
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.4, July 2012

6

Union-freeness of Regular Languages

 Sukhpal Singh Ghuman

Thapar University

Patiala, Punjab, India

Ajay Kumar
Thapar University

Patiala, Punjab, India

ABSTRACT

A regular language can be converted into an equivalent union-

free regular language. Every non-union-free regular

expression can be decomposed into an equivalent union-free

regular expression, but it may not be unique. In this research

paper, an algorithm is designed for determining whether a

regular expression is union-free or not and the same is

implemented in .NET.

General Terms

Theoretical Computer Science

Keywords

Deterministic finite automata, regular expression, union-free

regular language.

1. INTRODUCTION
Regular expressions are well known in the field of computer

science. They are commonly used and well-applicable in

theory as well as in practice. The regular expressions are used

in field of compilers, programming languages, pattern

recognition, protocol conformance testing etc..

A regular expression consisting of concatenation, kleene

closure and union operations refers to sequential continuation,

loops, and branching respectively. In this context, union-free

languages represent sequences of operators that do not contain

conditional transitions discussed by Sergey Afonin and Denis
Golomazov [6]. The union-freeness of languages accelerates

the reversal operation on regular language. In this paper an

algorithm is designed for checking whether a regular language

is union-free or not.

2. RELATED WORK
Sergey Afonin and Denis Golomazov [6] proposed an

algorithm for union-free decomposition of regular language.

The algorithm uses a set of all maximal finite concatenations

of languages. Nagy, B [3] discuss the union-complexity of a

regular language. The union-complexity of a language is 1 if

and only if it is union-free regular. The decomposing the

regular language into an equivalent union-free regular

language helps in determining the union complexity of regular

language.

3. DEFINITIONS AND NOTATIONS
Regular languages can be described by regular expressions. If

r is a regular expression, then the regular language

corresponding to r is L(r) discussed by Peter Linz [5]. Union

of two regular languages L1 and L2 consists of all the strings

which are either in L1 or L2 discussed by Mishra K.L.P. and

N. Chandrasekaran [1].

Def. 1: A regular expression discussed by Ullman [8] over

input alphabets Σ can be defined as :

1. Every input alphabet can be represented by itself.

2. Null language and null string also represented by

themselves.

3. If r1 and r2 are regular expressions representing the

languages l1 and l2 respectively, then:

3.1 Union of r1 and r2 is represented by r1 + r2.

3.2 Kleene closure of the regular expression is

 represented by (r1)
*.

3.3 Concatenation of r1 and r2 is represented by r1r2.

Rule 3 can be defined recursively.

Example 1: Given regular expression a+b* denotes the set of

all strings {ε, a, b, bb, bbb, bbbb, ...}.

Def. 2: A deterministic finite Automata (DFA) M discussed

by Ullman [8] is defined by quintuples (Q, Σ, δ, q0, F), where

Q is the finite non empty set of states, Σ is the finite non

empty set of symbols called the input alphabet, δ: Q X Σ → Q

is called as transition function, q0 is the initial state, F is

subset of Q and set of final states. DFA can be represented by

transition diagram or transition table.

 Figure 1: DFA for even number of 0’s over {0, 1}

Def. 3: Component of a regular expression is the individual

string which is represented by an empty string or by the

combination of alphabets, concatenation operator and the star

operator as discussed by Sergey Afonin [6].

Example 2: Given a language L represented by regular

expression = {a + ab* +a*b} consists of three components.

Def. 4: Union width of a regular expression is defined as the

minimum number of components which are presented in the

representation of a regular expression is discussed by Sergey

Afonin [6].

Example 3: The regular expression {ε} + a*ba* + b*ab* has

three components and hence the union width is three.

Def. 5: A regular language is said to be union-free if it can be

represented by a regular expression, which does not contain

the union operation or it is represented by the finite union of

union free regular expressions as discussed by Nagy and

Sergey Afonin [2,6].

Example 4: The language represented by the regular

expression (a + b*)*, can be converted to an equivalent union-

free regular language represented by (a*b*)*.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.4, July 2012

7

Def. 6: Union-free decomposition of a non-union-free regular

language corresponds to the decomposition, which can either

be represented by the regular expression which is free from

the union operation or the language consist of finite union of

union-free regular languages. The resultant language may not

be unique as discussed by Nagy and Sergey Afonin [2,6].

Example 5: The regular expression (a + b)* can be

decomposed into (a*b*)* or it can be also be written as {ε} +

a*ba* + b*ab*.

4. AN ALGORITHM FOR CHECKING

UNION-FREENESS OF A REGULAR

LANGUAGE
This algorithm scans the regular expressions from right to left.

If right parenthesis occurs immediately after star operator

from right to left, counter will become positive. If counter is

positive and plus operator appear, then the regular expression

is not union-free. If position will become negative one, then

regular expression is union-free. The algorithm runs in linear

time.

Algorithm 1: Union-freeness of a regular expression(r)

Given a regular expression r, the algorithm determines,

whether the language is union-free or not. Position will points

to current symbol of regular expression. Initially it points to

rightmost symbol of regular expression.

1. Counter =0 and PLUS=0

2. Scan symbol from right to left until leftmost symbol is

scanned

If Counter=0 then

 If symbol[Position]= star operator

 Position= Position-1

 If (symbol [Position]= right parenthesis)

 Counter= Counter +1

 Position= Position-1

 Endif

 Else

 Position= Position-1

 Endif

Else

 If symbol[Position]=left parenthesis

 Counter= Counter-1

 Position= Position-1

 Else If (symbol [Position]= right parenthesis)

 Counter= Counter +1

 Position= Position-1

 Else If (symbol [Position]= plus)

 Print regular expression is not union-free

 Exit

 Else

 Position= Position-1

 Endif

 Endif

 Endif

 Endif

3. If Position= -1

 Print regular expression is union-free.

 Endif

Example 6: Scan the regular expression (a(cb)*+a*)ab from

right to left while star operator occurs (4th position from

right). Right parenthesis will not occur at 5th position, hence

counter remains zero. Next star operator occurs at 7th position

from right and right parenthesis occurs at 8th position from

right. Counter is set to one, but no plus sign will appear from

9th position from right to leftmost position. Hence it is a

union-free regular expression.

5. TOOL FOR ANALYZING WHETHER

THE GIVEN REGULAR EXPRESSION IS

UNION-FREE OR NOT
The tool for analyzing whether the given regular expression is

union-free or not is developed in .NET. This tool will take

input a regular expression and determine whether it is union-

free or not.

Figure 2: Example of a non-union-free regular expression

Figure 3: Example of a union-free regular expression

6. CONCUSIONS AND FUTURE WORK
In this paper, we have presented an algorithm which

determines whether a given regular expression is union-free or

not. A tool is designed using .NET, which will determine

whether a regular expression is union-free or not. A regular

language which is not union-free can be decomposed into a

union-free regular language. In future, an algorithm can be

designed to decompose a regular language into an equivalent

union-free regular language.

In future, work can be carried out for finding the minimal

union-free decomposition a regular language discussed by

Sergey Afonin and Denis Golomazov [6]. Software can be

designed for the same and can be applied in several

applications

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.4, July 2012

8

7. RFEREENCES

[1] Mishra K.L.P. and N. Chandrasekaran, 1998, " Theory of

Computer Science (Automata Language and.

Computation) ", PHI, Second edition.

[2] Nagy, B.,2004 , "A normal form for regular expressions

", In Eighth International Conference on Developments

in Language Theory, CDMTCS Technical Report 252,

Auckland, 51–60.

[3] Nagy, B, 2010, "On Union-complexity of Regular

Languages", 11th IEEE International Symposium on

Computational Intelligence and Informatics, Hungary,

177-182.

[4] Nagy, B., 2006, "Union-free languages and 1-cycle-free-

path-automata", Publicationes mathematicae Debrecen

68, 183– 197.

[5] Peter Linz, 2009, "An Introduction to Formal Languages

and Automata", Narosa publishers, fourth edition.

[6] Sergey Afonin and Denis Golomazov, 2009, "On

Minimal Union-Free Decompositions of Regular

Languages", Third International conference, Lata, Spain,

83-92.

[7] Sinisa Crvenkovic, Igor Dolinka and Zoltan Esik, 2001

"On Equations for Union-Free Regular Languages",

Information and Computation, 164, 152-172.

[8] Ullman, J., J. E. Hopcroft and R. Motwani, 2001,

"Introduction to Automata Theory, Languages, and

Computation", Pearson Education Inc.

