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ABSTRACT 

Normal Lung and carcinoid are high relative classes in our 

“Detection and Prediction of Lung Cancer using the zNose 

with the Support Vector Machine Classifier” project. The 

mRNA expression level of these two classes was analyzed by 

using oligonucleotide microarrays. The correlation coefficient 

measurement results referred to the 20 subclasses (mRNA 

expression) of normal lung and carcinoid, which were 

collected from a total of 203 specimens (186 snap-frozen lung 

tumors and 17 normal lungs). The distinct subclasses (mRNA 

expressions) are 31687_f_at hemoglobin (β), 31525_s_at 

hemoglobin (α2), and 31481_s_at thymosin (β10). The 

Correlation Coefficient reflected the results at 0.8702, 0.8935 

and 0.9105 respectively (SMOreg PolyKernel -E 1.0). This 

study also showed the best prediction class was the first level 

class which was reflected from the correlation coefficient, 

recorded at 0.9409. This result was further verified by the 

prediction capacity of our proposed system.   

General Terms 

Hybrid Intelligent System, Lung Cancer Detection System, 

Data Mining and Artificial Intelligence Classifiers. 

Keywords 

Correlation Coefficient, Gene Expression, Prediction 

Accuracy, Case-Based Reasoning and Support Vector 

Machine (SVM). 

1. INTRODUCTION 
Cancer burden in Malaysia is increasing. Although there have 

been improvements in cancer diagnosis, new detection 

methods may potentially cause an exponential increase in the 

cost of cancer treatment [1]. Therefore, we propose a Lung 

Cancer Detection system which is a hybrid breath test [2] and 

case-based reasoning [3] platform structure. This system 

incorporates patient models to help multivariate analysis [4] 

information in order to make diagnosis decisions fast 

inexpensive and accurate. The objective of this project is to 

combine data mining technology and artificial intelligence 

classifiers as a means to construct lung cancer patient models 

and to link this to the case-based reasoning cycle in order to 

provide precise diagnosis of lung cancer in a timely manner. 

From the technological point of view, our proposed hybrid 

system is combined with four specific processes which are 

Data Collection, Data Mining & AI Techniques, Patient 

modeling and Case-Based Reasoning in order to achieve a 

fast, safe, reliable, high accuracy of lung cancer prediction. In 

our case, the support vector machine (SVM) [5] will be used 

to classify information which fuses attributes into an 

organized lung cancer knowledge base [6] and the Case-Based 

Reasoning cycle will be applied in the system to help with the 

prediction process. The current lung cancer classification is 

based on clinicopathological features [7]. Normal Lung and 

carcinoid are high relative classes for this lung cancer 

prediction project. The microarray methods [8] have made it 

possible to interpret the gene expression for various tumor 

types. In this study, we choose the mRNA expression [9] level 

of these two classes which was analyzed by using 

oligonucleotide microarrays [10].  

Here we report a correlation coefficient study on gene 

expression within normal lung and carcinoid class, in which 

we provide evidence for the high level class to serve as first 

level indicator and distinct subclasses to be second level 

determinants for the system prediction capacity. 

2. METHOD 

2.1 Specimens and Datasets 
A total of 203 specimens (186 snap-frozen lung tumors and 17 

normal lungs) were used to create two high level classes 

(C1&C2). The test dataset includes histologically defined lung 

adenocarcinomas (C1=COID, n=10) and normal lung 

(C2=NL, n=10) specimens. The C1 and C2 classes have been 

assigned value of 1 and 0 respectively. And this can be seen 

as the first dataset. 

The subclasses of test dataset include 20 typical gene 

expressions (see Table 1) which was the second dataset.  

The experimental dataset was the combination of the first 

dataset and the second dataset. 

2.2 Microarray Experiments 
The mRNA expression level of Normal Lung and carcinoid 

classes was analyzed by using oligonucleotide microarrays. In 

oligonucleotide microarrays, short DNA oligonucleotides 

were spotted onto the array [10].  According to standard 

protocols, total mRNA expression were extracted from 

samples and then subsequently hybridized to human U95A 

oligonucleotide probe arrays (Affymetrix, Santa Clara, CA, 

13). 
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Table 1. Gene Description 

Name Description 

31319_at 

31431_at 

31444_s_at 

31481_s_at 

31502_at 

31525_s_at 

31545_at 

31586_f_at 

31598_s_at 

31610_at 

31687_f_at 

31698_at 

31775_at 

31950_at 

32408_s_at 

33052_at 

33070_at 

33642_s_at 

33656_at 

33693_at 

immunoglobulin kappa variable 2/OR22-4 

Fc fragment of IgG 

annexin A2 pseudogene 2 

thymosin, beta 10 

Cluster Incl W27953:39h7 Homo sapiens cDNA   

hemoglobin, alpha 2 

SAC2 (suppressor of actin mutations 2, yeast, homolog)-like 

Cluster Incl X72475:H.sapiens mRNA    

galactose-4-epimerase, UDP- 

epithelial protein 17 

hemoglobin, beta 

forkhead box C2 (MFH-1, mesenchyme forkhead 1) 

surfactant, pulmonary-associated protein D 

poly(A)-binding protein, cytoplasmic 1 

hypothetical protein   

phospholipase A2, group X 

hypocretin (orexin) receptor 1 

solute carrier family 6   

ribosomal protein L37 

desmoglein 3 (pemphigus vulgaris antigen) 

 

2.3 Experimental Design 
In our previous study [11] [12], we have testified in our 

proposed system that using SVM as a data mining engine and 

case-based reasoning retrieval engine can produce better 

classification and prediction performance. Within those 

experiments we clarified that high level class was the best 

indicator for the prediction task. In order to validate this 

argument and at the same time locate the distinct gene 

expression which would be determinants to the lung cancer 

prediction task, two different series of experiments were 

considered: 

(1) Do the weighting of poly inner-product kernels of 

the support vector machine (SVM) [13] at E=0.5, 1, 1.5, 2 

with test sample dataset. (Experiment Ⅰ) 

(2) Do the weighting of normalized poly inner-product 

kernels of the support vector machine at E=0.5, 1, 1.5, 2.0 

with test sample dataset. (Experiment Ⅱ) 

The tool used in these experiments is Weka [14], which is a 

machine learning algorithms workbench. The overall 

performance measures [15] used in our study is correlation 

coefficient. According to the oligonucleotide microarrays 

experimental results (Table 1), 20 typical gene expressions 

have been selected in our experiments. These subclasses have 

attached attribute ranging from immunoglobulin, Fc fragment 

of IgG, annexin, thymosin, hemoglobin (alpha 2 and beta), 

epithelial protein 17, pulmonary-associated protein D, 

ribosomal protein L37, hypothetical protein to Cluster Incl 

(mRNA and cDNA), SAC2, UDP, MFH-1, cytoplasmic 1, 

phospholipase A2, hypocretin (orexin) receptor 1 and solute 

carrier family 6.   

The aim of these experiments is to measure the correlation 

coefficient of the high level class (C1=COID=1, C2=NL=0) 

and 20 typical subclasses (gene expressions) as indicators for 

the system’s prediction task. Due to the better performance 

shown in previous study [11] [12], two types of inner-product 

kernel have been implemented to aid in this correlation 

coefficient study. Experiment Ⅰ, the poly inner-product 

kernels of SVM was chosen to serve as the learning engine, 

while the normalized poly inner-product kernels of the SVM 

has been implemented in  Experiment Ⅱ( testing on different 

classes with the same experimental dataset).   

For each of these classes we implemented the learning process 

of the support vector machine. Figure 1 presents the 

experimental result for the whole test sample at the high level 

class (end data point) and the gene expression subclasses as 

indicator for the prediction task. Four groups of measure were 

applied according to the four segment value of E (0.5, 1, 1.5, 

and 2) in poly inner-product kernel. In ExperimentⅡ, we 

measure the same test sample with normalized poly inner-

product kernel. The experimental result was shown in Figure 

2. 
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Fig 1: Correlation Coefficient Experimental Results with Poly Kernel 

 

WEKA provides several options for testing the results. In our 

study we tested them on the training data by using cross-

validation [16] method and indicated folds to 10, which means 

the inner-product kernels model will be tested ten times by: 

(1) Holding out 1/10 of the training data set 

(2) Developing a model for the remaining 9/10 of the 

training data set 

(3) Testing the result model on the 1/10 withheld. 

The data withheld is selected at random from the data not yet 

tested. At the conclusion all data will have been used as test 

data, so that the testing accuracy in the experiment will be 

assured. 

As far as other parameters, all followed recommendations 

from WEKA too. The cache size was set to 250007, the 

number of kernel evaluations was 210, and support vectors 

were 20. The parameter C of the support vector machine was 

set to 1.0. The exponent E was denoted a range from 0.5 to 

2.0 for the poly inner-product kernel and the normalized poly 

inner-product kernel. 
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Fig 2: Correlation Coefficient Experimental Results with NPoly Kernel 
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3. RESULTS AND CONCLUSIONS  
In Table 2, we showed the overall better performance for the 

first four distinct classes, as measured by correlation 

coefficient, of two kernels at 4 exponential points in two 

groups of same test sample. We tuned each method (support 

vector machines with two different kernels) to the basic set 

recommended by WEKA.   

The results over all 20 gene expressions and 1 high level class 

in Figure 1 and Figure 2 show two major findings:   

(1) In the Poly inner-product prediction task, high level 

class is the best correlation function for all four exponential 

points. Three subclasses (gene expressions): 31687_f_at 

hemoglobin (β), 31525_s_at hemoglobin (α2), and 

31481_s_at thymosin (β10) outperform all other expressions, 

and the average correlation coefficient has achieved more than 

80%. 

(2) In the Npoly inner-product prediction task, subclass 

(gene expression) 31481_s_at thymosin (β10) is the best 

correlation function for all four exponential points. High level 

class also provide better result for the same task, average 

correlation coefficient has achieved 88.94%.  31687_f_at 

hemoglobin (β) and 31525_s_at hemoglobin (α2) together 

with these two classes almost outperform all other 

expressions. 

This study attempts to understand the competence of high 

level class and gene expression subclasses with the inner-

product kernel of the support vector machine in determining 

the system’s prediction performance. These empirical results 

provided evidence for high level class as indicator and gene 

expression distinct subclasses as second level indicator in the 

system predictive process.  

First, let us consider the overall performance of these classes 

with the poly inner-product kernel. In Figure 1, we grouped 

all these methods by correlation coefficient in order to find 

out whether there was relativity between prediction 

performance and classes (high level class and gene expression 

subclasses) with different exponents of poly inner-product 

kernel. A good indicator, we would expect, has about equally 

better performance for different exponential values. 

Comparing correlation coefficient performance for all these 

exponential value in experimentⅠ, shown in Fig. 1, we found 

that only high level class and three subclasses (gene 

expressions): 31687_f_at hemoglobin (β), 31525_s_at 

hemoglobin (α2), and 31481_s_at thymosin (β10) with 

different exponential value satisfied this requirement. High 

level class achieved the best performance with 95.21% 

correlation coefficient at E=1.5 exponential point and 94.09% 

at E=2 exponential point; followed by gene expression 

subclass 31481_s_at thymosin (β10) with 93.17% at E=1.5 

exponential point and 91.05% at E=1 exponential point. Even 

the 31687_f_at hemoglobin (β) gene expression subclass 

which got the worst performance in the distinct class group 

reached 84.93% at E=1.5 exponential point and 87.02% at 

E=1 exponential point. While for other gene expression 

subclasses, the best correlation coefficient achieved by 

31586_f_at Cluster Incl X72475, although obtained 87% and 

87.34% at E=1.5 and E=2 exponential point, when the 

exponential value decrease to 1 and 0.5, its correlation 

coefficient dropped dramatically to 34.8% and 20.45%. It is a 

typical unstable state phenomenon which shows up in many 

other gene expression subclasses, such as 31775_at surfactant 

and 33052_at phospholipase. Some gene expression 

subclasses show stable relativity, but this stability is the 

degression of the phospholipase. The representative species 

for this phenomenon were 31502_at Cluster Incl W27953, 

31610_at epithelial protein 17, 31950_at poly (A)-binding 

protein and 33693_at desmoglein 3. For example, 31502_at 

Cluster Incl W27953 gene expression subclass achieved 

45.77% correlation coefficient at E=0.5 exponential point, but 

when the exponential value increased to 1, 1.5 and 2, its 

correlation coefficient dropped dramatically to 11.58%, 

7.61% and 9.92%. Some gene expression subclasses show 

stable relativity also, but this stability is at quite lower level. 

For example 31698_at forkhead box C2, 32408_s_at 

hypothetical protein and 33642_s_at solute carrier family 6, 

the average correlation coefficient they achieved was at about 

30%-40%. 

Secondly, in order to see if the correlation coefficient of those 

classes (high level class and gene expression subclasses) for 

different inner-product kernels was still reliable, detailed 

experiments were performed. Using WEKA with Npoly inner-

product kernel, as expected, high level class together with 

three distinct gene expression subclasses were observed to 

produce superior performance whether at 0.5, 1 or 1.5, 2 

exponential point. 

 

 

 

Table 2.  Distinct Classes of Correlation Coefficient 

  

Expression 

Poly Kernel Npoly Kernel 

E=0.5 E=1 E=1.5 E=2 E=0.5 E=1 E=1.5 E=2 

31687 0.6564 0.8702 0.8493 0.8424 0.595 0.7353 0.751 0.7546 

31525 0.8017 0.8935 0.7838 0.7525 0.7966 0.8114 0.8069 0.8091 

31481 0.8537 0.9105 0.9317 0.8865 0.907 0.9464 0.9432 0.9321 

class 0.9029 0.9342 0.9521 0.9409 0.9228 0.889 0.8747 0.8711 
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Experimental results in Figure 2 and Table 2; showed that for 

the Npoly inner-product kernel prediction task, gene 

expression subclass 31481_s_at thymosin (β10) outperformed 

the high level class. But the high level class also provided 

better result for the same task; average correlation coefficient 

has achieved 88.94%. An interesting phenomenon was that 

most gene expression subclasses had achieved the greatest 

correlation coefficient for this predicting task. In particular 

31444_s_at annexin A2 pseudogene 2 at all exponential points 

correlation coefficient reached an average of 84.85%. This 

result was interpreted as additional evidence for the gene 

expression subclass to serve as second level indicator. 

Furthermore, as expected, 31687_f_at hemoglobin (β) and 

31525_s_at hemoglobin (α2) achieved better performance; 

75.46% at E=2 exponential point and 81.14 % at E=1 

exponential point.  

From all these results, it is clear that all of these classes (high 

level class and distinct gene expression subclasses) achieved 

better correlation coefficient consistency in determining the 

system’s prediction performance. More surprisingly was that 

most gene expression subclasses in the Npoly inner-product 

kernel of all exponential points achieved better performances, 

which suggests gene expressions are reliable for system 

prediction task. High level class achieved 95.21% with Poly 

inner-product kernel at E=1.5 and 92.28% with Npoly inner-

product kernel at E=0.5. This verified the argument in the 

previous study for high level class to serve as the indicator for 

the system prediction task. 

Overall, the experimental results were encouraging in that 

they support the argument of the previous study and the new 

hypothesis. The high level class and three distinct gene 

expression subclass 31687_f_at hemoglobin (β), 31525_s_at 

hemoglobin (α2), and 31481_s_at thymosin (β10 ) were found 

to assist in system prediction task effectively and reliably.   
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