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ABSTRACT 

In recent years, the growth of multimedia services and 

applications in digital data transmission has led to ever 

increasing demands of effective data transmission over the 

wired as well as wireless communication systems. Since 

digital communication systems need to deal with multimode 

and multiband operations on complex signals many-a-times, 

there is always a requirement of an efficient method for rapid 

phase and magnitude extraction. The proposed Rectangular to 

Polar Converter (RPC) has been implemented using fully 

parallel CORDIC, a Linear Convergence Algorithm, in 

vectoring mode. The design is synthesized with ISE 10.1 

software, and implemented on 2v3000fg676-4. Synthesis 

results show that the design is able to work at 177.620 MHz with 

less hardware requirements. 

General Terms 

A rectangular to polar conversion is required so that 

transmitters must accommodate constant envelop signals as 

well as non-constant envelop signals to achieve multimode 

and multiband operations. In burst-mode communication 

systems, a rapid carrier is crucial. Hence a fast rectangular-to-

polar conversion is needed. Delay-matching of phase as well 

as amplitude is crucial so that the restoration of the 

transmitted data at the receiver may be not be imperfect if the 

delays are unmatched. 

Keywords 
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1. INTRODUCTION 
In many digital communication applications, the efficient 

Rectangular to Polar conversion (RPC) is necessary [1],[2]. A 

polar modulation offers an alternative for multimode and 

multiband operations [3]. The conventional solutions for the 

implementation of polar transmitter adopted either analog 

approaches [4] using limiter and envelop detector or digital 

approaches using DSP engine [5]. These includes M-ary 

phase shift keying (PSK) receivers, down conversion in 

CDMA and UMTS, AM and FM demodulation for Digital 

Radios , automatic gain control and carrier tracking in digital  

implementation  of  Costas  loop,  modem  synchronizers, and 

so on. Polar modulators that offer the capability of achieving 

high linearity and high efficiency simultaneously in wireless 

transmitter, in its digital implementation also require RPC. 

Polar transmission utilizes envelope and phase component to 

represent the digital symbols instead of the conventional I/Q 

format [6].  
In addition, RPC is required in imaging systems and other 

DSP algorithms. In many applications, the phase calculation is 

more time-consuming and requires more accuracy than the 

magnitude calculation. 

The implementation of this converter can be computationally 

burdensome given the need to implement the square-root 
function, the division operation, and arctangent operation. 

Various algorithmic methods can be used to implement an 

RPC. These are classified by the manner in which their 

computations are performed. These classes are the 

polynomial approximation algorithms, rational 

approximation algorithms, linear convergence algorithms and 

quadratic convergence algorithms. The first method uses a 

degree – n polynomial to approximate a function over the 

interval of interest, where n depends upon the amount of 

error that can be allowed in the calculation. Polynomials of 

higher degrees generate less error, but they obtain this 

precision at the expense of long computation time. A rational 

approximation is the ratio of two polynomials of degree n 

and degree m respectively. This ratio is then used to 

approximate the function over the interval of interest. With 

the addition of the second polynomial, higher accuracy can 

be achieved with lower degree polynomials. This reduces the 

number of multiplications and additions required to obtain 

the answer, but it introduces a division operation, which is 

one of the most time consuming instructions in any 

computational hardware.  

The third class is of the linear convergence algorithms, which 

is a family of iteration equations, where the next value for 

each variable in the equation is based upon the current value 

of the variables. The time to compute the correct answer is a 

linear function of the number of bits of precision required by 

the digital system. The linear algorithms provide many 

opportunities to enhance operation through the modification 

of the basic algorithm. The difference between a linear 

convergence algorithm and a quadratic convergence 

algorithm is the speed with which they converge upon the 

correct answer. The time to compute the correct answer for 

the quadratic one is a logarithmic function of the number of 

bits of precision required. Unfortunately, quadratic 

convergence equations are made up of complex operations 

that require significant amount of computation time to 

calculate. As a result, the quadratic convergence algorithms 

have not been fully developed due to the complexity of the 

operations required to implement them.  

This paper is organized as follows: in Section 2, the basic 

linear convergence algorithm CORDIC is revised; Section 3 

presents the architectural description; Section 4 gives the 

proposed model design; Section 5 deals with the hardware 

implementation, verification and comparison results; and 

finally the conclusions are delivered in Section 6. 

2. CORDIC ALGORITHM 
The COordinate Rotation DIgital Computer (CORDIC) is an 

example of the linear convergence algorithms. The key 

concept of CORDIC arithmetic is based on the simple and 
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ancient principles of two-dimensional geometry. This 

algorithm was first  published as a technique for  

efficiently implementing  the  trigonometric functions 

required for  real-time aircraft navigation [7]. The 

simplest and most popular approach to perform Cartesian-to-

polar coordinate conversion uses the CORDIC algorithm in 

the so-called vectoring mode [8]. CORDIC is unparalleled 

in its ability to encapsulate a diversity of math 

functions in one b a s i c  set of iterations. It  can  be  

viewed  as a  single hardware architecture, with very 

minimal  control  overhead, having the   ability to  

compute sine,   cosine, cosh, sinh, arctan, atan2, 

square root, and  polar-to-rectangular and  rectangular-

to-polar conversions, to name only  a few functions. 

There are  a plethora of alternatives for  realizing, say,  

division in an  FPGA, and most of  the  CORDIC  

alternatives provide good  hardware  efficiency. 

However, the  algorithm remains unrivaled when it 

comes to processing multi-element I/O vectors, as  is 

the  case  when converting from Rectangular to  polar 

coordinates or vice versa. CORDIC falls into the  class 

of shift-and-add algorithms — it is a multiplierless 

method dominated by additions. FPGAs  are  very 

efficient at realizing arbitrary precision adders, and  

so the  CORDIC  algorithm is in many ways  a natural  

fit f o r  b e i n g  i m p l e m e n t e d  w i t h  FPGA 

architectures such as the  Xilinx  Virtex  family of 

devices. 

2.1 Iterative Equations 
The CORDIC algorithm involves rotation of a vector v 

on the X-Y plane in circular, linear and hyperbolic 

coordinate system depending on the function to be 

evaluated [9]. This is a linear iterative convergence 

algorithm that performs a rotation iteratively using a series of 

specific incremental rotation angles selected so that each 

iteration is performed by shift and add operation. The norm of 

a vector in these coordinate systems is defined as , 

where p∈{1, 0, -1} represents a circular, linear or hyperbolic 

coordinate system respectively. Trajectory for the vector ui for 

successive CORDIC iterations is shown in Figure 1 for the 

circular coordinate system.  

CORDIC method can be employed in two different modes, 

namely, the rotation mode and the vectoring mode. The 

rotation mode is used to perform the general rotation by a 

given angle θ. The vectoring mode computes unknown angle 

θ of vector by performing a finite number of microrotations.  

The generalised equations of the CORDIC algorithm for an 

iteration can be written as [10] : 

                  xi+1          =           xi – p σi yi ρ
-Sp,i 

     yi+1       =           σi xi ρ
-Sp,i + yi                

  zi+1          =            zi – σi αp,i                          (1) 

where σi represents either clockwise or anticlockwise direction 

of rotation, ρ represents the radix of the number system, m 

denotes the type of coordinate system, Sp,i is the 

nondecreasing integer shift sequence, and αp,i is the 

elementary rotation angle. αp,i and Sp,i are related as  

αp,i =  tan-1(  ρ-Sp,i)                                 (2) 

Figure 1 Rotation in Circular Coordinates 

The shift sequence Sp,i depends on the coordinate system and 

the radix of number system. Sp,i affects the convergence of the 

algorithm and n affects the accuracy of the final result. The 

value of σi depends on the radix of the number system and is 

determined by the following equation assuming that vector is 

either in the first or in the fourth quadrant: 

σi    =                           (3) 

where z and y are the steering variables in rotation and 

vectoring mode respectively. The required microrotations are 

not perfect and increase the length of the vector. In order to 

maintain a constant vector length, the obtained results have to 

be scaled by the scale factor  

 K = Пi ki ,           

 ki = (1 + p σi
2 ρ-2Sp,i)1/2                  (4) 

The direction of iterative rotation is determined using zi 

or yi depending on rotation mode or vectoring mode 

respectively. 

2.2 Vectoring Mode 
In vectoring mode, the unknown angle of a vector is 

determined by performing a finite number of microrotations 

satisfying the relation  

- θ = σ0 α0 + σ1 α1 + ---------- + σn-1 αn-1                 (5) 

The vectoring mode rotates the input vector through a 

predetermined set of n elementary angles so as to reduce the y 

coordinate of the final vector to zero as closely as possible. 

Therefore, the direction of rotation in every iteration must be 

determined based on the sign of residual y coordinate 

obtained in the previous iteration. The coordinates obtained in 

vectoring mode after n iterations are given by 
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3. ARCHITECTURE DESCRIPTION 
This paper presents unfolded (nonrecursive) 

architecture, as shown in Figure 2, for implementing the 

Rectangular-to-polar converter. 

Figure 2   Fully Parallel CORDIC[11] 

It uses a constant scaling factor, simply provided as an 

aggregate gain at the output. The precision of the input 

and output operands are 12 bits with 8 number of 

binary point bits. The implementation size of a parallel 

CORDIC design is directly proportional to the internal 

precision times the number of iterations. Instantiation 

of blocks must be done N times for an N bit precise 

output and all iterations are done in parallel and hence 

need not wait for N clock cycles. Also as dealing with 

a chain of inputs, this structure will prove to be more 

efficient one since the throughput of parallel structure 

is much greater. The shifters used in this architecture 

are constant shifters, which can be implemented in the 

wiring, so the hardware can be reduced. The design of 

CORDIC-based 2D Gaussian function and an efficient 

VLSI architecture suitable for FPGA implementation is 

presented, which is capable of processing one pixel per 

clock cycle and provides results in real time [12]. The 

pipelined architecture [13] uses the basic structure 

similar to that of a parallel CORDIC but it uses 

pipeline registers in between each iteration phase. The 

first output of an N-staged pipelined CORDIC is 

obtained after N clock cycles. Thereafter, outputs will 

be generated during every clock cycle. Another 

drawback of pipelined structure is the increase in area 

introduced by the registers. 

The iteration count i is initialized to 0 along with the angle 

register z. Each iteration contributes one additional bit of 

precision to the final result. The conditional test in the 

algorithm serves to minimize the value of y at each time-

step. When the required number of iterations have been 

completed the angle register z contains an approximation to 

atan2(x,y). The CORDIC algorithm does not converge for 

input angles |θ | > 900, in order to support the full range of 

input angles the computation is decomposed into three stages 

[14]. First, a course angle rotation is performed to map the 

input argument into quadrant 1, next N micro rotations 

(using the CORDIC algorithm) are performed, and finally a 

quadrant correction is applied to account for the coarse angle 

rotation.  The quadrant mapping is straightforward and 

consists of a comparator, negator and a multiplexer.  

The reason of using two – argument arctangent function is 

to enhance the angle convergence range because one-

argument arctangent function does not distinguish between 

diametrically opposite directions. For example, the 

anticlockwise angle from the x-axis to the vector (1, 1), 

calculated in the usual way as arctan(1/1), is π/4 (radians), 

or 45°. However, the angle between the x-axis and the 

vector (−1, −1) appears, by the same method, to be 

arctan(−1/−1), again π/4, even though the answer clearly 

should be −3π/4, or −135°. The atan2 function takes into 

account the signs of both vector components, and places the 

angle in the correct quadrant. Thus, atan2(1, 1) = π/4 and 

atan2(−1, −1) = −3π/4. Additionally, the ordinary arctangent 

method breaks down when required to produce an angle of 

±π/2 (or ±90°). For example, an attempt to find the angle 

between the x-axis and the vector (0, 1) requires evaluation 

of arctan(1/0), which fails on division by zero. In contrast, 
atan2(1, 0) gives the correct answer of π/2.  

The type of scaling tends to increase the overall latency 

[16]. Therefore, to minimize the latency, the normal 

iterations and the scaling should be separated. In our design, 

the scaling factor is taken as a constant K = 1.646760 

because the number of the iterations is constant. The scaling 

factor is simply provided on the output of the CORDIC 

magnitude (port X) and is not included in the CORDIC 

computation.   

4. PROPOSED MODEL DESIGN 
A finite precision model of the presented architecture has 

been performed using System Generator tool. The 

architecture contains the CORDIC processor and a separate 

rectangular-to-polar conversion implemented using 

Simulink blocks. The CORDIC algorithm converges for 

angles between -900  to +900. The Quadrant Map always 

maps the absolute value for x-axis. This reflects the input 

vector from the second and third quadrant to the first and 

fourth quadrant respectively. This process is called Coarse 

Angle Rotation. The Fine Angle Rotation operation is 

performed iteratively in stages (0,1,2……,stages-1). The    

i-th Processing Element rotates its input vector by an angle 

+/- atan(1/2^i) driving its input y-coordinate towards zero. 

The Quadrant Correct subsystem reflects the angle back to 

the second and third quadrant from the first and fourth 

quadrant if reflection was applied during the Quadrant Map 

stage. Reflection is applied by subtracting the output angle 

by 1800 if the original vector was in the second quadrant 

and by -1800 if it was in the third quadrant. 
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Figure 3   Proposed Model 

The waveforms for the rectangular inputs and the magnitude 

and atan2 waveforms, as generated at the output of the 

Simulink model on a scope are shown in Figure 4. 

Figure 4  Input and Output waveforms on Scope 

5. HARDWARE IMPLEMENTATION 

The proposed architecture has been implemented in an 

XC2V3000FG676-4 Xilinx FPGA device. Verification 

process includes functional simulation, and behavioural 

simulation processes. These consist of the test bench 

generation and then simulated waveforms for the magnitude 

and the phase are generated as shown in Figure 5. This 

simulation was done to know if VHDL design was matched 

with the model. 

Figure 5   Behavioural Simulation Result 

Area and maximum working frequency were obtained with 

the 10.1 Xilinx ISE tool. Figure 6 shows the area utilization 

of proposed design implemented on 2v3000fg676-4 target 

device in terms of slices, flip-flops and LUTs.  

Logic Utilization Used Available Utilization 

Slices 217 14336 1% 

Flip Flops 370 28672 1% 

4-input LUTs 326 28672 1% 

Bonded IOBs 50 484 10% 

GCLKs 1 16 6% 

Figure 6    Area Utilization 

The minimum period is 5.630 ns (Maximum Frequency 

177.620 MHz). According to the Xilinx XPower Analyzer 

report, the total estimated power consumption is 81mW, out 

of which 41mW has been consumed by the core unit, 33mW 

by the auxiliary pins and the unit, and only 7mW by the IO 

buffers, when the estimated junction temperature is 26 degree 

C at an ambient temperature of 25 degree C. 

The proposed RPC is compared with other implementations 

[15] on the same target device. Whereas [15] is providing 

only phase, ours is computing the phase as well as the 
magnitude. The comparison chart is shown in Table 1. 

The proposed architecture provides more than 50% savings in 

the FPGA slices when compared with pipelined CORDIC 
approach, whereas about 44% in comparison to LUT based 

method with no use of pipeline registers. This saving will be 

more as the number of pipeline registers is increased. Also the 

proposed model provides a 7-10 fold increase in the speed, 

but as in [15], if registers are increased in the pipeline, it 

provides speed enhancement at the cost of more hardware. 

Also the proposed model is saving 50-65% power, when 

compared with the existing models with less number of 

pipelined registers. 

Table  1    Existing[8] vs Proposed Model Comparison 

Parameters Pipelined 

based 

model 

[15] 

LUT 

based 

model 

[15] 

Proposed 

model 

No. of Slices 384 436 217 

Max. Freq. (MHz) 25.4 16.7 177.62 

Power 

Consumption (mW) 

127 163.1 81 

The minimum input arrival time before clock is 3.536ns and 

the maximum output required time after clock is 5.446ns. 

6. CONCLUSION 
This paper has presented an architecture for rectangular-to- 

polar converter using an iterative linear convergence 

algorithm CORDIC. The architecture has been modelled using 

System Generator and implemented in a Virtex 2 Xilinx 

Device. The implementation has been compared with a 

pipelined CORDIC architecture and with a multipartite LUT-

based approach. The speed advantage of the proposed design 

is that it gives the output in just one clock cycle, where as 

more cycles are needed for the pipelined. Similarly it takes 

comparatively long time to maintain tables in LUT-based 

approaches. The hardware implementation of RPC using 

CORDIC on FPGA is done as the FPGAs can give enhanced 

speed at low cost with a lot of flexibility. The proposed design 

operates with a maximum frequency of 177.620 MHz along 

with minimal power consumption and hardware utilization. It 

shows a superior functionality and performance with less 
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power than the existing ones. As a result, the proposed 

architecture is most suitable for high speed digital 

communication applications and provides an alternative for 

multimode and multiband operations that can support various 

modulation formats such as EDGE, GSM, CDMA, TDMA, 

and WCDMA and can overcome from the problems 

associated with I/Q based transmitter design too. 
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