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ABSTRACT 

The fault diagnosis and prediction of electrical machines and 
drives has become of importance because of its great 
influence on the operational continuation of many industrial 

processes. Correct diagnosis and early detection of incipient 
faults avoids harmful, sometimes devastative, consequences. 
In this work, on the basis of a model of an induction motor we 
study the approach for the detection of broken rotor bars 
problem using residual generators based in moving horizon 
estimator of the rotor resistance. Which the detection is based 
is that the failure events are detected by jumps in the 
estimated parameter values of the model. Upon breaking a bar 

the estimated rotor resistance is increased instantly, thus 
providing two values of resistance after and before bar 

breakage. Simulation and experimental results show the 

effectiveness of the proposed method for broken rotor bar 
detection in induction motors. 
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1. INTRODUCTION 
Induction motors are the most widely used motors among 
different electric motors because of their high level of 

reliability, efficiency and safety. However, these motors are 
often exposed to hostile environments during operation which 
leads to early deterioration leading to motor failure. It has also 
been observed that 5%–10% of faults are related to the rotor 
(broken bar) [4],[12]. The detection is based on the hypothesis 
that the rotor resistance of the induction motor will increase 
apparently when a rotor bar breaks. Using the existing 
observer state estimator, the implementation of a model-based 

fault detection scheme for induction motors can become more 
efficient and economical. In particular, rotor resistance is 
estimated and compared with its nominal value, at the same 
temperature and saturation conditions of the machine to detect 
broken bars [6]. Furthermore, the measurements obtained 
from stator voltages, currents and speed are processed for 

estimation of rotor resistance. For linear systems, this task is 

largely solved and powerful tools such as the Kalman Filter 
and Luenberger observer exists. The situation becomes more 
difficult for nonlinear systems. Here, most methods are 

extensions of linear state estimators, such as the Extended 
Kalman Filter (EKF) that does not guarantee convergence and 
stability. Moreover, the EKF needs statistical knowledge 
(covariance matrices) of the noises acting on the states and on 
the output, which can be difficult to obtain in non-linear cases. 

Others methods require special assumptions on the form of 

the process and observer models which should be satisfied in 
practice like high-gain-observers these algorithms need 
developments that can be mathematically complicated (very 
often exceeding the expertise of engineers or of non-
specialists in process control) [5].  
This paper presents a method that is designed to avoid these 
weaknesses,  a method that guarantees convergence (by using 

non-linear models to carry out an estimation of states-given 
that the estimation strategy proposed allows the use of these 
models regardless of their structure), and that can be used by 
non-specialists as there are fewer parameters to configure. In 
order to achieve these objectives this article presents the 
development of an estimation algorithm for resistance and 
speed which is called Moving Horizon State Estimation or 
MHSE which consists of minimizing an output criterion on a 

time horizon. 
The work is organized as follows: In Section 2, the non-linear 
estimation method MHSE is presented. This is followed by a 
presentation of the non-linear model of the induction motor 
which will be used for carrying out estimates. The non-linear 
estimation algorithm under consideration is then 
implemented, and applied to an induction motor (IM) through 
simulations that verify the benefits of the methods. 
 

2. MOVING HORIZON ESTIMATION   
In this section, the moving horizon estimation theory will be 

reviewed. The used observer is described by the following 

equations: 
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                                                   (1) 

where 
nx R  denotes the state vector

mu R , is the input 

variable and 
py R  is the vector of output (measurable), 

and f and h are known non-linear functions. However, the use 
of all available output measurements for the estimation leads 
to a numerical problem with a steadily growing size: the 
method becomes computationally unfeasible when time 
increases. This difficulty can be avoided by using a moving 

horizon formulation, also called receding horizon formulation, 
where the criterion is minimized only on a time horizon 
including the most recent measurements. The horizon moves 
forward at each sampling time in order to include the new 
measurement available (see Figure 1) [10]. 
The MHSE method solves the problem of state estimation of a 
dynamic system via a static problem of nonlinear 
optimization. The state estimation is performed by finding the 
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value of the state vector at the start of the time horizon (over 
an admissible domain for the state vector), so that the output 
trajectory generated from this state value is the same as the 
one measured from the output of the system. The criterion to 
minimize is the difference between the estimated output of the 

system and the measured output on the moving horizon. This 
corresponds to the sum of the square of the errors, over the 
time horizon [5].  
The MHSE can be formulated as a non-linear programming 
problem with the following structure: 
 

2 2

1 1

1
( ) ( )

2

N N

k k mk

k k

J y y              (2) 

where k denotes the current discrete sampling instant, N the 

number of measurements, J the criterion, is the parameter of 

system , ky  the measured output at time k and m ky  the 

output generated by the system for the initial state kx . 

The MHSE is given by the next algorithm [5]: 
 
       1.   sh:=1 

       2.  Compute the global MHSE solution. Solve the 
problem number (2) using the global optimization 
technique  

=Optimization (2). 

       3.  Compute the estimated vector value at the end of 
the horizon. 

       4.  Go to step 2, to calculate the next estimation  
sh: =sh + 1 (Horizon shift). 

 
This algorithm can be divided into two main parts: prediction 
and global minimization. 
The prediction computes an enclosure of the state and output 
set valued trajectory generated by an initial state using the 
model. The optimization technique consists of the 
minimization of the criteria given by (2) with gauss Newton 
algorithm described as follows [1]: 
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The advantage of MHSE in the fact that disturbances in the 
form of unknown and slowly time-varying parameters can be 
estimated along with the states in a consistent way by adding 
them as single degrees of freedom to the optimization 
problem. This is in contrast to many other estimation 

approaches where parameters have to be reformulated as 
additional states [7]. 

 
Fig 1: Moving horizon state estimation concept 

 

3. MOTOR DYNAMIC MODEL 
The moving horizon estimation algorithm requires a dynamic 
model of induction motor. The three phases-two phases Park’s 
transformation is used to determine the model of the motor in 
the stator fixed α-β reference frame. The state equations of 
induction motor with four electrical variables (currents and 
fluxes), a mechanical variable (rotor speed), and two control 

variables (stator voltages) can be written as [8], [13]   :  
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where  
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s su u u , is an m dimension control signal 
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si ; si denote the stator currents, r ; r the rotor fluxes , 

su ; su the stator voltages, sL ; rL the stator and rotor 

inductances, sR ; rR the stator and rotor resistances,  the 

rotor speed , J the moment of inertia of the machine, M the 

mutual inductance, f the friction coefficient, p the number 

of poles pairs, LT the load torque and finally 
r

r

r

L
T

R
is the 

rotor time constant.  
In this model the voltage equations can be written in a 
stationary reference frame . This can be done by using the 

following transformation. 

 

1 0.5 0.5
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3 3
3 0

2 2

abc
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4.  MODEL BASED DIAGNOSIS 
Diagnosis and supervision are important in many applications. 
The task consists of the detection of faults in the processes, 
actuators and sensors by using the dependencies between 
different measurable signals. They are based either on the 

knowledge about the system or on the model of the system 
which is subject of this section. This consists of comparing 
the behaviour of the real system with that of its model. In an 
ideal case, the system and the model behave exactly the same 
and when a fault is detected the behaviours are different, this 
difference is termed as residual, this difference between real 
system and model behaviours, can be used to diagnose and 
isolate the malfunction [2]. Because some of variables are 
difficult to access or that are simply impossible to measure the 

real behaviour is obtained with estimation. Residual 
generation via parameter-estimation relies on the principle 
that possible faults in the monitored process can be associated 
with specific parameters and states of a mathematical model 
of a process given in general by an input-output relation. 
There are different estimating strategies based on measures. In 
this paper the moving horizon estimation is the method for 
given information about real system. The implementation 

procedure of the proposed FDI scheme is illustrated in Figure 
2 [9], [11]. 

In this following, )(tr
k

 represents the residual in each 

variable, that is the difference between the measurement 

parameter vector )(t
k

 and it’s estimated )(ˆ t
k  at each time 

instant [3]. 

ˆ( ) ( ) ( )k k kr t t t                                                     (8)  

 

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Block diagram representation of proposed FDI 
scheme problem formulation 

5. SIMULATION RESULTS   
The machine used is a 1.1kW, 220/380V, 50Hz, 1500rpm 
induction motor. The parameters nominal values of the 
studied motor are shown in Table 1. 
 

Table 1: Induction motor parameters 
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The hypothesis on which detection is based is that the 

apparent rotor resistance of an induction motor will increase 
when a rotor bar breaks from it nominal value 5Ω to 5.1Ω at 
t=1.5s as illustrated by Figure 3. 
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Fig 3: Induction motor resistance with 20% Rr stepwise at    

1.5 s 

To detect broken bars, measurements of speed are processed 
by moving horizon estimation for the speed (Figure 5) and 
rotor resistance simultaneous estimation (Figure 6). In 
particular, rotor resistance is estimated and compared with its 
nominal value to detect broken bars by residue generation 
(Figure 8). 
To achieve the MHSE of rotor resistance by the measurement 

of speed it is necessary to detecting the sensitivity of the 
output of the variation of this parameter this sensitivity is 
given by: 

/ rR

rR
                                                                     (9) 

or 
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then the differential equation of the sensitivity of speed to 
rotor resistance is obtained by the next equation:  
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: Is the sensitivity of si to rotor resistance. 
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then the last equation becomes: 
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Using the ordinary differential equation (ODE) the sensitivity 
of the speed to the rotor resistance can be representing by the 
Figure 4 that is show that this output is sensible to the 
variation of this parameter.  
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Fig 4: Sensitivity of speed to rotor resistance  

In the last simulation result given by Figure 5 and Figure 6, 
the robustness of moving horizon state estimator with respect 
to a variation in the resistance value is investigated; the 
parameter and the state converge quickly to their respective 

true values.  .  
A zoom of Figure 6 shown on Figure 7 prove that the 
convergence time for the estimation method is less than t = 
0.06 seconds. 
As seen above, the obtained results demonstrate the high 
performance of MHSE especially with response times and 
precision. 
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Fig 5: Estimated (in red) and real speed (in black) 
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Fig 6: Estimated (in red) and real rotor resistance (in 

black) 
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Fig 7: Response time of MHSE 
The difference between the reference and the estimated value 
of the same variable at each time instant (the sample time is 
0.1 s) is representing in the next figure, which is called 

residue which is used to decide about the faults. In the case of 
Figure 8, after almost 1.5 s, this residue value is jumping for 
zero to amplitude 0.1 which indicates the system is faulty. 
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Fig 8: Residual in fault case 

 

6. CONCLUSION  
This paper presents an innovative method for the estimation 
of states in an IM based on a non-linear optimization. This 
method is called MHSE, and is based on the minimization of a 
non-linear criterion. In this case, the classic gauss Newton 
method has been used to solve the proposed optimization 
problem. This problem derives from the need to carry out 

estimation of the rotor resistance of an induction motor the 
simulations of a case of a variation of the resistance from the 
rated value have been presented, the presented algorithm  
show an excellent coherence between simulated and estimated 

process variables, as well as a good response time. These 
features lead us to believe that an experimental application of 
the MHSE technique, together with the control laws, may 
produce industrially useful results. 
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