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ABSTRACT 

In this work we propose to study the simple case of a 

laminated plate, orthotropic, semi-infinite, composed of four 

layers same thicknesses. The validation of these results are 

obtained by comparing the values of the arrow and the 

constraints resulting from numerical calculations by the finite 

element method in the case of the plane deformations with 

those obtained by the various theories of the plates. The 

results obtained are validated starting from the three-

dimensional solution and by comparison with the other 

theoretical models.The evaluation of the errors is made by 

regarding the results by finite elements as reference. To make 

a comparison between different models of plates and the 

results of reference obtained by the finite element method, we 

had presented the results as a summary table and curves.. We 

noted that the trigonometric model estimates stresses of shear 

at best. Indeed, the effects edges (Free, embedded or in simple 

supports) are well described by the trigonometric model. 
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1. INTRODUCTION  
Today, laminated composites are increasingly involved in 

high-performance applications, particularly in vital parts for 

the aeronautical industry. Thin structures made of composite 

laminates are increasingly used in the manufacture of 

structural components. The enhanced strength to weight ratio 

makes composites especially attractive for aerospace 

applications. There is always demand to maximize the 

payload. All the problems posed in this context are 

constrained approximation problems with constraints on 

maximum transverse deflection, buckling load, failure load, 

natural frequency etc.  

It is imperative to estimate the constraint quantities accurately 

for an acceptable optimal design. The design of laminated 

composite based components requires a detailed analysis of 

the response of the structure when subjected to external loads.  

For the analysis of laminated composite, we have been 

proposed several plate theories in the literature [1, 8, 10, 12, 

13, 14, 15, 22]. Generally, these plate theories are used to 

obtain certain global response quantities like the buckling 

load. However, the use of these theories to obtain local 

response quantities, i.e. point-wise stresses; interlaminar 

stresses and strains, can lead to significant errors. 

In this work we study the case of the laminated plates and we 

analyze the evolution of the constraints in their elementary 

layers.We pay an attention particular to their behavior with 

the interface of the layers and the effects edges. (Kirchhoff, 

Reissner) [3, 11, 19] and we introduce a goniometrical 

function into the field of displacements in order to take into 

account the effects of shearing and to describe the effects 

edges.The results obtained are validated starting from the 

three-dimensional solution and by comparison to other 

theoretical models [17, 18, 19]. We are studying the global 

behavior of laminate by adapting the conventional tools of 

calculations of the structures to the elastic behaviour of 

composite structures Particularly, we are interested in one of 

current problem of the multi-layer laminated composites 

which is the analysis of the distribution of the stress fields in 

the vicinities of the edges and in the interfaces of the layers 

which exploit a paramount role the mechanical resistance of 

the laminatesFor the prediction of the mechanical behavior of 

each layer constituting the laminate. 

2. FRAMEWORK THEORETICAL OF 

LAMINATED 
Generally, the properties of a laminate (fig. 1) depend on the 

nature of the constituents of basic, the orientation of fibers 

and the stack of layers. Each interface is determined to 

separate two layers of reinforcement and different directions. 

However, the classical theory of plates which is generally 

used to investigate this type of structures is poorly suited, 

when it comes to highlight effects in game at the interfaces of 

the layers and explain the process of transfer of loads. 

We note that the different models of the theory of plates can 

be obtained by using a limited development of the 

displacement field in any point of the domain occupied by the 

plate: 
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   (1)  

i = 1, 2, 3 et j = 1, 2, 3, 4,...n 

M0(x1, x2, 0) is the projection of the point M in the average 

plan (O x1 x2). 

In the classical theory of Kirchhoff-Love [2, 3], the distorted 

A'B' a segment of the normal to the average plan (0x1x2 ) and 

a normal line segment to the deformation of the average plan  
(Fig. 2a). First improvement consists in modifying this theory 

by introducing the effects of transverse shearing, as in the 

natural theory of Reissner Mindlin [2, 5, 7, 11, 20 ]. In cases 

where the scheme of the first degree would be insufficient, it 

becomes necessary to proceed to the second-order or even in 

the third order. This is the case theory of the third order 

developed by Reddy [3, 4, 6, 9, 10, 16, 21, 23] in which the 

displacement field takes into consideration the warping of the 

transverse segment during deformation of the plate (Fig. 2c). 
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Fig 1: Multilayer geometry of stratified. 
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Fig 2: Different types of deformation scheme; (a) Kirchhoff scheme; (b) Reissner scheme; (c) scheme theory refined with 

consideration of warping.  

 

3. PROPOSED MODEL  
We propose to introduce a function g (x) the displacement 

field, to take into account the effects of shear. By writing the 

displacement field as: 
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vi means the displacement of membrane, w the arrow and  γi 

shear of deformation in the direction i taking into account the 

potential biases of normal during the deformation of the plate. 

The proposed model has the advantage of grouping the 

different types of plates under a single write. Thus, we find  

the model Kirchhoff-Love for g(x3) = 0, that of Reissner-

Mindlin for g(x3) = x3 and Reddy for 
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then we give a sinusoidal function g(x3)  a f sinusoidal 

form: )sin()( 3
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4. THE BEHAVIOR OF LAW 

Using the law of elastic behavior khijkhij c    i, j, k, h = 1, 2, 3 

and, applying the principle of virtual power and all the 

boundary conditions of the borders, we obtain relations efforts 

that are written in the generalized form: 
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(3.h) 

- Nij, Mij are respectively the efforts of the membrane and the 

moments of the classical theory of plates (Kirchhoff-Love and 

Reissner) and
 iij QM

~
 ,

~

 
are the moments and shear forces of the 

theory refined to a function with the polynomial associated 

with a degree greater than one. 

5. EQUILIBRIUM EQUATIONS  
By neglecting the effects of membrane (vi  0 ), the 

equilibrium of equations are general form as follows:  
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The natural boundary conditions are written in their 

generalized form: 
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Ti  efforts are the lineiques.on the edges of the plate, ni and mi 

are respectively the components of the vectors tangent and 

normal to the contour of the plate and Mf, Ci  are the moments 

lineiques.  

6. APPLICATIONS 
We propose to study the simple case of a plate laminated 

orthotropic semi-infinite, consisting of four layers of the same 

thicknesses oriented (90 ° / 0 ° / 0 ° / 90 °), built on the side 

x1= 0, free on the end x1 =L and supporting a transverse load 

(q = 104 Pa) uniformly distributed over the upper surface (Fig. 

4). The validation of these results is obtained by comparing 

the values of the arrow and constraints from numerical 

calculations by the finite element method in the case of plane 

strain to those obtained by the different theories of plates. The 

error evaluation is made by considering the finite element 

results as a reference. The finite element mesh (Fig. 4.c), 

based on the choice of eight-node quadrilateral elements, is 

carried out in the cross section (x1, x2). 
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Fig 3: (a) Schematic of the laminate studied, (b) Useful section of the plate, (c) Finite element mesh. Geometrical parameters:  

L = 7.57 m, h/L = 0.37, h1 = h2 = h3 = h4. Mechanical parameters (unit GPa) EL = 242, ET = 19, GLT = 5.2, GTT = 3.5, LT = 0.24 

and TT= 0.25. 

To make a comparison between the different models of plates 

and the reference results obtained by the finite element 

method, we have presented results as a summary table and 

curves. Table I shows the main results for the numerical 

values maximum of the arrow and constraints rescaled using 

the following relations:

 

qxxxx ijij /)()(  3131 ,,    and 

hxxwxxw  /)()( 3131 ,.100,   where q is the uniformly 

distributed load. 

We note that the effects of shear are very important and can’t 

be neglected in the vicinities of the edges. On the other hand, 

if the constraints σ11 from the theory of Kirchhoff-Love 

remains an acceptable approximation, the arrow w due to 

shear is such that these values should be taken with caution 

when it comes to estimating the arrow at the free edge. 

 

 

 

Table 1. Maximum values rescaled “displacement and 

stress 

 )(Lw 10
-4

 )4/ , (11 hh  )( 0 , 13 h  

Kirchhoff Love 0.851 33.99  

Reissner 1.389 33.99 3.47 

Reddy 1.596 31.99 3.96 

Sinus 1.634 32.29 4.47 

F.E.M 1.677 32.99 4.88 
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Fig 4: a. Evolution of the arrow of the average plan 

laminate. 

b. constraints σ11(h, x3) in  function of x3,  (Unit : [Pa]) 

c. constraints σ11(L-h, x3) in  function of x3; (Unit : [Pa]), 

d. constraints σ13(h, x3) in  function of x3, (Unit : [Pa]) 

e. constraints σ13(L-h, x3) in  function of x,(Unit : [Pa]). 
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7. CONCLUSION  
In this study the results obtained are validated starting from 

the three-dimensional solution and by comparison with the 

other ideal models. The validation of these results is obtained 

by comparing the values of the arrow and constraints from 

numerical calculations by the finite element method in the 

case of plane strain to those obtained by the different theories 

of the plates. While referring to the three-dimensional 

solution, we note that the trigonometric model estimates 

stresses of shear at best. Indeed, the effects edges (Free, 

embedded or in simple supports) are well described by the 

trigonometric model. 

The results obtained shows that the trigonometric model can 

be a very economic modeling tool in the case of thick plates, 

used in civil engineering. 

8. REFERENCES 
[1] M. Karama, M. Touratier, A. Idilbi, An evaluation of 

Edge Solution for A Higher-Ordre Laminated Plate 

Theory, Composite Structures, 1993, 25, pp. 495-502. 

[2] G. Kirchhof, Über das gleichgewicht und die bewegung 

einer elastischen scheibe, J. Angew. Math. 1850, pp. 40-

41. 

[3] P. Ladevèze, Une nouvelle version de la théorie des 

plaque de Kirchhoff-Love, C. R.Acad. Sci. Paris, T. 312, 

Série II, 1991, pp. 151-156. 

[4] K. H. Lo, R. M. Christensen, E.M. Wu, A Higher-Order 

Theory of Plate Deformation, ASME J. App. Mech., V. 

18, 1977, December, pp. 663-676. 

[5] Ji-Fan He et al, Bending analysis of laminated plates 

using a rafined shear deformation theory, Composite 

Structures 24, 1993, pp. 125-138. 

[6] X.L. Fan1, Q. Sun, M. Kikuchi Review of Damage 

Tolerant Analysis of Laminated Composites. Journal of 

Solid Mechanics Vol. 2, No. 3 (2010) pp. 275-289. 

[7] R. D. Mindlin, Influence of rotatory inertia and shear on 

flexural motions of isotropic, elastic plates, J. Appl. 

Mech., 1951, Vol. 18, pp. 31-38. 

[8] P.M. Mohite, C.S. Upadhyay,  Region-by-region 

modeling of laminated composite plates. Elsevier 

Computers and Structures 85 (2007) 1808–1827. 

[9] N.J. Pagano, Exact Solutions for Rectangular 

bidirectionnal Composites and Sandwitche plates, J. of 

Comp. Mater. 1970, Vol. 4, pp 20-34. 

[10] J. N. Reddy, A Simple higher - order theory of laminated 

Composite Plate, J. App. Mech., 1984 December, pp. 

745-752. 

[11] E. Reissner, The effect of transverse shear deformation 

on the bending of elastic plates, J. Appl. Mech., 1945, 

Vol. 12, pp. A69-A77. 

[12] S. Alsubari, H. Chaffoui. Study of the Mechanical 

Behavior of Composite  Plates by Homogenisation. 

Elsevier. Procedia Engineering  15 (2011),pp 4063 – 

4067. 

[13] Tatiane Corrȇa de Godoy, Marcelo Areias Trindade 

Modeling and analysis of laminate composite plates with 

embedded active-passive piezoelectric networks: Paper 

published in Journal of Sound and Vibration, 330(2):194-

216, 2011. 

[14] M. Touratier, Un modèle simple et efficace en 

mécanique des structures composites, C. R. Acad. Sci. 

Paris, T. 309, Série II, 1989, pp. 933-938. 

[15] M. Touratier, A efficient standard plate theory, Int. J. 

Engng. Sci. ,29, N°8, pp 901-916,1991.  

[16] J. M. Whitney, Stress analyis of thick laminated 

composite and sandwitch plates, J. of.  App. Mech. 1972, 

Vol.6, pp.426-440. 

[17] S. Sriniva, A. K. Rao, Flexure of thick rectangular plates, 

J. of App. Mech., March 1973, pp. 298-299. 

[18] S. Srinivas, A. K Rao, Bending, vibration and buckling 

of simply supported thik orthotropic rectangular plates 

and laminates, Int. J. Solids and Structures, V. 6, 1970, 

pp. 1463-1481. 

[19] P. Ladevèze, F. Pécastaings, The optimal Version of 

Reissner's theory, J. App. Mech., V. 55, June 1988, pp. 

413-418. 

[20] S. Vlachoustis, Shear correction factors for plates and 

shells, Int. J. for Num. Meth. In Engng. Sci., 33, N° 8, 

1991, pp. 901-916. 

[21] J. M. Whitney, The effect of transverse shear 

deformation on the bending of laminate plates, J. Comp. 

Mat., V. 3, 1969, pp. 534-547. 

[22] H. Chaffoui, M. EL Hammouti, A. Yeznasni, R. EL 

Guerjouma, Modélisation et analyse du comportement 

mécanique des structures composites stratifiées, 4èmes 

Journées Maghrébines d'Etudes de Génie Mécanique, 28 

- 30 Novembre 1999, Constantine, Algérie. 

[23] He Ling-Hui, A linear theory of laminated shells 

accounting for continuity of displacements and 

transverse Shear Stress at layer Interfaces, Int. J. Solides 

Structures, V. 31, N° 5, 1994, pp. 613-627. 

 


