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ABSTRACT 

The Fourier transform can be successfully used in the field of 

signal processing, image processing, communications and 

data compression applications. The discrete fractional Fourier 

transform, generalization of the discrete Fourier transform, is 

used for compression of high resolution satellite images. With 

the extra degree of freedom provided by the DFrFT, its 

fractional order „a‟, high visual quality decompressed image 

can be achieved. Different satellite images of size 512×512 

and 256×256 are studied and performance parameters such as 

peak signal-to-noise ratio (PSNR), mean square error (MSE) 

and compression ratio (CR) are determined.After subdivide 

the images, DFrFt is applied to obtain the transformed 

coefficients for calculating PSNR and IDFrFt is applied for 

reconstruction of satellite images. It is analyzed that by 

changing the value of fractional order „a‟ to different value, 

the DFrFT can achieved minimum MSE and corresponding 

maximum PSNR between 0.8 to 1 fractional order for same 

amount of CR. It is observed that discrete fractional Fourier 

transform is very efficient for obtaining better PSNR around 

41 dB at 50% CR while maintaining the higher visual quality 

of decompressed satellite images. The significant 

improvement is observed using DFrFT as compare to existing 

classical lifting scheme for satellite image compression based 

on discrete wavelet transform (DWT). 
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1. INTRODUCTION 
The images captured by the new generation satellites are 

remotely sensed image used in weather reporting, regional 

planning, global positioning system, etc., also including fields 

of education welfare and intelligence as well [1]. These 

remotely sensed image data is to be communicated from 

remote area to receiver station, are facing with problem of 

storage and transmission of imagery data because of limited 

bandwidth, time of data transmission and increase in spatial 

resolution. Today most of the satellites are operates on store-

and-forward criterion; i.e. imagery is captured,  stored on 

satellite, transmitted to ground station .This had increase the 

hunger demand on storage because of lager volume of data is 

collected by high resolution satellite imagery system and 

requires more downlink time to transmit them to earth station. 

Due to stringent requirement on bandwidth and storage 

capacity, the satellite image data need to be compressed 

before it send to earth station while preserving the high visual 

quality of the decompressed image. It has been noticed that 

FrFT is popularly used in the field of image processing. The 

fractional Fourier transform (FrFT), which is a generalization 

of the ordinary Fourier transform (FT), introduced to quantum 

mechanics by Namias in 1980 [2], then rediscovered in optics 

[4]-[6] and introduced to the signal processing community by 

Almeida in 1994 [3]. The continuous fractional Fourier 

transform (FrFT) represents a rotation of signal in time-

frequency plane as discuss by various authors [3]-[6]. 

Santhanam and McClellan [7] first reported the work on 

discrete version of fractional Fourier transform in 1995. The 

DFrFT based on eigen-decomposition of DFT kernel matrix 

[9] introduced by S.C. Pei in 1996 [8]. After that the DFrFT 

redefined by C. Candanet al. in 2000 [11].  The significant 

feature of fraction Fourier domain image compression 

benefits from its extra degree of freedom that is provided by 

its fractional orders. The FrFT share many useful properties of 

the regular Fourier transform and has a free parameter „a‟, its 

fraction. When the fraction is zero, we get the Fourier 

modulated version of the input signal. When it is unity, we get 

the conventional Fourier transform. As the fraction changes 

from 0 to 1 we get different forms of the signal, which 

interpolate between the Fourier modulated form of the signal 

and its FT representation. In this paper, the satellite images 

are compressed by discrete fractional Fourier transform. The 

paper is organized as follows: The definition of discrete 

fractional Fourier transform (DFrFT) and some properties of 

DFrFT are presented in sections 2. In section 3, presents the 

satellite image compression using DFrFT. In section 4, 

presents the results and conclusion is discuss in section 5. 

2.DISCRETE FRACTIONAL FOURIER 

TRANSFORM 
The FrFT belongs to the class of time–frequency 

representations that have been extensively used by the signal 

processing community. In all the time–frequency 

representations, one normally uses a plane with two 

orthogonal axes corresponding to time and frequency.The 

computation of DFrFT is based upon the eigen-decomposition 

of the DFT kernel matrix [8]. The kernel matrix of DFT has 

only four distinct eigenvalues [l, - j, -1, j] shown in [9]. 

The eigenvectors construct a vector space same eigenvalue 

because these eigenvectors of DFT kernel are not uniquely 

determined. A matrix S to evaluate the eigenvectors of F with 

real values [13]. The matrix S is defined as follows: 

𝐒 =  

 
 
 
 
 

𝟐 𝟏 𝟎
𝟏 𝟐𝒄𝒐𝒔𝝎 𝟏
𝟎 𝟏 𝟐𝒄𝒐𝒔𝟐𝝎

𝟎 …                      𝟏
𝟎 …                      𝟎
𝟏 …                      𝟎

       ⋮       ⋮              ⋮             
       𝟏 𝟎  𝟎       

     ⋱
     𝟎 … 𝟐𝐜𝐨𝐬⁡(𝑵 − 𝟏)𝝎 

 
 
 
 

 

whereω= 
2𝜋

𝑁
. It satisfies the following commutative property. 

          SF = FS        (1) 
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The eigenvectors of S matrix are same as that of the 

eigenvectors of F having different corresponding eigenvalues. 

Due to symmetric property of S matrix, all eigenvalues of S 

matrix are real and the eigenvectors are orthonormal each 

other. The eigen-decomposition of matrix S is written as: 

                                       𝐒 =  𝛾𝑘𝒗𝒌
𝑁−1
𝑘=0                          (2) 

where𝒗𝒌 is the eigenvector of the matrix S corresponding to 

the eigenvalue 𝛾𝑘 . The eigen-decomposition of DFT kernel 

matrix F is written as: 

𝐅 =  𝒗𝒌𝒗𝒌
∗   +  (−𝑗)𝒗𝒌𝒗𝒌

∗

𝑘∈𝐸2𝑘∈𝐸1

 +  (−1)𝒗𝒌𝒗𝒌
∗

𝑘∈𝐸3

+  (𝑗)𝒗𝒌𝒗𝒌   
∗

𝑘∈𝐸4

                                      (3) 

whereE1,E2,E3 and E4 is the set of indices for eigenvectors 

belongs to eigenvalues [l, - j, -1, j ] respectively. From 

equation 3 the eigenvalues of DFT kernel is determined. By 

taking fractional powers of these eigenvalues, the transform 

kernel of DFrFT can be easily defined as 

 𝑹𝜶  =  𝑭
𝟐𝜶

𝝅  

 
  
 

  
 

 𝒆−𝒋𝑵𝜶𝒗𝒌𝒗𝒌
∗

𝑵−𝟏

𝒌=𝟎

𝐍𝐢𝐬𝐨𝐝𝐝

 𝒆−𝒋𝑵𝜶𝒗𝒌𝒗𝒌
∗ + 𝒆−𝒋𝑵𝜶𝒗𝑵−𝟏𝒗𝑵−𝟏

∗ 𝐍𝐢𝐬𝐞𝐯𝐞𝐧     

  𝑵−𝟐

𝒌=𝟎

  

where𝒗𝒌is the eigenvector obtained from matrix S. The 

DFrFT of signal x(n)can be computed through equation 

            𝑋𝛼  𝑛 = 𝑹𝜶𝑥 𝑛 = 𝑭
𝟐𝜶

𝝅 𝑥 𝑛 = 𝑽𝑫
𝟐𝜶

𝝅 𝑽∗𝑥(𝑛)(4) 

The signal x(n) can also be recovered from its DFrFT through 

anoperation with parameter (-α) as  

           𝒙 𝒏 = 𝑹−𝜶𝑿𝜶 𝒏 = 𝑽𝑫
−𝟐𝜶

𝝅 𝑽∗𝑿𝜶(𝒏)(5) 

Some properties of DFrFT are discuss in Table 1 

Table 1.Properties of DFrFT 
1. Unitary  𝑹𝜶

∗ = 𝑹𝜶
−𝟏 = 𝑹−𝜶 

2. Angle Additivity 𝑹𝜶𝑹𝜷 = 𝑹𝜶+𝜷                  

3. Time inversion 𝑹𝜶𝒙 −𝒏 = 𝑿𝜶 −𝒏  

4. Periodicity  𝑹𝜶+𝟐𝝅 = 𝑹𝜶 

5. Symmetric  𝑹𝜶 𝒂, 𝒃 = 𝑹𝜷 𝒃, 𝒂  

The above definition of DFrFT is applicable for one 

dimensional signals such as speech waveform. For analysis of 

two-dimensional (2D) signals such as images, we need a 2D 

version of the DFrFT. For an MN matrix, the 2D DFrFT is 

computed in a simple way: The 1D DFrFT is applied to each 

row of matrix and then to each column of the resultant matrix. 

The 2D transformation kernel is defined with separable form 

as [10]: 

𝑹(𝜶,𝜷) = 𝑹𝜶 ⊗ 𝑹𝜷 

The 2D forward and inverse DFrFT are computed from above 

2D transformation kernel as: 

𝑋 𝛼,𝛽  𝑚, 𝑛 =   𝑥 𝑝, 𝑞 

𝑵−𝟏

𝒒=𝟎

𝑴−𝟏

𝒑=𝟎

𝑹 𝜶,𝜷  𝒑, 𝒒, 𝒎,𝒏  

     𝑥 𝑝, 𝑞 =   𝑋 𝛼,𝛽  𝑚, 𝑛 

𝑵−𝟏

𝒏=𝟎

𝑴−𝟏

𝒎=𝟎

𝑹 −𝜶,−𝜷 (𝒑, 𝒒, 𝒎,𝒏) 

In two-dimensional DFrFT we have to consider two angles of 

rotation =a/2 and =b/2 and If one of these angles is zero, 

the 2D transformation kernel reduces to the 1D transformation 

kernel. 

3. SATELLITE IMAGE COMPRESSION 

USING DFRFT 

In satellite image processing, an important part is the 

compression. This means the reducing the dimensions of the 

images, to a level that can be easily used or processed. Image 

compression using transform coding yields extremely good 

compression, with controllable degradation of image quality 

[12]. By adjusting the cutoff of the transform coefficients, a 

compromise can be made between image quality and 

compression factor. To exploit this method, an image is first 

partitioned into non-overlapped nn(generally taken as 8x8 or 

1616) sub images as shown in figure 1. A 2D-DFrFT is 

applied to each block to convert the gray levels of pixels in 

the spatial domain into coefficients in the frequency domain. 

The coefficients are normalized by different scales according 

to the cutoff selected. At decoder simply inverse process of 

encoding by using inverse 2D-DFrFT is performed. The Peak 

Signal-to-Noise Ratio (PSNR) value used to measure the 

difference between a decoded imageg(i, j) and its original 

imagef(i,j) is defined as follows. In general, the larger PSNR 

value, the better will be decoded image quality. 

    
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                             (7) 

where MN is the size of the images, g(i, j)andf (i, j) are the 

matrix elements of the decompressed and original images at 

(i,j)pixel. Another parameter known as compression ratio used 

in this compression technique and it is defined as the ratio of 

size compressed image to the size of original image and is 

given below: 

CR % =
Size of Compressed Image 

Size of Original Image
× 100 

4. RESULTS  
The numerical simulation for satellite images is performed by 

writing MATLAB code to examine the validity of image 

compression technique. The simulation is done on five 

different satellite images of different size usually of 256×256 

and 512×512 pixels. The figure 2(a) is the original satellite 

image 1 of size 512x512 pixels, figure 2(b)-(d) shows the 

decompressed images at 50% compression ratio of different 

fractional orders „a‟ used in this compressionprocesses are 

(0.5, 0.86, 1) respectively. It clears that fractional order 

„a‟=0.86 is optimum domain which obtainedminimum 

MSE=6.27 and corresponding maximum PSNR= 40.15dB and 
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Input image     

N×N        Compressed image 

 
(a) 

 

  Compressed images     Decompressed Images 

 

(b) 

Figure1: Satellite image compression model (a) Encoder; (b) Decoder 

 

(a)                                                                            (b) 

 
(c)                                                                    (d) 

Figure 2: Satellite image 1 of 512x512 at 50% CR (a) Original image, (b) Decompressed image at fractional order 0.5, (c) 

Decompressed image at optimum fractional order 0.86, (d) Decompressed image at fractional order 1 

Merge n × n 

sub-images 

 

IDFrFT 

 

Construct n ×n 
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Table 2. Results of five different satellite images of size 256×256 and 512×512 at 50% CR 

 

 

 
(a)      (b) 

FRACTIONAL 

ORDER 

Satellite Image 1 

 (512×512) 

Satellite Image 2 

(512×512) 

Satellite Image 3 

(512×512) 

Satellite Image 4 

(256×256) 

Satellite Image 5 

(256×256) 

‘a’ 
PSNR   

(50%) 

MSE 

(50%)  

PSNR 

(50%) 

MSE 

(50%) 

PSNR 

(50%) 

MSE 

(50%) 

PSNR 

(50%) 

MSE 

(50%) 

PSNR 

(50%) 

MSE 

(50%) 

0.1 17.92 1048.7 23.26 306.40 18.42 935.47 12.58 3537.59 16.09 1599.2 

0.2 18.77 863.038 24.03 257.05 19.002 817.27 14.02 2473.54 16.93 1318.1 

0.3 20.045 643.44 24.83 213.45 19.67 700.49 15.77 1495.84 18.17 898.91 

0.4 23.63 281.26 27.83 107.11 21.80 428.64 14.37 2391.41 21.81 428.32 

0.5 29.723 69.29 32.56 36.015 25.46 184.55 16.84 1355.69 27.73 109.59 

0.6 35.04 20.34 40.34 6.009 31.50 45.97 28.75 649.66 37.55 10.903 

0.7 37.92 10.47 41.26 4.859 35.40 18.75 33.02 112.49 36.61 14.181 

0.8 39.62 7.090 41.83 4.262 35.20 19.63 41.56 4.333 37.36 11.911 

0.84 40.04 6.4313 41.77 4.32 35.35 18.96 41.97 4.173 37.64 11.184 

0.86 40.15 6.27 41.71 4.381 35.40 18.72 42.01 4.098 37.74 10.918 

0.88 40.11 6.339 41.59 4.499 35.51 18.26 42.13 3.925 37.81 10.767 

0.9 40.05 6.416 41.40 4.70 35.56 18.06 42.23 3.893 37.96 10.541 

0.91 40.03 6.456 41.30 4.8113 35.51 18.28 42.26 3.872 37.83 10.714 

0.92 39.97 6.53 41.12 5.0223 35.42 18.63 42.33 3.896 37.74 10.923 

0.93 39.913 6.63 40.93 5.2452 35.30 19.14 42.11 4.014 37.61 11.266 

0.94 39.81 6.78 40.67 5.56 35.12 19.99 41.92 4.182 37.44 11.716 

0.95 39.70 6.95 40.35 5.998 34.91 20.98 41.74 4.341 37.19 12.425 

0.96 39.58 7.16 40.15 6.27 34.66 22.22 41.59 4.526 36.87 13.351 

0.97 39.45 7.373 39.28 7.665 34.38 23.69 41.32 4.821 36.53 14.451 

0.98 39.2399 7.746 39.27 7.68 34.11 25.23 40.88 5.342 36.19 15.612 

0.99 38.966 8.2507 38.96 8.447 33.78 27.18 40.53 5.787 35.84 16.940 

1 38.5381 9.06 38.34 9.508 33.30 30.39 39.6 6.556 35.33 19.044 
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(c)       (d) 

Figure 3: Decompressed satellite image 1 of 512x512 at optimum fractional order ‘a’ (a)Image Quality at 10% CR with 

‘a’=0.84, (b) Image Quality at 30% CR with ‘a’=0.88, (c) Image Quality at 50% CR with ‘a’=0.86, (d) Image Quality at 70% 

CRwith ‘a’=0.94

givesgood visual quality of satellite image. 

Decompressed Image quality at different compression ratio 

with optimum fractional order „a‟ in which the best quality of 

images are obtained shown in figure 3. The plots of MSE and 

PSNR versus changing fractional order ofDFrFT at different 

compression ratio for satellite image 1 has been calculated 

and depicted in figure 4 and 5.Table 2 shows the results in 

terms of PSNR and MSE of five different satellite images at 

50% CR. 

 
Figure 4: Peak Signal-to-Noise Ratio(dB) versus fractional 

order 

It is clear from table 2 that at „a‟=0.5, MSE is 69.29 but as „a‟ 

increase to 0.86, MSE decrease upto 6.27, PSNR increase to 

40.15 dB. After that again MSE increases with increase in „a‟. 

When „a‟=1 FrFT become conventional FT, corresponding 

MSE=9.06 and PSNR=38.53 dB.Figure 6 show closed view 

of the variation of MSE with fractional order „a‟. Generally, 

 
Figure 5: Mean Square Error versus fractional order

 
Figure 6: Mean Square Error versus fractional order 
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Figure 7: PSNR (dB) versus Compression Ratio(CR) 

there is tradeoff between image quality and CR. As CR 

increases, PSNR decreases and image quality degrades for 

constant fractional order „a‟ shown in figure 7. 

5. COMPARISON WITH CLASSICAL 

LIFTING SCHEME  
The classical lifting scheme is discrete wavelet transform 

based image compression techniques for high resolution 

satellite images [16]. By using this techniques,the maximum 

PSNR around 29 dB is obtained and compression ratio 8. By 

using purposed scheme, the maximum PSNR around 41 dB at 

50% CR is achieved. 

 

6. CONCLUSION 

It is conclude that, a technique for Satellite image 

compression using DFrFT makes the full use of the additional 

degrees offreedom provided by the fractional orders to 

achieve an optimum domain for which CR is more, MSE is 

less and better PSNR, also good image quality is retained. It is 

clear that significant improvement in PSNR and CR using 

DFrFT over the classical lifting scheme for satellite image 

compression. It also observed that with increases in CR the 

quality of image is decreases. 
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