
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

34

A Multi-core Tool for Searching Protein Structural

Similarities

Ahmed Salah

College of Information
Science and Engineering,

Hunan University

Faculty of Computers and
Informatics,

ZagazigUniversity

KenliLi
College of Information

Science and Engineering,

Hunan University

Tarek F. Gharib
Faculty of Computing and
Information Technology,

King Abdulaziz

University,Saudi Arabia

Faculty of Computer and
Information Sciences, Ain

Shams University

AbdulFattahMashat
Faculty of Computing and
Information Technology,

King Abdulaziz

University,Saudi Arabia

ABSTRACT

The analysis of protein structural similarities plays an

important role in different biological fields. These fields vary

from the process of developing new drugs to detecting the

evolutionrelationships. As the number of protein structures

grows rapidly there is an increasing demand for improving the

speed of the computational tools that handles proteome. The

wide prevalence of multi cores computers and its low price

can be employed to speed up the existing tools used for

searching protein structural similarities. In this report, we

present a modified version of a PSISA tool, which efficiently

used to find the structural similarities between different

proteins and maintains the load balance between cores. Using

an Intel 8 cores computer and the structural classification of

proteins (SCOP) dataset, the experiments show an average

speed up 1.8 using 8 cores without affecting the memory

usage or the accuracy of the tool.

General Terms

Algorithms, Bioinformatics, Computational Biology.

Keywords

Protein Structural Similarities, Multi-core, Structure

Comparison, Indexed protein structure, suffix array.

1. INTRODUCTION
The function of proteins depends on both its sequence and

structure [1]. Protein structural similarity comparison is a key

player in the process of drug design and other several vital

biological fields. Each protein has a file that contains the

coordinate of each amino acid in the space. So we have a set

of proteins with known functions and this set can be used as

the database to predict and understand the function of the new

discovered proteins. For any query protein the input should be

its amino acids 3D coordinates, and the result of any method,

intended to find structure alignment, should be a list of the

known protein with the highest structural similarities.

Abundant of methods have been established to perform the

protein structure searching. That method can be classified into

three classes. The first class performs one to one comparison

by comparing each entry of the database with the query

protein as suggested in [2], CE [3], and DALI [4]. Recently,

an iterative method is proposed to handle specifically the

structure similarity in distantly related proteins with low

sequence identity [5]. The second class performs a structural

alignment which produces a set of superposed three-

dimensional coordinates for every query proteins at the

residue level [6]. A mathematical framework for protein

structure comparison based on elastic shape analysis is

proposed. Under this framework, protein structures are

compared as three dimensional elastic curves and can be

treated as random variables for statistical analysis; this

framework is not good for detecting related proteins with

differences are caused by changes such as domain

insertion/deletion or domain swapping [7]. Recently, a

method proposed a graph alignment as a mean for comparing

proteins on a structural level. This method is a semi-global

strategy because it shares properties with both local and

global graph matching, similar to semi-global sequence

alignments [8].These two classes produce very highly

accurate results but in terms of processing time they require

long running time, the searching process can cost hours to

days. The third class is indexing protein structure based on

protein backbone three-dimensional coordinate values [9, 10]

or environment information [11]. The third class is focusing

on local similarity rather than global similarity that affect the

overall accuracy but results are still comparable, meanwhile

thisclassis significantly faster than the former two classes. To

conclude, it is efficient, third class, against accuracy, first and

second classes.

Due to the rapidincreasing of discovering new proteins and

the wide prevalence of multi core computers, we focus in this

report to design a tool which is a time and memory efficient

for protein structure comparison. We provide the efficiency

by selecting the one approach belongs to the third class

mentioned above and then to implement the multi-core

version. PSISA is a time and memory effective algorithm

presented to approach the protein structure comparison

problem [12, 9, 13]. The reason for selecting PSISA algorithm

to be in a multi core version, that it is based on suffix arrays

as the indexed structure [14]. This data structure is suitable for

parallelizing and it is famous ofits memory efficiency.

Meanwhile other tools are difficult to be parallelized like

PSIST [9] since it is based on trees as the indexing structure.

Also the presence of parallel algorithms for building suffix

arrays is another point for selecting the PSISA.

In this research, we present the first multi-core version of

algorithms belongs to the third class. We have selected an

efficient algorithm in terms of memory and speed. Testing this

tool, we gain a speedup of 1.8 using 8 cores without affecting

the memory usage or the accuracy of the tool.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

35

2. SOFTWARE INPUT/OUTPUT
Multi-core PSISA (MPSISA) is a tool developed in Java in

order to be a cross platform tool. There are no advanced

requirements to run the tool just the javarun time environment

(JVM) which is freely available. The basic idea of the tool to

have a set of proteins with known function this set considered

as the database set, and another set of proteins with unknown

functions which is the query set. The tool starts searching the

database set in order to find proteins similar to the proteinsof

the query set.

The input for MPSISA is a path that contains all database

proteins to be indexed and the path for the query proteins. The

list of complete MPSISA input parameters is listed in Table 1.

The w parameter is used to determine the sliding window size,

as the w parameter increases the required memory for the

program increases. The b parameter is used to normalize the

feature vector values extracted as it increases the accuracy and

running time increase. The l parameter determines the

threshold to consider the match, any match with length less

than lvalue is not counted as it lthey accuracy and running

time increase. The dbdirand querydirparameters determine the

directory for database set and query set respectively.

The output for each query protein is a list of proteins, from the

database set, that match the query protein. The list is sorted by

the matching scores.

Table 1. MPSISA Parameters

Parameter Valid values Meaning Default

W Integer > 1 Window size 3

B Integer > 1 Bin value 2

L Integer > 1 Matched length

threshold

15

Dbdir Directory Path Pathto the

database set

directory

n/a

Querydir Directory Path Pathto the query

set directory

n/a

3. EXPERIMENTAL RESULTS
We designed an experiment to test the speedup of the query

time, which is the main target of the improvement in this

research. To test our tool we selected the SCOP dataset. In

SCOP, 621 is the number of super families which contain

more than 4 proteins. We have built the known protein

database by using at most 5 proteins from each family

thatproduced 3105 proteins which presents the database. In

order to build the query database we have selected one protein

from each super family that selected proteins has the longest

data.The resulted 621 proteins present the query database. We

then run the program once for each query protein and

calculated the running time. The results of the speed

uppresented in the following are the average running time of

these 621 runs.

Figure1 shows an increment in the speedup as the number of

cores increases. The usage of 8 cores achieves an average

speedup equals to 1.5 for the 621 queries selected from

different protein super families.

Figure 2 shows the relation between the speedup of the query

time and the query file size, as the protein size increases the

query file increases. We can conclude that there is no relation

between the size of the query and the speed up, the speedup of

query time depends mainly on parallelizing the elements of

the query suffix array and a database suffix array, so the speed

up increases as the number of query suffix array increases

which has no connection with the size of the query protein.

Fig 1: The speedup of PSISA algorithm using up to 8 cores

Fig 2: The relationship between speed up and file size

Figure 3 shows the performance of using different number of

cores to response to the query protein. Forrandomly selected 6

proteins of ascending execution time for the single core, the

execution time is shown for 1, 2, 4, 6, and 8 cores. The figure

shows that execution time of 4, 6, and 8 cores is very

close,meanwhile the values of execution times for 8 cores

outperform the2,4, and 6 cores’ execution times slightly.

4. FUTURE WORK AND CONCLUSION
The rapidly increasing in the number of discovered proteins

should be considered as a challenge for a single CPU

computer. To overcome this challenge a cluster-based version

of MPSISA is highly required.Achieving this task increases

MPSISA scalability so that it can handle huge amount of

protein structure comparison.

In this paper, we propose a parallel toolfor protein structure

comparison, which is based on existing sequential tool. This

tool is developed to overcome the slow performance due to

the increasing in protein structures number. This proposed

methods speed up by 1.8 times on average using 8 cores.

Thespeed up rate depends on the datasetsize, as the datasetsize

increases the speed up rate increases.

0
0.5

1
1.5

2

2 4 6 8
cores

Speedup

Speedup

0
0.5

1
1.5

2

Speedup

Speedup

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

36

Fig 3: The performance comparison between the different cores

5. REFERENCES
[1] Lee, D.,Redfern, O., and Orengo, C.2007. Predicting

protein function from sequence and structure. Nat Rev

Mol Cell Biol.

[2] Eidhammer,I., Jonassen, I., and Taylor, W. R.2000.

Structure Comparison and Structure Patterns. Journal of

Computational Biology.

[3] Shindyalov, I. N., and Bourne, P. E. 1998. Protein

structure alignment by incremental combinatorial

extension (CE) of the optimal path. Protein Engineering.

[4] Holm, L.,Kääriäinen, Rosenström, S.P., andSchenkel, A.

2008. Searching protein structure databases with DaliLite

v.3. Bioinformatics.

[5] Venkateswaran,J. G., Song, B.,Kahveci, T.andJermaine,

C. 2011. TRIAL: A Tool for Finding Distant Structural

Similarities. IEEE/ACM Transactions on Computational

Biology and Bioinformatics.

[6] Konagurthu,A. S.,Whisstock, J. C., Stuckey, P. J., and

Lesk, A. M. 2006. MUSTANG: a multiple structural

alignment algorithm. Proteins.

[7] Liu, W.,Srivastava, A., and Zhang, J. 2011. A

Mathematical Framework for Protein Structure

Comparison. PLoS Computational Biology.

[8] Mernberger, M., Klebe, G., and Hullermeier, E. 2011.

SEGA: Semiglobal Graph Alignment for Structure-

Based Protein Comparison. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.

[9] Gao,F., and Zaki,M. J. 2008.PSIST: A scalable approach

to indexing protein structures using suffix trees. Journal

of Parallel and Distributed Computing.

[10] Shibuya,T. 2004.Generalization of a Suffix Tree for

RNA Structural Pattern Matching.Algorithmica.

[11] Carpentier,M.,Brouillet,S., and Pothier,J.2005.

YAKUSA: a fast structural database scanning method.

Proteins.

[12] Gharib, T. F.,2009. A hybrid approach for indexing and

searching protein structures. W. Trans.onComp.

[13] Gharib, T. F., Salah, A., and Abdel-Badeeh, M. S. 2008.

PSISA: an Algorithm for Indexing and Searching Protein

Structure using Suffix Arrays. WSEAS International

Conference on COMPUTERS.

[14] Manber,U.andMyers, G. 1990. Suffix arrays: a new

method for on-line string searches. InProceedings of the

first annual ACM-SIAM symposium on Discrete

algorithms.

1 2 3 4 5 6

1 core 1108 1903 3322 4602 5975 10000

2 Cores 749 1497 2761 4134 5226 9563

4 Cores 749 1498 2121 3478 4571 8954

6 Cores 764 905 2121 3479 4556 9001

8 Cores 764 890 2106 3479 4555 8954

0
2000
4000
6000
8000

10000
12000

M
ili

Se
co

n
d

s

Execution Time

