
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.13, July 2012

6

A Novel Access Control Mechanism based on Key-

Chain-Web Model using Authorization Contexts

Vibhaj Rajan

Department of Computer
Engineering

Institute of Technology, BHU,
Varanasi

Subhash Chandra Patel
Department of Computer

Engineering
Institute of Technology, BHU,

Varanasi

Ravi Shankar Singh
Department of Computer

Engineering
Institute of Technology, BHU,

Varanasi

ABSTRACT

This paper proposes a number of useful improvements to the

Key-Chain-Web access control mechanism which expands the

usability of the mechanism in different scenarios. The

improved services shall demonstrate the flexible and adaptive

nature of the mechanism achieved through the use of

relationships within co-ordination among resources in cloud

and grid systems to provide access control. The proposed

additions are very easy to implement and augments the

fundamental principle of co-ordination based access control

inherent in it. The proposed services are generic in nature to

suit the access control needs of any distributed environment.

General Terms

Security, Internet, Cloud Computing, Enterprise Software,

Service Oriented Architecture

Keywords

access control; key-chain-web; cloud grid systems; enterprise

software; coordination

1. INTRODUCTION
The Key-Chain-Web [1] mechanism is an elegant model that

captures relationships among co-ordinated resources to

provide authorization delegation and access control.

Challenging scenarios are found to exist for co-ordination

amongst resources or objects with respect to specifications

and realization of access control and co-ordination

relationships. Key-Chain-Web model tried to simplify these

issues without loss of flexibility in achievable co-ordination.

According to Ravi S Sandhu [2], the purpose of access control

is to limit the actions or operations that a legitimate user of a

system can perform. In a way, access control seeks to prevent

activity that could lead to a breach of the system. Mandatory,

discretionary and role-based [3] are the types of access control

usually found in literature and implemented in systems. The

co-ordination based model for access control was introduced

by the innovative Key-Chain-Web mechanism which offered

high flexibility and adaptability through use of operational

semantics agnostic design, decentralized control and

hierarchical access levels.

In this paper, we aim to add to the Key-Chain-Web

mechanism features that were found to be very useful in

access control during cloud project development and which

enhances the flexibility and maintainability of the system.

These features are plugged into the architecture by means of

authorization and authentication contexts.

2. KEY-CHAIN-WEB MECHANISM
The Key-Chain-Web mechanism is based on three entities

Users (keys), Resources (chains) and Relationships (webs). In

addition, we have chain members representing relationship

among users and resources, particularly in case of a

collaborative environment where sharing may be achieved

through members. Web relationships are used to automatically

delegate rights for access among the users who are either

owners or members of the resource chain.

Fundamental to this mechanism is the concept of

authorization schemes which are of two types – resource

scheme which operates on chains over keys and relationship

scheme which operates on webs over chains providing all the

runtime rights delegation support to the system. Every

resource is identified to have some primitive operations like

add, remove, edit, info and list, each belonging to one or more

authorization schemes.

Operations are handled by names, thus their semantics are

agnostic to the access control system. Moreover, the

authorization requirements are implemented in a very fine-

grained manner providing the flexibility in the usage. The

decentralized control allows parent resources to define and

manage authorization controls for its children making the

administration very easy. Finally, the mechanism was

designed to suit quickly to the hierarchical nature of

relationship among entities in enterprise environments, thus

enabling wide acceptance in enterprise softwares.

With this background, we discuss the important changes

proposed to the mechanism as AccessGuard [4] services,

which include the following:

 Authorization Contexts

o ChildAuth

o PublicAuth

o GroupAuth

o CustomAuth

 Authentication Contexts

o SessionAuth

o OpenIDAuth

3. AUTHORIZATION CONTEXTS
We define an authorization context to be the field or space in

which the access control mechanism shall look for co-

ordination based rights delegation at runtime. Thus an

authorization context refers to a set of resources that satisfy

certain conditions in coordination model so that they are

searched for rights delegation during access control. By

default, in Key-Chain-Web mechanism, the authorization

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.13, July 2012

7

context consisted of a set of parent resources within certain

level from the given resource. Thus this is what may be called

ParentAuth context and is the default method earlier. Based

on the conditions in coordination model, we came to identify

four more types of authorization contexts which would be

highly useful in access control systems for clouds and grids.

We elicit below the proposed four authorization contexts that

comprise the AccessGuard service:

3.1 ChildAuth
As is obvious after identification of ParentAuth, the next idea

would be to go in reverse direction. Such an authorization

context made up of a set of child resources within certain

level from the given resource is called ChildAuth. An

interesting consequence of this context is the possible easy

implementation of no-read-up/no-write-down security policy

of Bell and La-Padula model and similar other read/write

based policies for information security [5].

3.2 PublicAuth
Some resources demand no restrictions for their access, even

public anonymous access [6] may be provided. Modification

of Key-Chain-Web mechanism was challenging at the

implementation level for achieving this which resulted into

what is known as PublicAuth. This authorization context

basically has no resources for rights delegation since it is

allowed for all; it only has a means to specify public nature of

authorization control and a way to represent anonymous users.

3.3 GroupAuth

GroupAuth is a smooth side effect to improvements in

ChildAuth. With growing enterprises, it was found that certain

resources are shared among users related to a particular set of

resources. The co-ordination model easily captures them by

using GroupAuth authorization scheme which essentially

defines ChildAuth over another root resource specified by the

resource itself. Such an authorization can be extensively used

to bound the access to any resource to a set of users with

certain similar relationship with one another.

3.4 CustomAuth
This final authorization scheme goes to implementation level

and gives an option of defining the necessary property for any

set of resources whose members are allowed access. This

property is evaluated on access control and depending on its

value, the mechanism succeeds or fails. CustomAuth are

particularly useful in scenario where the property which

bounds the set of resources is not explicitly defined by the

coordination relationships.

4. AUTHENTICATION CONTEXTS
We define authentication context to be alternative methods for

identifying the same key. Many methods exists including

username/password tokens or certificates like X.509 [7] or

Kerberos [8]. By default, the Key-Chain-Web mechanism

uses username/password token.

We elicit below the proposed two authentication contexts that

comprise the AccessGuard service:

4.1 SessionAuth
This corresponds to saving some state on the system in the

form of sessions. The sessions may be saved using cookies [9]

on client side, so that the user may be identified on every

request. Thus SessionAuth finds utilization in enterprise

software-as-a-service models for authenticated service

interaction from user interface.

4.2 OpenIDAuth
OpenIDAuth is just another method to identify the user key

based on predecided OpenID [10] identities set by the user.

The OpenID framework is emerging as a viable solution for

Internet-scale user-centric identity infrastructure. The OpenID

identity selects the key for the user which may be combined

with SessionAuth for stateful interaction. The basic use of this

is in the user convenience to use multiple identities all

referring to same key in the Key-Chain-Web model.

5. IMPLEMENTATION DETAILS
The Key-Chain-Web mechanism with AccessGuard services

is currently implemented over relational database system

using MySQL. The CirrusBolt [11] project implements the

chain.authorize service which is the core service in

AccessGuard. This service have been modified to implement

the proposed additions and the result tested by using the

services in TPR Executive [12] project which is a service

oriented enterprise application built using principles of

software-as-a-service.

We give below the implementation details of each of the

proposed contexts:

5.1 Authorization Contexts
These are implemented by modification to the structure and

interpretation of design of chains and webs.

5.1.1 ChildAuth
This is implemented very easily by extending level value to

include negative numbers in chains. When negative, this shall

imply opposite direction to parent which suits to refer

children. Some important code changes are:

$level = $memory['level'];

$moveup = $level > -1;

if(!$moveup) $level = -1 * $level;

$memory['level'] = $memory['level'] > -1 ?

$memory['level'] + 1 : $memory['level'] - 1;

5.1.2 PublicAuth
This is implemented by using prefix for operation

specification. In our case, we used „pb‟ prefix on operations to

indicate PublicAuth. The lines that deal with this context are:

if(($memory['init'] || $memory['self']) &&

($memory['keyid'] == $memory['masterkey'] ||

strpos($memory['authorize'],'pb'.$memory['actio

n']) !== false ||

(strpos($memory['authorize'],$memory['action'])

=== false && $memory['keyid'] > -1)))

 return $memory;

5.1.3 GroupAuth
This is accomplished by adding two fields to chains:

5.1.3.1 grroot
 this field gives ID of the root used for group check.

5.1.3.2 grlevel
 this indicates the maximum levels into the web

 hierarchy to look for GroupAuth

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.13, July 2012

8

The relevant code snippets are as follows:

if(strpos($memory['authorize'],'gr'.$memory['ac

tion']) !== false){

 $level = $memory['grlevel'];

 $moveup = $level > -1;

 if(!$moveup) $level = -1 * $level;

 $memory['chainid'] = $memory['grroot'];

}

5.1.4 CustomAuth
This simply involves executing custom services if needed and

using the result as affirmations for access control. The code

changes are as follows:

if($memory['custom']){

 $memory = Snowblozm::execute(

 $memory['custom'], $memory);

 if($memory['valid'])

 return $memory;

 $memory['valid'] = true;

}

5.2 Authentication Contexts
These are implemented by addition of new schemas and

services as elaborated below.

5.2.1 SessionAuth
We added a schema table called sessions to save the sessionid,

keyid and expiry values. The sessionid is sent over cookie and

is checked on every request to get the session user. The

functional parts of the service are:

if(isset($_COOKIE[COOKIEKEY])){

 $memory = Snowblozm::run(array(

 'service' => 'cbcore.session.info.workflow',

 'sessionid' => $_COOKIE[COOKIEKEY]

), $memory);

}

5.2.2 OpenIDAuth
For implementing this, we added a schema table called

openids to save OpenID emails and corresponding keyids.

This table is queried for getting the keyid after authenticating

with OpenID email. Later on we may add OpenID URL

instead of email. Some code excerpts are as follows:

if(!$openid->mode &&

$memory['openid_identifier']){

$openid->identity=$memory['openid_identifier'];

 $openid->required = array('contact/email',

 'namePerson/first', 'namePerson/last');

 header('Location: ' . $openid->authUrl());

 exit;

}

elseif($openid->mode == 'cancel'){

 // Cancel

}

elseif($openid->validate()) {

 $attr = $openid->getAttributes();

 // Use Attributes and select keyid

}

6. CASE STUDY
We give the example of TPR Executive which is the Training

and Placement portal for IIT BHU Varanasi.

Figure 1. TPR Executive Training & Placement Portal

In this project we mention the modules where we used the

different improvements below.

6.1 Willingness
This module requires that the willingness of students of same

department are visible to each other. We achieved this using

CustomAuth for checking the department value.

6.2 Company
This module required that the documents are shared among

the students. For this we used GroupAuth over all students.

6.3 Preparation
The preparation portal requires that it be managed by students

of the institute. So we used ChildAuth since there is no

difference between read and write access.

6.4 Notes
The notes module gives every user a space for posting articles

and links and give comments. In this we used PublicAuth

when the post is made publically visible.

6.5 Gmail Sign-in
The portal uses Gmail Sign-in using OpenIDAuth and

SessionAuth together since we require stateful interation from

client end.

7. FURTHER RELATED WORK
We point to further related work in this section that is related

to the approach in this paper.

7.1 Coordination Models
Coordination models are very useful tools for managing

objects and resources for large distributed systems including

clouds and grids. The Key-Chain-Web model can be extended

to include a very versatile model for specification and use of

coordination relationships. This is being pursued in the

development of Coordination Graphs in which the current

work provides the foundation concepts.

7.2 Service Oriented Environment
Service oriented environments are very popular nowadays due

to the agility obtained for adapting to changing requirements

of enterprises. A different kind of service oriented

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.13, July 2012

9

environment is being developed on which services can run

and compose very easily and this paper provides the insights

for this project.

7.3 Cloud Security Architecture
Cloud security is an emerging issue and many solutions are

being proposed. One of our projects also concentrates on

development of secured data architecture for clouds and this

leverages the AccessGuard framework.

8. CONCLUSIONS
We have presented a set of improvements to the innovative

Key-Chain-Web mechanism for access control using

coordination based models. All the improvements were

explained with implementation details and case study. The set

of improvements are hoped to be consistent and cohesive to

the initial design and provides completeness to the

mechanism. It has increased the flexibility and adaptability of

the access control system. The mechanism is built to be

extensible enough suit to changes yet to be proposed.

9. ACKNOWLEDGMENTS
The guidance and support given by Shri Ravi Shankar Singh

is gratefully acknowledged.

10. REFERENCES
[1] V. Rajan and R. S. Singh, May 2012, “A mechanism for

flexible access control during co-ordinated resource
sharing in enterprise grids”, IEEE Explore, pp.341-345.

[2] R. S. Sandhu and P. Samarati, September 1994, Access
Control Principles and Practice, IEEE Communications
Magazine, pp.40-48.

[3] R. S. Sindhu et. al., February 1996, “Role based access
control models”, IEEE Computer, pp38-47

[4] AccessGuard Framework, 2012,
https://github.com/tr4n2uil/cirrusbolt/tree/master/php/acc
essguard

[5] Chiara Bodei et. al., 1999, “Static analysis of process for
no red-up and no write-down”, LNCS 1578, pp.120-134,
Springer

[6] M. Backes, J. Camenisch and D. Sommer, November
2005, “Anonymous yet accountable access control”,
ACM WPES ‟05

[7] X.509 Certificates, ITU-T Recommendation, ISO/IEC
9594-8http://www.itu.int/rec/T-REC-X.509/en

[8] B. Clifford Neuman and Theodore Ts'o, September
1994, "Kerberos: An Authentication Service for
Computer Networks," IEEE Communications,
vol. 32 (9), pp. 33–38.

[9] D. M. Kristol, November 2001, “HTTP Cookies:
Standards, privacy, and politics”, ACM Transactions on
Internet Technology, pp.151-198

[10] D. Recordon and D. Reed, 2006, “OpenID 2.0: a
platform for user-centric identity management”,
Proceedings of the second ACM workshop on Digital
identity management, pp.11-16

[11] CirrusBolt, 2011, Service Computing Platform
Foundation Engine, https://github.com/tr4n2uil/cirrusbolt

[12] TPR Executive, 2012, Training and Placement Portal,
https://github.com/tr4n2uil/tprexecutive

