pipeline to

ZLang, in which meshes are stored in the GPU, modifiers

implemented as OpenCL Kernels [65] applied to them directly

on GPU, and then they are drawn from the GPU with no need

for inter CPU ↔ GPU data transfer. Second, a friendly GUI

can be built on top of the DCC engine similar to one existing

in 3Ds Max, Maya, and Blender. This will give a smother

experience to the artists during prototyping. Third, currently,

only an interpreter is implemented for ZLang, a compiler can

be built and will allow for faster execution time, and for

building standalone simulations that doesn't depend on

presence of the interpreter. We are intending to carry on the

development of ZLang using the open source model.

7. REFERENCES
[1] J. K. Hahn, Realistic animation of rigid bodies,

SIGGRAPH Comput. Graph. 22 (1988) 299-308.

[2] W. T. Reeves, Particle systems a technique for modeling

a class of fuzzy objects, ACM Trans. Graph. 2 (1983)

91-108.

[3] J. K. Ousterhout, Scripting: Higher-level programming

for the 21st century, Computer 31 (1998) 23-30.

[4] CGWiki, Maxscript (Apr. 2008).

http://wiki.cgsociety.org/index.php/MAXScript

[5] M. R. Wilkins, C. Kazmier, MEL Scripting for Maya

Animators, Second Edition (The Morgan Kaufmann

Series in Computer Graphics), Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2005.

[6] M. Tigges, B. Wyvill, Python for scene and model

description for computer graphics, Proc. IPC 2000.

[7] C. W. Reynolds, Computer animation with scripts and

actors, in: Proceedings of the 9th annual conference on

Computer graphics and interactive techniques

SIGGRAPH '82, ACM, New York, NY, USA, 1982, pp.

289-296.

[8] S. F. May, W. E. Carlson, F. Phillips, F. Scheepers, Al: a

language for procedural modeling and animation,

Technical report OSU-ACCAD-12/96-TR5, The Ohio

State University CSIR (1996).

[9] Nvidia, Physx (2011).

http://www.geforce.com/Hardware/Technologies/physx

[10] Autodesk, Maya (2011).

http://usa.autodesk.com/maya/

[11] Autodesk, 3ds max (2011).

http://usa.autodesk.com/3ds-max/

[12] M. Lutz, Programming python, O'Reilly & Associates,

Inc., Sebastopol, CA, USA, 1996.

[13] Blender Foundation, Blender (2011).

http://www.blender.org

http://wiki.cgsociety.org/index.php/MAXScript
http://www.geforce.com/Hardware/Technologies/physx
http://usa.autodesk.com/maya/
http://usa.autodesk.com/3ds-max/
http://www.blender.org/

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

42

[14] Aristid, Lindenmayer, Mathematical models for cellular

interactions in development ii. simple and branching

filaments with two-sided inputs, Journal of Theoretical

Biology 18 (3) (1968) 300 - 315.

[15] P. Prusinkiewicz, A. Lindenmayer, The algorithmic

beauty of plants, Springer-Verlag New York, Inc., New

York, NY, USA, 1996.

[16] Y. I. H. Parish, P. Mu:ller, Procedural modeling of cities,

in: Proceedings of the 28th annual conference on

Computer graphics and interactive techniques,

SIGGRAPH '01, ACM, New York, NY, USA, 2001, pp.

301-308.

[17] G. Stiny, Pictorial and Formal Aspects of Shape and

Shape Grammars, BirkhauserVerlag, Basel, Switzerland,

1975.

[18] P. Wonka, M. Wimmer, F. Sillion, W. Ribarsky, Instant

architecture, ACM Trans. Graph. 22 (2003) 669-677.

[19] P. Mu:ller, P. Wonka, S. Haegler, A. Ulmer, L. Van

Gool, Procedural modeling of buildings, ACM Trans.

Graph. 25 (2006) 614-623.

[20] J. M. Snyder, Generative modeling for computer

graphics and CAD: symbolic shape design using interval

analysis, Academic Press Professional, Inc., San Diego,

CA, USA, 1992.

[21] S. Havemann, D. W. Fellner, Generative mesh modeling,

Ph.D. thesis (2005).

[22] R. Cartwright, V. Adzhiev, A. A. Pasko, Y. Goto, T. L.

Kunii, Web-based shape modeling with hyperfun, IEEE

Comput. Graph. Appl. 25 (2005) 60-69.

[23] B. Cutler, J. Dorsey, L. McMillan, M. Mu:ller, R.

Jagnow, A procedural approach to authoring solid

models, ACM Trans. Graph. 21 (2002) 302-311.

[24] W. T. Reeves, E. F. Ostby, S. J. Leffler, The

menvmodelling and animation environment, The Journal

of Visualization and Computer Animation 1 (1) (1990)

33-40.

[25] S. Upstill, RenderMan Companion: A Programmer's

Guide to Realistic Computer Graphics, Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[26] K. Perlin, E. M. Hoffert, Hypertexture, SIGGRAPH

Comput. Graph. 23 (1989) 253-262.

[27] L. Velho, K. Perlin, L. Ying, H. Biermann, Procedural

shape synthesis on subdivision surfaces, in: Proceedings

of the XIV Brazilian Symposium on Computer Graphics

and Image Processing, SIBGRAPI '01, IEEE Computer

Society, Washington, DC, USA, 2001, pp. 146-153.

[28] F. K. Musgrave, C. E. Kolb, R. S. Mace, The synthesis

and rendering of eroded fractal terrains, in: Proceedings

of the 16th annual conference on Computer graphics and

interactive techniques, SIGGRAPH '89, ACM, New

York, NY, USA, 1989, pp. 41-50.

[29] R. Szeliski, D. Tonnesen, Surface modeling with

oriented particle systems, SIGGRAPH Comput. Graph.

26 (1992) 185-194.

[30] T. Lewis, M. W. Jones, A system for the non-linear

modelling of deformable procedural shapes, The Journal

of WSCG 12 (2) (2004) 253-260.

[31] K. Perlin, A. Goldberg, Improv: a system for scripting

interactive actors in virtual worlds, in: Proceedings of the

23rd annual conference on Computer graphics and

interactive techniques, SIGGRAPH '96, ACM, New

York, NY, USA, 1996, pp. 205-216.

[32] K. Perlin, Real time responsive animation with

personality, IEEE Transactions on Visualization and

Computer Graphics 1 (1995) 5-15.

[33] C. Elliott, Modeling interactive 3d and multimedia

animation with an embedded language, in: Proceedings

of the Conference on Domain-Specific Languages on

Conference on Domain-Specific Languages (DSL),

1997, USENIX Association, Berkeley, CA, USA, 1997,

pp. 22-22.

[34] J. Cohen, Garbage collection of linked data structures,

ACM Comput. Surv. 13 (1981) 341-367.

[35] F. Henglein, Dynamic typing, in: B. Krieg-BrA 1/4ckner

(Ed.), ESOP '92, Vol. 582 of Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, 1992, pp. 233-

253.

[36] K. Arnold, J. Gosling, The Java programming language

(2nd ed.), ACM Press/Addison-Wesley Publishing Co.,

New York, NY, USA, 1998.

[37] M. Ma:ntyla:, An introduction to solid modeling,

Computer Science Press, Inc., New York, NY, USA,

1987.

[38] H. Bendels, D. W. Fellner, S. Havemann, Modellierung

der grundlagen -

erweiterbaredatenstrukturenzurmodellierung und

visualisierungpolygonalerwelten, in: Modeling - Virtual

Worlds - Distributed Graphics, infix, 1995, pp. 149-158.

[39] A. H. Barr, Global and local deformations of solid

primitives, SIGGRAPH Comput. Graph. 18 (1984) 21-

30.

[40] E. E. Catmull, A subdivision algorithm for computer

display of curved surfaces., Ph.D. thesis (1974).

[41] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.

Lounsbery, W. Stuetzle, Multiresolution analysis of

arbitrary meshes, in: Proceedings of the 22nd annual

conference on Computer graph-ics and interactive

techniques, SIGGRAPH '95, ACM, NewYork, NY,

USA, 1995, pp. 173-182.

[42] E. Welzl, Smallest enclosing disks (balls and ellipsoids),

in: H. Maurer (Ed.), New Results and New Trends in

Computer Science, Vol. 555 of Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, 1991,

pp. 359-370.

[43] P. Alliez, S. Pion, dd principal component analysis, in:

C. E. Board (Ed.), CGAL User and Reference Manual,

3rd Edition, 2007.

[44] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, The

quickhull algorithm for convex hulls, ACM Trans. Math.

Softw. 22 (1996) 469-483.

[45] P. Lindstrom, G. Turk, Fast and memory efficient

polygonal simplification, in: Proceedings of the

conference on Visualization '98, VIS '98, IEEE

Computer Society Press, Los Alamitos, CA, USA, 1998,

pp. 279-286.

[46] P. Lindstrom, G. Turk, Evaluation of memoryless

simplification, IEEE Transactions on Visualization and

Computer Graphics 5 (1999) 98-115.

[47] J.-M. Lien, N. M. Amato, Approximate convex

decomposition of polyhedra, in: Proceedings of the 2007

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.5, July 2012

43

ACM symposium on Solid and physical modeling, SPM

'07, ACM, New York, NY, USA, 2007, pp. 121-131.

[48] A. Alexandrescu, Modern C++ design: generic

programming and design patterns applied, Addison-

Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2001.

[49] L. Kettner, 3d polyhedral surfaces, in: C. E. Board (Ed.),

CGAL User and Reference Manual, 3rd Edition, 2007.

[50] L. Kettner, Halfedge data structures, in: C. E. Board

(Ed.), CGAL User and Reference Manual, 3rd Edition,

2007.

[51] D. Burns, R. Osfield, Openscenegraph (osg) (2011).

http://www.openscenegraph.org

[52] E. Coumans, et al., Bullet (2011).

http://bulletphysics.org

[53] B. Jacob, Eigen (2011).

http://eigen.tuxfamily.org

[54] GNU, Gnu scientific library (gsl) (2011).

http://www.gnu.org/software/gsl

[55] GNU, Gnu multiple precision arithmetic library (gmp)

(2011).

http://gmplib.org

[56] H. Brnnimann, A. Fabri, G.-J. Giezeman, S. Hert, M. Ho

mann, L. Kettner, S. Schirra, S. Pion, 2d and 3d

geometry kernel, in: C. E. Board (Ed.), CGAL User and

Reference Manual, 3rd Edition, 2007.

[57] INRIA, Open numerical library (opennl) (2010).

http://alice.loria.fr/index.php/software/4-library/23-

opennl.html

[58] L. Saboret, P. Alliez, B. LA(c)vy, Planar

parameterization of triangulated surface meshes, in: C. E.

Board (Ed.), CGAL User and Reference Manual, 3rd

Edition, 2007.

[59] J. Siek, L.-Q. Lee, A. Lumsdaine, Boost graph library

(bgl) (2011).

URL http://www.boost.org/doc/libs/1_47_0/libs/graph

[60] T. J. Parr, R. W. Quong, Antlr: a predicated-ll(k) parser

generator, Softw. Pract. Exper. 25 (1995) 789-810.

[61] Google, google-sparsehash (2011).

http://code.google.com/p/google-sparsehash

[62] E. Friedman, I. Maman, Boost variant (2011).

http://www.boost.org/doc/libs/1_47_0/doc/html/variant.h

tml

[63] H.-J. Boehm, M. Weiser, Garbage collection in an

uncooperative environment, Softw. Pract. Exper. 18

(1988) 807-820.

[64] M. Yousef, A. Hashem, H. Saad, K. F. Hussain, Zlang

(2011).

http://z-lang.sourceforge.net

[65] A. Munshi, Opencl: Parallel computing on the gpu and

cpu, ACM SIGGRAPH Tutorial (2008).

Figure 9:ZLang Architecture. The diagram illustrates the

various components that collaborate together to execute a

ZLang script, each module is named by the main library used

to construct its components. The arrows illustrate inter-module

and intra-module collaborations. A typical execution that

utilizes the graphics engine goes from left to right starting from

an input file xyz.zl, till it's outputted to user in one of three

forms; a still model, a key-frame animation , or a physics

simulation.

http://www.openscenegraph.org/
http://bulletphysics.org/
http://eigen.tuxfamily.org/
http://www.gnu.org/software/gsl
http://gmplib.org/
http://alice.loria.fr/index.php/software/4-library/23-opennl.html
http://alice.loria.fr/index.php/software/4-library/23-opennl.html
http://code.google.com/p/google-sparsehash
http://www.boost.org/doc/libs/1_47_0/doc/html/variant.html
http://www.boost.org/doc/libs/1_47_0/doc/html/variant.html
http://z-lang.sourceforge.net/

