
International Journal of Computer Applications (0975 - 8887)
Volume 50 - No. 22, July 2012

Protein Sequence Similarity Search Technique Suitable
for Parallel Implementation

Himanshu S Mazumdar
Head, Research & development Center

Dharmsinh Desai University
Nadiad, Gujarat, India

Maulika S Patel
Research Scholar

Dharmsinh Desai University
Nadiad, Gujarat, India

ABSTRACT
Having entered the post genomic era, there lies a plethora of infor-
mation, both genomic and proteomic. This provides quite a lot of
resources so that the computational and machine learning strategies
be applied to address the problems of biological relevance. Search-
ing in biological databases for similar or homologous sequences
is a fundamental step for many bioinformatics tasks. On discovery
of a new protein sequence or drug, a biologist would like to con-
firm the discovery by comparing with the largest available protein
database. Alignment based methods become too complex and time
consuming with the increase in the number of sequences. Align-
ment free sequence comparison is many a time used as a filter-
ing step for application of alignment. A novel method of searching
for similar sequences in a huge protein database is proposed. The
method has two interesting aspects. One is the divide and conquer
approach and use of hashing like scheme for indexing the large
database. The index consists of the addresses of the 15-residue
words in the UniRef100.fasta database. The second aspect is the
possibility of data parallelism as the database is divided into m seg-
ments for indexing. This can further increase the efficiency of the
algorithm. The creation of index is time consuming but the search
time is constant and affordable. The method is particularly use-
ful when used with the large databases like UniRef100.fasta which
consists of 9757328 protein sequences as on May 2010. The index
based searching algorithm is implemented in C # .NET.

General Terms:
Protein sequence similarity, alignment free

Keywords:
15- residue words, proteins, indexing, divide and conquer

1. INTRODUCTION
The post-genomic era is experiencing genomic and proteomic
data floods and encouraging more researchers to address problems
like targeted drug discovery, protein-protein interaction identifi-
cation, protein function identification and more. It is well under-
stood that searching is an important step towards finding homol-
ogy, gene identification, motif identification, and other bioinfor-
matics tasks[3, 4, 5]. Biologists are interested in identifying which

sequences in a database are the most similar to a new sequence
which is uncharacterized[9]. Alignment based algorithms[10, 11]
have been proposed, but they suffer from the curse of dimension-
ality. As the number of sequences to be aligned increases, the
complexity increases[13]. Heuristic based alignement algorithms
like BLAST[15] are also very popular for sequence alignment. In
this scenario, alignment free algorithms[2] have attracted many re-
searchers. Different metrics have been proposed to assess the simi-
larity obtained using alignment free techniques[1, 7, 8, 16]. A pre-
search approach is proposed in [14] to search for similar sequences
from a huge database. The method worked by discovering first sim-
ilar sequence and then using the common words for discovering
similar sequences. Efficient sequence similarity searching becomes
even more more challenging when the size of the database is huge.
Indexing or hashing can reduce the latency. In the same light, an
indexed based divide and conquer algorithmic method has been
proposed and implemented for retrieving similar sequences. The
method is also suitable for parallel implementation which can fur-
ther increase the efficiency of the method.

2. MATERIALS AND METHODS
As shown in Fig. 1, the first step is to extract all 15 residue words
from the database and prepare an index containing the location
of these words in terms of sequence number in the database.
To identify the location of all 15 residue words in a database is
an expensive task in terms of time and storing the location is
expensive in terms of space, which is not of much concern. If done
in the simplest way possible, the index will have a list of 2015

entries containing the sequence number in the database. The space
requirement is further increased with the use of a larger database,
which usually is the case in proteomic tasks. The algorithm
is used and tested with UniRef100.fasta, a comprehensive and
non-redundant UniProt reference cluster, and ss.txt, a FASTA
formatted file with protein sequences and secondary structures,
databases available at www.uniprot.org. The UniRef100.fasta
database is 4.21 GB in size (9757328 sequences) as of May
2010[12] and ss.txt, a smaller dataset, contains 174372 sequences.
It is obvious that this large database cannot be handled by any
efficient run time environment. To prepare the index, a divide and
conquer strategy is adopted. We chose to segment the database into
m segments or parts, such that each of the m segments consisted
of around 100000 words baring the last segment. This facilitated
us to handle the database at run time. The index is so prepared so

1



International Journal of Computer Applications (0975 - 8887)
Volume 50 - No. 22, July 2012

Fig. 1. Working of the indexed based search algorithm

as to point to those segments containing the considered word w in
constant time. A linear search for the word w is carried out within
the segment. The index helps us to quickly identify the segments
of interest, where in a linear search is carried out. This clearly
gives a speedup by a factor of m. The algorithm is m times faster
as compared to linear search. The potential requirement is the
creation of index which takes days of computing time on an Intel
Core2Duo machine. The algorithm is described below:

Algorithm: Sequence similarity search
Input: Protein sequence database and query protein sequence
Output: Similar sequences

(1) Create index
(2) Use index
(3) Prune results

2.1 Creation of the index file:
The algorithmic steps for index creation are described below:

(1) Divide the database into m segments so as to conveniently han-
dle the segments at run time. We have done this by creating a
new segment if the number of words in the first segment ex-
ceeds 100,000 (limited by available memory).

(2) For each segment, do the following:
(i) Prepare a list of 15 -residue words. These words are

grouped into 400 files, based on the first two letters. That
is they are hashed on the first two amino acid residues of
the word.

(ii) This is done by considering non duplicate 15-residue
words occurring in the database having a frequency
greater than one.

(iii) Compute the frequency of the words and prepare files of
type AA.txt.freq, AC.txt.freq, ..., YY.txt.freq. These files
consist of the entries of the type, (word, frequency).

(iv) An index, AA.indx, AC.indx, ..., YY.indx containing
the word numbers from the files of type AA.txt.freq,
AC.txt.freq, ..., YY.txt.freq, is created in each of the seg-
ments.

(3) A final index is prepared in the form of 400 files namely
AA.indx, AC.indx, Ad.indx, ...,YY.indx, consisting of entries
of the type, (word, segments).

The final index preparation process is the most time consuming of
all as it combines the frequencies and locations of all words dis-
tributed over various segments. Finally, we have the direct address

of each and every 15-residue word occuring more than once in the
database. Words having single occurrence do not have any role to
play in the similarity search process and hence are not allowed to
participate in the indexing process.

2.2 Using the index
Once the index is created, do the following for the given query
sequence:

(1) Generate a list of 15-residue words in the query sequence.
(2) Access the required files of the type AA.indx, AC.indx,

...YY.indx depending on the 15-residue word list.
(3) Identify the required segments, in which the words be looked

for, based on the contents of the index files.
(4) Search the words in the respective segments sequentially for

the containership of the words in the sequences.
(5) The sequences containing the word are appended to the list of

similar sequences.

2.3 Prune the results
A sequence having at least one 15-residue word match with the
query sequence will have an opportunity to be categorised as simi-
lar. However, based on the number of sequences retrieved, we have
pruned the results to accomodate the most relevant similar hits.

3. RESULTS AND DISCUSSION
Searching in genomic and proteomic databases is challenging given
the size of the databases. Linear search is not affordable and so in-
dex based methods are of particular interest. A similar method is
implemented that builds an index of a large database on 15-residue
words. The search becomes m times faster than the linear search
where m is the number of segments in which the database is di-
vided. ’m’ is so chosen so as to handle the segments at run time
while preparing the index. Table 1 shows the speedup for the two
databases, Uniref100.fasta and ss.txt. It is assumed that finding a
match of a long 15-residue word in two sequences cannot be by
chance. The score of similarity increases with the increased num-
ber of common words between the query sequence and the target
sequence. Database indexing is time consuming in our case. Also
the databases are updated periodically. To incorporate the updates
in the database, the master database and the current database are
independently searched and the results are merged. The algorithm
works by dividing the data into segments. The individual segments
are independent of each other. Given the advancement in computer

2



International Journal of Computer Applications (0975 - 8887)
Volume 50 - No. 22, July 2012

Table 1. Speed Up Achieved.
Database Number of Sequences m

Uniref100.fasta 9757328 3292
SS.txt 174372 38

hardware and multiprocessing environment, the algorithm can be
suitably adapted for data parallelism. This can further increase the
efficiency of searching proportional to m.
The authors wished to compare the proposed method with the
existing state of art methods. However, researchers use different
approaches and it would not be fair to compare the two meth-
ods whose working is different. But through the result analysis,
it is quite convincing that the method finds most of the similar
sequences very fast. Speed is the salient feature of the proposed
method. The weaknesses of the method include:

(1) Index preparation is time consuming.
(2) If not a single word of length 15 or greater is found, the se-

quence will not be considered as similar, though it may be sim-
ilar in rare cases.

Following modifications are proposed to remove the weaknesses:

(1) Index preparation is one time and offline and hence is not of
prime concern.

(2) By using the 15 residue words for search, sensitivity may be
compromised. A secondary index on 14 residue words and less
may be prepared and can used in case of requirement of in-
creased sensitivity.

4. CONCLUSION
Sequence similarity searching is an important step in many bioin-
formatics tasks. The state of art methods are reviewed in brief
and a method to extract the similar protein sequences from a large
database is proposed. The method is particularly suitable for paral-
lel implementation. This is required in the light of rapidly increas-
ing data, both genomic and proteomic.

Acknowledgment
The authors would like to thank the Faculty of Pharmacy, DDU for
discussion on targeted drug discovery requirements.

5. REFERENCES
[1] Tuan D. Pham and Johannes Zuegg. A probabilistic measure

for alignment free sequence comparison. Bioinformatics, Ad-
vance Access:3455–3461, December 2004.

[2] Susana Vinga and Jonas Almeida. Alignment-free sequence

comparison-a review.
Bioinformatics, 19:513–523, 2003.

[3] Nikola Kasabov. Bioinformatics: A Knowledge Engineering-
Approach. Second IEEE International Conference On Intelli-
gent Systems, June 2004.

[4] Achuthsankar S. Nair. Computational Biology & Bioinformat-
ics: A Gentle Overview. Communications of the Computer So-
ciety of India, January 2007.

[5] C. Setubal and J. Meidanis. Introduction to Computational
Molecular Biology, Cengage Learning, 1997

[6] J Chen and N. Chaudhari. Cascaded Bidirectional Recurrent
Neural Networks for Protein Secondary Structure Prediction.
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics. 4(4), Oct-Dec 2007.

[7] Weizhong Li, and Adam Godzik, Cd-hit: a fast program for
clustering and comparing large sets of protein or nucleotide se-
quences. Bioinformatics, 22:1658–1659, Advance Access pub-
lished on July 1, 2006

[8] Miriam R. Kantorovitz, Gene E. Robinson, and Saurabh Sinha,
A statistical method for alignment-free comparison of regula-
tory sequences, Bioinformatics 23: Vol. 23 ISMB/ECCB 2007,
pages i249–i255.

[9] Clare Sansom. Database searching with DNA and protein se-
quences: An introduction. Briefings in Bioinformatics (2000)
Vol.1, No.1 (22–32).

[10] Saul B. Needleman and Christian D Wunsh. A general
method applicable to thesearch for similarities in the amino
acid sequence of two proteins. Journal of Molecular Biology.
48, 443–453, 1970

[11] T.F. Smith and M.S. Waterman. Identification of common
molecular subsequences, Journal of Molecular Biology. 147,
195–197, 1981.

[12] Baris E. Suzek, Hongzhan Huang, Peter McGarvey, Raja
Mazumder, and Cathy H. Wu. UniRef: comprehensive
and non-redundant UniProt reference clusters.Bioinformatics,
23:1282–1288, Advance Access published on May 15, 2007.

[13] Carsten Kemena and Cedric Notredame, Upcoming chal-
lenges for multiple sequence alignment methods in the high
throughput era. Bioinformatics 2009.

[14] Maulika S Patel and Himanshu S Mazumdar. Similarity
search using pre-search in UniRef100 database. International
Journal of Hybrid Information Technology. 4(3), 31–40, July
2012.

[15] Altschul, S. F. et al. Basic Local Alignment Search Tool. Jour-
nal of Molecular Biology. 215, 403-410, 1990.

[16] Gesine Reinert, David Chew, Fengzhu Sun, and Michael S.
Waterman,Alignment-Free Sequence Comparison (I): Statis-
tics and Power, Journal of Molecular Biology. 16(12),1615-
1634 December 2009.

3


	Introduction
	Materials and methods
	Creation of the index file:
	Using the index
	Prune the results

	Results and discussion
	Conclusion
	References

