
International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.5, July 2012 

32 

ZLang: A Scripting Language for Digital Content 
Creation Applications 

 
MohamedYousef Ahmed Hashem 

 
Hassan Saad Khaled Hussain 

Faculty of Computers and Information, Assiut University, Assiut, Egypt 

 

ABSTRACT 

Digital Content Creation (DCC) Applications (e.g. Blender, 

Autodesk 3ds Max) have long been used for the creation and 

editing of digital content (e.g. Images, videos). Due to current 

advancement in the field, the need for controlled automated 

work forced these applications to add support for scripting 

languages that gave power to artists without diving into many 

details. With time these languages developed into more 

mature languages and were used for more complex tasks 

(driving physics simulations, controlling particle systems, or 

even game engines).For long, these languages have been 

interpreted, embedded within the applications, lagging the UIs 

or incomparable with real programming languages (regarding 

Completeness, Expressiveness, Extensibility and 

Abstractions). In this paper, we present a high level scripting 

language (Zlang) and a DCC Engine that addresses those 

problems. The language can be interpreted, compiled, 

extended in C/C++ and has a number of constructs, and 

optimizations dedicated to DCC domain. The engine provides 

geometric primitives, mesh modifiers, key-framed animation 

and Physics Simulations (Rigid Body, and Cloth Simulations). 

The engine is designed and implemented as a library so it can 

be used alone or embedded. 

General Terms 

Digital Content Creation, Computational geometry, Scripting 

Languages. 

Keywords 

Three-DimensionalGraphics and Realism, modeling 

Packages, Methodology and Techniques-Languages. 

1. INTRODUCTION 
Digital Content Creation (DCC) is a general term usually used 

to refer to the creation and editing of any form of digital 

content (e.g. images and videos). Since the dawn of computer 

graphics, DCC software has played an integral role in 

automating the process and simplifying it to artists with no 

scientific background. The need to manage many details in a 

repetitive and accurate way, lead to the design of Domain 

Specific Languages (DSLs) targeting the DCC domain, which 

provided an intuitive interface User Interface (UI) at time, 

with special interest given to being accessible to artists with 

poor/no scientific background in computer graphics. 

Gradually these languages developed into more complete and 

mature languages and were utilized in more complex DCC 

tasks (driving physics simulations [1], controlling particle 

systems [2], simple/experimental Mesh processing algorithms 

or even game engines). 

A Challenge faced by all DCC languages is how to be simple 

and easy to use for non-experienced programmers without 

compromising being general and familiar to regular, 

experienced programmers. A practice used widely by today 

scripting languages [3] in general, is to be dynamically typed, 

provide very high level constructs, extensive standard library, 

and a powerful extensibility mechanism. A similar means 

have been adopted in DCC languages with problems arising 

particularly in being general and extensible, thus supporting 

wide spectrum of users. This is specifically true for 

commercial, custom-users driven packages. 

Two approaches were used to implement those languages. 

Either build a DSL that wraps the UI (like MAXScript[4] and 

Maya Embedded Language (MEL) [5]), or use an existing 

popular language and write a set of extensions to it to wrap 

the UI and embed it (like Blender [6]). In practice, both those 

solutions suffer. The first method produces languages lacking 

being general, competitive languages and are generally very 

inefficient. The second method has problems arising from not 

being dedicated in first place for that kind of applications. So, 

they lack expressiveness facilities (like dedicated constructs) 

that facilitate supporting the DCC domain, also it is very hard 

to optimize these languages for specific situations frequently 

encountered in a domain like DCC. 

In this paper, we present a system that addresses those 

problems. A high level scripting language (ZLang) and a DCC 

Engine, the language can be interpreted, compiled, extended 

in C/C++ and has a number of constructs and optimizations 

dedicated to DCC domain. The engine provides geometric 

primitives, mesh modifiers, key-framed animation and 

Physics Simulations. 

ZLang has three major design decisions that make it distinct 

from existing systems, with the goal of solving practical 

problems that existing systems suffer from. First, ZLang is a 

general purpose programming language oriented to DCC 

applications. Thus, it has all tools assisting it as a general 

purpose language while complementing this with DCC 

specific constructs and optimizations (which can't be 

supported by embedding Python in Blender, as Python is a 

general purpose language that can't provide any intrinsic 

support for a particular domain), and supporting library which 

interfaces with the DCC engine. This makes ZLang usable for 

DCC complementary deployments not originally planned for 

at time of designing. Second, ZLang is imperative language, 

most of the previous research systems are based on functional 

languages ([7], [8], [9]). A strong feature of imperative 

languages is that they are familiar to every programmer, 

anybody with previous experience with any of main-stream 

production languages (e.g. C++, Java, C#, Python) will find 

that ZLang is very intuitive and easy to learn and use. This 

coupled with special DCC constructs, makes ZLang Syntax 

perfect for its particular domain and user-base. Third, ZLang 

is cross-platform, free, and open source. Unlike current 

famous systems like MAXScript and MEL that are closed 

source and commercial. Also ZLang scripts are dependent 

only on the ZLang interpreter, which itself can be both 

embedded in other applications and extended by writing 

modules to it. 

In following sections, we first provide an overview of related 

work in computer graphics literature. Then, we describe 
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ZLang syntax and semantics, its type system, programming 

paradigm, and methods of extensibility. After that, we 

describe the ZLang DCC Engine, how we construct 

primitives, apply modifiers, texture map objects, and produce 

key-frame and game physics animation. Finally, we describe 

our C++ implementation of ZLang, its system architecture, 

and our future plans for it.  

2. RELATED WORK 
The literature describes many previous DCC systems which 

used a programming language (a full language or just a 

limited sub-set) as its user interface. Here, we try to shade 

light on some of the most related and influencing to our work 

in ZLang. Before we dig in literature, we mention current 

production-ready systems that had direct influence on ZLang. 

MEL is a scripting language that is syntactically similar to 

TCL and Perl, used for automating tasks in Maya [10]. MEL 

is not object oriented, and lacks advanced features such as 

associative arrays. Very few improvements have been made to 

it in recent years. Autodesk 3ds Max [11] uses MAXScript for 

the same role of MEL. In contrast to MEL, MAXScript is 

object oriented and has many high level data structures suited 

to DCC domain. The main drawbacks of MAXScript are: it's 

closed, commercial, tied to 3ds Max, and lacks the 

expressiveness and generality of main stream scripting 

languages such as Python [12] and Ruby. Python is a main 

stream general purpose scripting language, used extensively in 

many fields and platforms. Due to its stability and proved 

success, it was incorporated in Blender [13] as a scripting 

language. Its main drawbacks, are the drawbacks of deploying 

a general purpose language for a specific domain: no compiler 

support (e.g. no domain specific optimizations), and no 

dedicated constructs. 

2.1 Procedural Modeling 
Procedural modeling is an umbrella term for a number of 

techniques in computer graphics to create 3D models and 

textures from sets of rules. It ranges in complexity from 

parameterizing simple algorithms to full programming 

languages, and remains as root of utilizing power of 

automations in creating digital content such as describing 

complex shapes or animations that are too tedious to describe 

explicitly (through other interfaces such as a GUI). 

L-Systems are a common solution to modeling plants [14], 

[15], and can also be used for streets and buildings [16]. 

These systems are based on rules for replacing string parts to 

derive a high-level description of the model, for example the 

skeleton of a plant, and generate the geometry in a second 

step. An alternative technique for modeling buildings is shape 

grammars [17], [18], [19]. The drawback of grammars is that 

they are usually limited to a specific class of models and they 

require a lot of training and time for experimenting. 

Furthermore, it is not obvious how to parallelize the rewriting 

of context sensitive grammars to make use of modern 

multicore CPUs. John Snyder introduced the GenMod system 

for generative modeling[20]. The system produces 3D shapes 

from several curves without an intermediate step. It is based 

on a C interpreter with overloaded operators. Thus, it has 

variables, arrays, loops and formulas in infix notation. More 

recently, Sven Havemann implemented a similar system that 

employs a stack-based postfix notation to avoid the need for 

variables and a parser [21]. His system is called GML, for 

Generative Modeling Language. GML’s applications focus on 

architecture and its most interesting feature are programmable 

gizmos. Gizmos are special points that allow the user to edit 

the parameters of a primitive by moving a handle in the 

viewport. GML’s gizmos allow the user to define how the 

gizmos are mapped to parameters of an object. 

Several authors [22], [23], [8], [24] have taken procedural 

modeling to another level by creating procedural modeling 

(and shading) languages. The procedural modeling languages 

are generally based on existing languages. This allows the 

procedural modeling language to inherit the functionality and 

constructs of the underlying language. Each of the procedural 

modeling languages presents the programmer with different 

tools and data structures. The Renderman Shading Language 

[25] is a procedural shading language that embodies several of 

the desirable aspects of a procedural modeling language. 

Some procedural modeling facilities, such as displacement 

shaders, are available. The shading language provides domain 

specific functions and operators which facilitate commonly 

used shading operations. The operators provided by 

procedural modeling languages include union, intersection 

and subtraction [22], [23], the synthesis of shapes on existing 

geometry [26], [27], Weathering of geometry [28], [23], 

cutting operations [29] and extrusion [8], [16], [24], [30]. 

Model representations include both surface and volumetric 

models. Surface models can be explicit sets of polygons, 

implicit surfaces [22], patches, quadric surfaces and spheres 

[8], [24]. Volumetric representations include tetrahedral 

meshes and signed distance fields [23] and particles [2], [29]. 

2.2 Animation 
The literature describes many previous animation systems, 

often with a procedural component. Early systems, such as 

Scripts and Actors [7], provided a language for defining 

modeling and animation. Independent actors control different 

visible elements in a scene and are invoked every time-step. 

MENV [24] controls animation by changing the value of 

avars, articulated variables which look like regular scalar 

variables and as such can be used as arguments to functions, 

as conditions in if/then statements, etc. However, unlike 

typical variables, the value is externally defined (from the 

program), and time-dependent. The value of an avar at the 

current time is determined by interpolating a spline through a 

set of interactively, or procedurally, specified key frames. 

Improv[31] combines two procedural components: a Behavior 

Engine for deciding what actions a character should perform, 

and an Animation Engine for controlling these movements. 

Actions can be layered and movement transitions are normally 

specified using either sinusoids or different frequency noise 

functions [32]. AL [8] is another language that builds on 

concepts from MENV and others and extends by adding a 

generalization of avar concept known as articulated functions 

(Afuncs). ZLang on the other side implements another means 

to achieve full control on key-frame specification, this is done 

through the animate construct which creates a context in 

which all actions (variable setting, function call, etc.) have 

effect on particular specified key-frame. AL is based on 

Scheme. Another similar language, Fran [33] is based on 

Haskell. 

3. ZLANG 
ZLang is a dynamic-strongly typed, hybrid paradigm 

(supporting both object oriented and procedural paradigms), 

memory managed language. These combinations of features 

were carefully picked to support goals of the language related 

to expressiveness, completeness and simplicity. 

ZLang is divided into two main parts: the Interpreter and the 

DCC Engine. Here, we describe the details of the first of 

these, focusing on the syntax, type system, extensibility 
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model, and design decisions of the language. An example for 

general ZLang code is given in Listing 1. 

 

Listing 1: ZLang code that converts a number from 

decimal, to any other base from 2 to 36. 

 

Figure 1: Output from code Listing 1. 

3.1 ZLang Syntax and Semantics 
The syntax of ZLang resembles in a number of aspects 

scripting languages like Python and alike DSLs like 

MAXScript. This stems from the need of ZLang to be both 

familiar to users and programmers familiarized with current 

technology. 

ZLang is an Expression-based Language; that is every 

statement in ZLang is an expression and every expression 

must have a value which can be simply, the value associated 

with name for a variable, or return from a function or even the 

last statement in a group of expressions. Groups of 

expressions are enclosed between two parentheses "("")". This 

is one of the greatest sources of flexibility of ZLang.  

As for control flow constructs, ZLang provides: If and Case as 

decision taking constructs. Case comes in two flavours: One 

that is static, the usual form provided by languages, and hence 

allowing for optimizing it at run-time. The other flavour is a 

dynamic one, accepting any type and allowing expressions as 

case values. For, While, Do...While and exit/continue are 

provided as looping constructs. For comes in a variety of 

ways, either the usual direct form with start, end, and 

increment values, or looping over elements of a List (more on 

ZLang built-in types in subsequent sections), also a collect 

option groups results from each loop in a List. exit/continue 

statements can be applied over a chosen number of enclosing 

loops. 

Functions in ZLang have a dynamic number of arguments. 

Arguments can have default values, and return values can be 

specified explicitly through a return statement or implicitly as 

the value of last expression. An important feature of ZLang 

functions is that they are first class data-types. So, they can be 

passed around (e.g. for using as callbacks) and can be 

constructed in-place, without names (however they aren't 

complete lambdas, as they don't preserve state). 

As ZLang is an object-oriented language, a programmer can 

construct classes containing functions, and variables and later 

instantiate objects from these classes. Single inheritance is 

supported. After instantiation every object has an independent 

symbol table accessed through the dot "." operator. Thus any 

properties of a specific object can be modified, without 

affecting other objects belonging to same class. ZLang comes 

with an object oriented standard library, covering a wide 

range of topics, written in C++ as an extension module to the 

interpreter. The ZLang DCC Engine is exposed to the 

language through a rich OO API. 

ZLang is statically scoped, every group of expressions 

represent a specific scope, except for the body of the If and 

Case to give programmer flexibility to define new variables in 

them. Every scope is linked to the enclosing scope. Every 

object has an associated scope. A hash table is used to 

associate names with values in a scope. 

ZLang is memory managed, Mark and Sweep [34] is used to 

track unreferenced regions of memory (e.g. objects that goes 

out of scope). As opposed to Reference Counting, Mark and 

Sweep is unaffected by cyclic references, which is an 

important feature for an object oriented language and the fact 

that it's a non-deterministic algorithm doesn't affect ZLang 

operation. 

ZLang supports single and multi-line comments. Line 

terminals (e.g. semicolons) aren't needed to separate lines. 

White spaces works as a separators, they can even be 

neglected when token end can be determined unambiguously 

from its lexical structure (e.g. a number). 

3.2 ZLang Type System 
A central component to any language is its type system. This 

single feature plays integral role in the usability, 

expressiveness, interoperability and extendibility. ZLang is a 

dynamic-strongly typed language [3]. We choose a dynamic 

type system [35] because of its expressiveness and for 

relieving user from burden of static typing (at cost of 

optimizability). We choose a strong type system to enable a 

subset of type-based optimizations, and keep language 

behavior much predictable. 

Since ZLang is strongly typed, every reference to a variable is 

mapped to one of the set of ZLang's internal data-types. 

Internal data-types are most basic data-types of ZLang over 

which other types (through OO) and operations are built. 

ZLang adopts the idea of providing some high-level internal 

data-types (implemented in other scripting languages like 

Python and Ruby) for the convenience of the programmer. 

ZLang's internal data-types are Integer, Float, Boolean, 

String, Function, List, Dictionary, Matrix, Instance. We call 

the type exposed to language as union of these a ZTvar and a 

pointer to it a ZTvarp.  

Function represents the function basic data-type giving 

functionality of a first class function data-type previously 

described. List is a list of elements. Since, ZLang is 

dynamically typed; the List elements can be a mix of a variety 

of types. Thus a multi-dimensional list is a list of lists. 

Dictionary is a hash table indexed by strings, each pointing to 

a ZTvar. Matrix is used for representing matrices and vectors 

and their operations, this type came from the necessity in 

DCC to be not just a module, but built-into the language with 

syntactic support. Instance is an instance of any class in 
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ZLang. Operations on simple data-types (Integer, Float and 

Boolean) are carried by value, while on the rest of types they 

are carried by reference. Respective meaningful operators are 

overloaded for each type. 

3.3 ZLang Extensibility 
Another central feature for today's scripting languages is the 

ability to make use of existing components written in other 

languages (most importantly C and C++). This is usually 

implemented as an extension module to the language that 

works as glue code connecting the external library and the 

language. The amount and complexity of glue code and type 

mapping to and from language's type system, largely 

determines how extensible the language is. 

Another factor also is how much of the language is construct-

able and modifiable from within an extension module. 

Generally, ZLang can be extended in two ways: by adding a 

function, or a class. 

Modules can be either: statically linked with the interpreter, so 

that they are permanent part of the interpreter, or dynamically 

linked at runtime (the module is loaded at runtime upon 

request). 

Functions 
The first way to extend ZLang is to add a function to ZLang 

that is accessible from global scope. This can be done from 

C++. For functions to be invocable from ZLang they must 

adhere to a specific signature which takes an input as a vector 

of ZTvarp and returns a ZTvarp. This way, we can simply 

mimic void functions (null ZTvarp), multi-return (a ZTvarp of 

type List), variable number of arguments (as vector size is 

dynamic and query-able) and default values for arguments 

(through querying types and number of arguments). Listing 2 

shows a template for such a function in C++. 

 

Listing2: Template for a C++ function that is invocable from 
ZLang. 

Adding Classes 
The second way to extend ZLang is to add a complete abstract 

data-type to the language, with all its set of methods and data 

members. This is specially crafted to be done seamlessly easy 

from C++. To write a C++ class that is exposed to ZLang, all 

methods have to be defined according to rules previously 

stated in function section, and all data members to be exposed, 

must be ZTvar's. After that, an initialization function is used, 

to set names of all methods, and variables to be used from 

ZLang as class members. This pipeline simplifies and greatly 

reduces effort to export complex classes and data structures so 

as to be used from ZLang. Listing 3 shows a template for such 

a class in C++. 

 

Listing 3: Template for a C++ class that can be used from 
ZLang. 

Standard Library 
Existence of a well-designed Standard library is a central 

feature to the success of any scripting language. Pre-packaged 

standard libraries (an idea that first demonstrated its success 

with the appearance of Java [36]) greatly reduces effort on 

part of programmer and increases efficiency of the 

development life cycle. 

Currently ZLang Standard Library (ZSL) includes I/O, 

Mathematics, File-System, and Matrix libraries. The DCC 

Engine itself is part of the ZSL, a set of wrapping classes is 

written for every class in the engine, and designed to have as 

simple and intuitive API as possible. 

The output from ZLang can be: a model, a key-framed 

animation, or a physics simulation. There are two controlling 

objects KeyFrameAnimation and PhysicsSimulation these are 

used for managing both types of animation. Every primitive is 

an independent class that can be instantiated and added to the 

controllers (with a variety of convenience constructors). Every 

Modifier is an independent class. Modifiers can be either 

applied directly on primitives changing the original mesh, or 

calculated progressively as in key-frame animation using the 

animate construct. Texture and light effects can be applied 

when adding any primitive to the scene through any 

controller. 

4. ZLang DCC Engine 
The second integral part of ZLang is its DCC Engine. The 

engine provides geometric primitives, mesh modifiers, key-

framed animation, physics simulations and visualization 

effects (Texture and lighting). The engine is implemented in a 

modular fashion. Every one of previous features is an 



International Journal of Computer Applications (0975 – 8887)  

Volume 50 – No.5, July 2012 

36 

independent module that interacts with others through a 

predefined reusable interface. 

In each of the following sections, we present a primitive class 

supported by the engine along with an example demonstrating 

how an instance of that class is implemented (e.g. how a Box 

which is a geometric primitive is constructed). A list of all 

primitive classes and their instances is presented in Figure 2. 

4.1 Geometric Primitives 
We use half-edge data structure [37], [38] to store meshes in 

ZLang. Half-edge data structure's biggest feature for our 

usage is the efficiency of local updates and queries. This 

enables for a very fast construction of primitives, application 

of modifiers, and also practical export and import time of 

meshes. 

To construct primitives, we employed two techniques. The 

first one was to use Euler operations directly on the half-edges 

and progressively sculpt the mesh. The second method is the 

standard way of defining the mesh step by step by specifying 

the faces of the mesh vertex by vertex (we called it delegate 

method). While the second way is generally high-level and 

simpler, for some shapes it's simpler and more efficient to 

construct primitives directly using Euler operations, because 

of the complexity associated with correctly connecting shape 

points into faces. The engine supports following primitives: 

Box, Cylinder, Cone, Pyramid, and Plane (through Euler 

operations), and Sphere, Spindle, Torus, Spring, Tube, and 

Lathe (through vertex-face setting). Associated with each 

primitive is a Modifier stack, at each frame all modifiers in 

stack are all applied to the primitive in order. 

As an example of Euler-operations based primitives we use 

the Box, Figure 3 illustrates the series of Euler-operations 

involved in constructing a Box. 

 

Figure 3: Steps for sculpturing a box through Euler-

operations. 

As an example for delegate-based primitives, we demonstrate 

constructing a sphere. First we generate sphere points ;since a 

sphere can be described as a group of circles with increasing 

and then decreasing radii on the direction of increase of Z 

axis, the x, y, z values for sphere points can be generated by 

following equations; Where r is the sphere radius. φ is 

constant and θ changes from 0 to 2π for every z value 

 

After that we connect these points into faces, we will use quad 

faces only for the case of the sphere, we use algorithm in 

Listing 4. A progressive construction of a sphere is shown in 

Figure 4. 

 

Listing 4: Constructing sphere's faces. 

 

Figure 4: Step-by-Step sphere construction in increasing 
values of Z and φ, a final step not discussed here for brevity is 
the adding of final points that connect upper and lower holes 
that will be left in sphere (representing zero-radius circles). 

4.2 Mesh Modifiers 
Modifiers are indispensable tools in the hands of the designer 

in any DCC applications. Modifiers implementation in ZLang 

relies on Euler operations to perform face level modifications 

and queries. Modifiers can be applied on primitives on two 

ways: the first way is to change the underlying mesh 

permanently with no way back, this optimizes on space and 

time but loses flexibility, and the other way is to add the 

modifier to the modifier stack of respective primitive. A 

single modifier can be applied to many primitives 

concurrently, resulting in similar modifications on all. 

Two types of modifiers are implemented in ZLang. The first 

is global modifiers [39], these modifiers work on all vertices 

of the mesh, modifying them one by one (the input to each 

iteration of execution is a vertex in the mesh) finishing with 

the whole shape or part of it transformed in a certain way 

(actually this is a space transformation, we end up with the 

image of our original mesh in the transformed space as seen 

from our space). Our global modifiers are Bend, Bulge, Twist, 

Taper, Skew, Spherify, Cylindrical Wave, Linear Wave, 

Squeeze, Stretch, and Noise. The second type is Facet 

modifiers, these either modify a certain facet, or work on a 

facet by facet basis on the input mesh (the input to each 

iteration; is a whole facet not a single vertex). Our facet 

modifiers are Outline, Extrude, Bevel, Triangulate and 

Smooth. 

As an example for the global modifiers we discuss the Taper 

modifier, which has an effect like bumping the shape. It takes 

as input the amount of tapering, the tapering axis, and tapering 

limits which define part of mesh where tapering takes effect. 

Since this is a global modifier, each vertex is treated 

individually, and we have an equation for calculating the 

position of vertex after the application of the modifier, based 

solely on its current value. For taper we use following 

equations 
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Figure 2:DCC Engine Primitives. The figure illustrates most of the primitives supported by ZLang DCC Engine, categorized 

by their types.
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Figure 6: The Key-Framed animation pipeline in ZLang, it consists of two stages, the first stage (left to right) fills the 

AnimatableProperities with appropriate key-frame values, and in the second stage (right to left) these values are interpolated 

to produce value for every frame, these values are set during animation at every frame and their effect applied.

 

 

Where W is the Taper Axis, U and V are the other two axes 

and U≠V≠W. u', v' and w' are the old U, V and W position of 

each vertex in the mesh and u,v and w are the new values. TM 

is the taper amount. UL and LL are the upper and lower limits 

of applying the taper modifier. wMin and wMax are the 

minimum and maximum value of the W component of any 

vertex in input mesh. Figure 5 illustrates the result of applying 

a taper modifier with amount 1.5 on Z Axis on a sphere. 

 

Figure 5: The effect of applying the taper modifier on a 

sphere. 

4.3 Texture Mapping 
Texture mapping [40] is the process of adding details, textures 

to the surface of a 3D object. The core of the process is a 

projection operation from 3D space (the 3D object) to 2D (the 

texture). So, every (x, y, z) point is given a (u, v) texture. This 

process improves a lot on realism of output object, and is used 

also for adding detail and improving quality of a low polygon 

meshes. 

ZLang provides two ways to texture map an input 3D object. 

The first is a general algorithm [41] that works with arbitrary 

shapes and achieves plausible mapping results. The need for a 

second method, stemmed from the fact that the first method 

doesn't produce good results with all our primitives and 

nogeneral method will. So, we used specialized algorithms for 

some of our primitives to achieve optimal results for them. 

We provide specialized texturing ways (calculating uv values 

for each vertex) for followingBox, Pyramid, Plane, Cylinder, 

Sphere, and Tube. 

As an example for specialized texturing algorithms, we 

demonstrate texturing a sphere. The most important part of 

texturing process is the algorithm that transforms (x, y, z) 

coordinate into (u, v) coordinates. For the sphere case we use 

following equations 

 

Where p is any vertex on sphere and p.y is the Y component 

of vertex p. Figure 7 shows result of texturing a sphere. 

 

Figure 7: Texturing a sphere using a checker-board 

texture. 

4.4 Animation 
Producing animation from the shapes that we generated in 

previous sections is a key DCC application and is a source of 

much of appeal to the DCC industry. ZLang provides two 

methods to animate objects. The first is key-framed 

animation, where animation illusion is achieved through 

interpolating user-supplied values, to get intermediate frame-

wise values for specific properties. The change of these values 

creates animation. The second way approximates laws of 

Physics and applies them to simulation objects to create 

realistic looking animation. 

4.4.1 Key-Framed Animation 
To create key-frame animation, the user supplies values for 

specific variables that control shape, or properties of objects at 

specific key-frames. The system then interpolates to get 

values at rest of frame and then creates the animation by 

setting each variable's value at the specific frame. In ZLang a 

user supplies values for what is called AnimatableProperities 

inside the animate construct. AnimatableProperities span three 
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regions in ZLang: they are either a modifier property (e.g. angle of Bend modifier) or a Primitive property (e.g. width of 

a Box), or scene node property (rotation of a node in the 

scene). After setting those values by user, the system 

interpolates to calculate the value of every 

AnimatableProperity at each frame (within range of 

animation), then the system is responsible for setting values 

for AnimatableProperities at animation run-time and forcing 

its application (e.g. re-apply modifier for an 

AnimatableProperity associated with modifier, or re-construct 

primitive for an AnimatableProperity associated with 

primitive properties). The whole pipeline is illustrated in 

Figure 6. 

4.4.2 Physics Animation 
To create Physics animation the pipeline goes in following 

steps. First, we set up the properties of world (e.g. gravity, 

friction). Then, we calculate and determine properties of 

shapes to be added to simulation, most importantly a 

bounding volume representation, and supply these to a 

physics engine that will be used for applying physics laws, 

and calculating object's translation and rotation at each frame 

(also position of each vertex for soft-body and cloth 

simulation). Lastly, in simulation loop at each frame the 

engine is queried to get data about objects and interaction 

from users are supplied to it (e.g. objects added, forces 

applied). 

The challenge thus, is to correctly define arbitrary meshes to 

the physics engine. The idea is that these primitives should 

provide various options that, either balance speed and 

accuracy, or go only for one of them. Three groups of types of 

physics primitives are provided by the ZLang DCC Engine. 

These are convex, concave, and soft primitives. 

Convex primitives are the most efficient (due to existence of 

optimized algorithms for collision detection of convex 

shapes), and can be used even for concave meshes 

toapproximate them to the physics engine. There are four 

kinds of primitives which can be represented in physics world 

as convex shapes these are Box, Sphere, Plane, 

GeneralConvex. The first two depend on bounding volumes 

[42], for the plane we use PCA [43] to fix a plane to the mesh. 

The last one is a general convex primitive used to 

approximate arbitrary shaped convex or concave meshes. Two 

methods are used for these, the first is by calculating an 

approximate (fast to calculate) convex hull of input mesh 

using quick hull algorithm [44], and the second method is 

using a geometry simplification algorithm [45], [46] that tries 

to reduce the number of edges in the input mesh without 

changing its shape. 

Concave primitives, are the other less efficient option that 

preserves shape properties of concave primitives, like holes, 

as efficiently as possible. Two methods are provided for these 

primitives. The first method is a general algorithm for 

arbitrary concave meshes, the algorithm is Approximate 

Convex Decomposition [47], which tries to split a given 

concave mesh into a number of convex shapes and feeds them 

to the physics engine, as a connected group of convex shapes. 

The second method, utilizes our information about the 

structure of our primitives to construct a variable quality, near 

optimal convex decomposition of our concave primitives, the 

Tube, Spring, and Torus. 

Soft primitives are those that represent meshes given special 

meaning and special prosperities in physics world. They 

include, Cloth, and Soft bodies, they can represent both 

convex and concave meshes. 

As an example for convex-decomposition of ZLang concave 

primitives, we demonstrate decomposing a Tube. We use the 

algorithm in Listing 5, an example result is presented in 

Figure 8. 

 

Listing5: Pseudo-code for tube convex-decomposition. 

 

Figure 8: Result of convex decomposition of a tube, the 

right picture represents the tube as perceived by physics 

engine. 

4.5 Scene Management 
In order to manage and design a multi-object scene, special 

interest must be given to how to store pose information for 

each object, and how to efficiently draw the scene afterwards. 

We employ a scene graph data-structure for storing scene 

data. Every mesh is stored as a special scene node called 

PolyhedronNode, whose pose is controlled by a 

transformation matrix. The scene management component is 

also responsible for initiating scene update every frame (by 

calling update procedure of every object depending on type of 

animation applied on it), controlling frame rate, and 

responding to user input. Another important aspect of scene 

management is optimizing the drawing process, so that any 

object that is not currently in the viewing frustum is culled 

from scene.  

PolyhedronNode stores object pose (with its Animate-able 

Properties), color, texture, and half-edge data-structure. On 
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drawing, every face of the half-edge is drawn as a separate polygon. To draw a non-triangular wire-frame we iterate over  
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every edge and draw it separately. Listing 6 andListing 7 

show examples for ZLang code utilizing the DCC engine. 

5. IMPLEMENTATION 
Performance considerations and tools availability were 

primary reason for choosing C++ as an implementation 

language. In choosing tools for the system, we focused on 

high performance, open source or free, cross platform tools 

with large communities. Modular reusable design was a main 

goal. Every module in the DCC Engine compiles to an 

independent shared library, and those shared libraries are then 

used from the plug-in code that glues the Engine and the 

interpreter. 

We implemented a cross-platform interpreter for ZLang, 

where we built a scanner for ZLang that feeds a parser that 

generates an Abstract Syntax Tree (AST). A tree walker 

interprets each statement in the AST individually and executes 

it. Our type-system implementation makes heavy use of C++ 

templates and policy-based design [48], all internal data types 

are used as policies that sculpt specific functionalities of a 

general object, and these general objects are grouped in 

ZTvar. For the DCC engine, we implemented algorithms for 

the construction of primitives, application of modifiers, and 

connecting geometric primitives to a chosen physics and 

texture primitive. We also implemented a system for 

managing both types of animation (key-framed and physics). 

Each primitive added to scene can have only one of these 

animation types applied to it. At each frame, all added 

primitives are enumerated and the system delegates to the 

primitive, applying effect of its respective animation type and 

then draws the scene. Figure 9 shows the system architecture 

of ZLang. 

For the DCC Engine, we used CGAL Polyhedron [49] (that 

acts as a high level interface to CGAL's half-edge 

datastructure [50]) for storing meshes. We used 

OpenSceneGraph[51], to manage the scene graph, draw our 

objects, and apply special effects to the scene (colors, lights, 

and textures). We used PhysX [9], as a physics engine (we 

preferred it over Bullet [52] due to its current GPU 

acceleration). We used Eigen [53], for efficient, complex 

matrix manipulations. We used GSL [54], for interpolating 

values for key-framed animation using cubic splines. We used 

GMP [55], to maintain precision of predicates in CGAL [56]. 

We used OpenNL[57], for solving differential equations 

associated with general method of texture mapping objects 

[58]. We used BOOST BGL [59], for a number of graph 

algorithms used by the geometric simplification algorithm. 

For the interpreter, we used ANTLR [60], as alexer and parser 

generator. We used Google Sparse Hash [61], as a very 

efficient hash table used for implementing the symbol table. 

We used BOOST Variant [62], as an efficient, templated, and 

well managed union type that simplified generalizing the 

interpreter's source code. We used Boehm GC [63], for 

managing memory and efficiently reclaiming unreferenced 

memory locations during system operation. 

6. CONCLUSION AND FUTURE WORK 
We have presented ZLang, a scripting language for DCC 

applications. ZLang is general purpose, imperative, dynamic-

strongly typed, hybrid paradigm and memory managed 

language. ZLang can be interpreted, compiled, extended, and 

embedded in C/C++. ZLang interpreter is cross-platform, free, 

and open source. We have demonstrated the reasoning behind 

each of these properties of ZLang, and how they are used 

together to fill holes that existed in previous systems. 

ZLanginteracts with a DCC engine through its standard 

library. The DCC engine provides geometric primitives, mesh 

modifiers, key-framed animation, physics simulations, and 

visualization effects (Texture and lighting). We have 

discussed each of these capabilities and provided one sample 

on construction of each of them. We provided ZLang 

examples that demonstrate some of its DCC features and 

show its general purpose abilities. ZLang is available online 

[64]. 

There are many interesting avenues for future work. First, we 

are investigating methods of integrating a GPU pipeline to 

ZLang, in which meshes are stored in the GPU, modifiers 

implemented as OpenCL Kernels [65] applied to them directly 

on GPU, and then they are drawn from the GPU with no need 

for inter CPU ↔ GPU data transfer. Second, a friendly GUI 

can be built on top of the DCC engine similar to one existing 

in 3Ds Max, Maya, and Blender. This will give a smother 

experience to the artists during prototyping. Third, currently, 

only an interpreter is implemented for ZLang, a compiler can 

be built and will allow for faster execution time, and for 

building standalone simulations that doesn't depend on 

presence of the interpreter. We are intending to carry on the 

development of ZLang using the open source model. 
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Figure 9:ZLang Architecture. The diagram illustrates the 

various components that collaborate together to execute a 

ZLang script, each module is named by the main library used 

to construct its components. The arrows illustrate inter-module 

and intra-module collaborations. A typical execution that 

utilizes the graphics engine goes from left to right starting from 

an input file xyz.zl, till it's outputted to user in one of three 

forms; a still model, a key-frame animation , or a physics 

simulation. 
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