
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

22

Improved Max-Min Algorithm in Cloud Computing

O. M. Elzeki

Faculty of Computer & Information
Mansoura University, Egypt

M. Z. Reshad
Faculty of Computer & Information

Mansoura University, Egypt

M. A. Elsoud
Faculty of Computer & Information

Mansoura University, Egypt

ABSTRACT

In this paper, a unique modification of Max-min algorithm is

proposed. The algorithm is built based on comprehensive

study of the impact of RASA algorithm in scheduling tasks

and the atom concept of Max-min strategy. An Improved

version of Max-min algorithm is proposed to outperform

scheduling map at least similar to RASA map in total

complete time for submitted jobs. Improved Max-min is based

on the expected execution time instead of complete time as a

selection basis. Experimental results show availability of load

balance in small cloud computing environment and total small

makespan in large-scale distributed system; cloud computing.

In turn scheduling tasks within cloud computing using

Improved Max-min demonstrates achieving schedules with

comparable lower makespan rather than RASA and original

Max-min.

General Terms

Distributed System, Job Dispatching Algorithms and Cloud

Computing.

Keywords

Cloud Computing,Meta Task Scheduling, RASA Algorithm,

Max-min Algorithm, Min-min Algorithm, makespan.

1. INTRODUCTION
Cloud computing is known as a provider ofdynamic services

using very large scalable and virtualized resources over the

Internet. Cloud computing can be defined as a collection of

computing and communication resources located over

distributed datacenters; that is shared by many different

users[1]. As shown before,cloud computing is considered as

internet based computing service provided by various

infrastructure providers on an on-demand basis, so that cloud

is subject to Quality of Service (QoS), Load Balance (LB) and

other constraints which have direct effect on user

consumption of resources controlled by cloud

infrastructure.Cloud Computing is considered nowadaysto be

a very popular because of the many advantages provided by

the Cloud infrastructure. Hardware, software and other

services are available to users as a utility underan on-demand

basis that is charged proportionally to the amount of resources

consumed by them. In some cases, Cloud providers use a

portion of their datacenter infrastructure for private purposes

and provide the rest unused capacity as a cloud service to

public clients. Such setting enables cloud toincrease the

complexity of its resources efficiently and makesproviders

earn money from such deployments. On the other side of

service providing, the usersbecome more comfortable and

useful ascloud allows them to enjoy executingtheir

application/service and make them not worry about the

infrastructure required and its troubles shooting for their

services [1], [2].

To make a set of cloud services an effective provider

infrastructure, one of its requirements is an effective task

scheduling algorithm. Task scheduling algorithm is

responsible for mapping jobs submitted to cloud environment

onto available resources in such a way that the total response

time,the makespan, is minimized [2]. Many task scheduling

algorithms are applied by resources manager in distributed

computing to optimally allocate resources to tasks [4], [5], [6],

[7], [8], [9], [10], [11], [12].While some of these algorithms

try to minimize the total completion time. Where the

minimization is not necessarily related to the execution time

of each single task, but the aim is to minimize overall the

completion time of all tasks [5], [11], [13], [14], [15], [16].

There have been many algorithms used to schedule tasks

on their resources, some of these algorithms are used in grid

computing which is large scale distributed system concerned

with resource sharing and coordination for problem solving.

Three well known examples of such algorithms intended to be

applied in cloud computing environment are Max-min, Min-

min and RASA [2], [5], [11], [13], [14], [16]. Each of these

algorithms estimate the completion and execution time of

each submitted task on each available resource. RASA is a

hybrid algorithm of two other ones. In the RASA,an

estimation of the completion time of each task on the

available resources is calculated then Max-min and Min-min

algorithms are applied alternatively to take advantage of both

algorithm and avoids their drawbacks [2].

One of the features of the Max-min strategy is that chooses

large tasks to be executed firstly,which in turn small task

delays for long time. On the other hand, Min-min is perfect in

executing smaller tasks then large ones that is the reverse of

Max-min. So that, in RASA, alternatingbetween small and

large is reason for executing small tasks before large and

avoids delays of executing large tasks, also support

concurrency in execution of large and small tasks. Max-min

strategy resolves the difficulty of Min-min, bygiving priority

to large tasks. The Max-min algorithm selects the task with

the maximum completion time and assigns it to the resource

on which achieve minimum execution time. It is clear the

Max-min seems better choice whenever the number of small

tasks is much more than large ones. But in other cases, early

executing large tasks leads for increasing in total completion

time of submitted tasks so Min-min is better choice and visa-

verse [2].

This paper, as RASA, offers an improved task scheduling

algorithm based on Max-min to resolve the mentioned above

problems with both Max-min and Min-min. The basic idea of

an improved version of Max-min assign task with maximum

execution time to resource produces minimum complete time

rather than original Max-min assign task with maximum

completion time to resource with minimum execution time.

The remaining parts of this paper are organized as follows:

Section 2 presents some related works. Next, Section 3

describes the concept of Task scheduling algorithm in

distributed environment using Max-min strategy which is

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

23

modified in Section 4. Then in 4, our improved modified

version of Max-min schema is proposed and illustrated using

pseudo code and flowchart. In Section 5, compare the

scheduling algorithms in typical environment and present the

result of comparison using illustrative simple example.

Finally, Section 6 concludes the paper and presents future

work.

2. RELATED WORKS
Due to novelty of cloud computing field, there is no many

standard task scheduling algorithm used in cloud

environment. Especially that in cloud, there is high

communication costs that prevents well known task

schedulers to be applied in large scale distributed environment

[5], [9], [10]. Today, researchers attempt to build job

schedulingalgorithms that are compatible and applicable in

Cloud Computing environment.

L. Mohammed Khanli et al. have proposed QoS tasks

scheduling algorithm as an aggregation formula in a specific

architecture called Grid-JQA [6], [7]. Such formula is a

combination of parameters and weighting factors to evaluate

QoS. Khanli's scheduling algorithm is not practical as it hasn't

a practical mathematical solution [2], [7].

X. He et al.have proposed an algorithmdepends on theoriginal

Min-min algorithm [5]. It is called QoS guided Min-min, and

it assigns tasks with high bandwidth before others. QoS acts

similar to Min-min when available tasks have the same

bandwidth so it preferred to use QoS guided Min-min

whenever submitted tasks have large bandwidth. At that

moment, QoS guided Min-min produces better results.

Similar to QoS guided Min-min, new algorithm called QoS

priority grouping scheduling that is proposed by F. Dong et al

[14]. QoS priority grouping scheduling algorithm considers

deadline and acceptation rate of the tasks and makespan of the

whole system as major factors for task scheduling. It achieves

better acceptance rate and completion time for submitted tasks

compared with Min-min and QoS guided Min-min.

QoSSufferage is new task scheduling algorithm presented by

E. UllahMunir [15]. This algorithm considers network

bandwidth and assigns tasks based on their bandwidth

requirement as the QoS guided Min-min does. It achieves

smaller makespan compared to Max-min, Min-min; QoS

guided Min-min and QoS priority grouping algorithms.

K. Etminani et al. provided a new algorithm, that uses Max-

min and Min-min algorithms to select one of these two

algorithms depending on standard deviation of the expected

completion times of the tasks on each of the resources [16].

SaeedParsa et al.proposed a new task scheduling algorithm

called RASA [2]. It takes advantage of both Max-min and

Min-min algorithm. RASA uses the Min-min strategy to

execute small tasks before large ones and applies the Max-min

strategy to avoid delays in the execution of the large tasks and

to support concurrency in the execution of large and small

tasks.

3. TASK SCHEDULING ALGORITHMS
Task scheduling process is an allocation of one or more time

intervals to one or more resources [18]. In cloud computing,

the scheduling is a problem of scheduling a set of submitted

tasks from different users on a set of computing resources to

minimize the completion time of a specific task or the

makespan of a system. There are many other parameters can

be mentioned as factor of scheduling problem to be

considered such as load balancing, system throughput, service

reliability, service cost, system utilization and so forth.

Through comprehensive study of scheduling, Task scheduling

algorithm is a decision making process about assigning and

finding the best match between tasks and resources. So

scheduling is NP-complete problem [5], [12], [13], [18].

For producing a schedule, assume that we have m

Resources Rj(R1, R2, ..,Rm) and we process n tasks Ti(T1, T2, ..,

Tn) to be mapped on these resources. Also expected execution

time Eij of task Ti on resource Rj is defined as required time of

resource Rj to finish task Ti provided that Rj has no load when

assignment occurs. On the other side, expected completion

time Cij of task Ti on resource Rj is defined as the overall time

consumption till finishing any assigned task previously

assigned. Assume ridenote the beginning of execution task Ti.

From previous mentions, it can be concluded that Cij = ri+ Eij.

The makespan of complete schedule is defined as Max (Ci)

where Ci is the completion time for a task Ti [2].

Makespan is defined as a measure of the throughput of the

heterogeneous computing system; like the Cloud Computing

environment[11],[13].

Scheduling algorithms can be categorized according to

many polices as immediate and batch scheduling,

preemptiveand non-preemptive scheduling, static and

dynamic scheduling, etc [20], [21], [22].

In Immediate mode, tasks are scheduled as soon as arrive

the computing environment,while in thebatch mode,tasks are

grouped into a batch; that is a set of meta-tasks would be

allocated at times called mapping events [21].

For example, in theMinimum Execution Time

(MET)algorithm estimatingthe execution time of the

submitted tasks on available resources is calculated,choosing

each task to a resource would produce the minimum execution

time for that task [5], [11], [13], [16].

In contrast,theMax-min, Min-min and RASA

algorithmsestimate the execution time and the completion

time of each task in meta-tasks; then assign the taskson

suitable resource; each based on its decision rule. The Max-

min algorithm is commonly used in distributed environment

which begins with a set of unscheduled tasks. Then calculate

theexpected execution matrix and expected completion time

of each task on the available resources. Next, choose the task

with overall maximum expected completion time and assign it

to theresource with minimum overall execution time. Finally

recently scheduled task is removed from the meta-tasks set,

update all calculated times, then repeat until meta-tasks set

become empty [11].

In the Max-min algorithm, shown inFig 1, rj representsthe

ready time of resource Rj to execute a task, while Cij and Eij

represent the expected completion time and Execution time

respectively. As shown, task Tk with maximum expected

completion time is chosen to be assigned for corresponding

resource Rj that gives minimum execution time.

Fig 1: The Max-Min Algorithm

1. for all submitted tasks in meta-task; Ti

2. for all resources; Rj
3. Cij = Eij + rj

4. While meta-task is not empty

5. find task Tkconsumes maximum completion time.
6. assignTk to the resource Rj which gives minimum

execution time.

7. remove Tkfrom meta-tasks set
8. update rjfor selected Rj

9. update Cij for all j

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

24

Each of Max-min, Min-min and RASA algorithms have

running time complexity of Ο(mn2), where m is the number of

resources currently in the system and n is the number of

submitted tasks which should be scheduled [2], [12].

4. IMPROVED MAX-MIN ALGORITHM
Max-min algorithm allocates task Ti on the resource Rjwhere

large tasks have highest priority rather than smaller tasks. For

example, if we have one long task, the Max-min could

execute many short tasks concurrently while executing large

one. The total makespan, in this case is determined by the

execution of long task. But if meta-tasks contains tasks have

relatively different completion time and execution time, the

makespan is not determined by one of submitted tasks.It

would be similar to the Min-min makespan.For these cases,

original Max-min algorithm losses some of its major

advantages as load balance between available resources in

small distributed system configuration and small total

completion time for all submitted tasks in large scale

distributed environment. We can't use the Max-min and wait

submitted tasks to decide what would be the allocation map,

makespan, load balance, etc. We try to minimize waiting time

of short jobs through assigning large tasks to be executed by

slower resources. On the other hand execute small tasks

concurrently on fastest resource to finish large number of

tasks during finalizing at least one large task on slower

resource. Based on these cases, where meta-tasks

containshomogeneoustasks of their completion and execution

time, we proposed a substantial improvement of Max-min

algorithm that leads to increase of Max-min efficiency.

Proposed improvement increases the opportunity of

concurrent execution of tasks on resources. We focuses on the

Max-min to derive improved Max-min because of its

advantages as load balance that is desired in small distributed

system rather than larger and small makespan in large

distributed system rather than small [2]. True, load balance

enhances performance in distributed systems but doesn’t

necessarily result in shorting makespan.

The algorithm calculates the expected completion time of the

submitted tasks on each resource. Then thetask with the

overall maximum expected execution time is assigned toa

resource that has the minimum overall completion time.

Finally, this scheduled taskis removed from meta-tasks and all

calculated times are updated and the processing is repeated

until all submitted tasksare executed. The algorithm focuses

on minimizing the total makespan which isthe total complete

time in large distributed environment, for example, cloud

computing environment also, executing tasks concurrently on

available resources achieving load balance in small distributed

system. The proposed algorithm produces mapping schema

similar to RASA in such concurrency executing tasks and

minimization of total completion time required to finish all

tasks. Selecting task with maximum execution time leads to

choose largest task should be executed. While selecting

resource consuming minimum completion time means

choosing slowest resource in the available resources. So

allocation of the slowest resource to longest task allows

availability of high speed resources for finishing other small

tasks concurrently. Also, we achieve shortest makespan of

submitted tasks on available resources beside concurrently.

Not as original Max-min which recommended to be used if

and only if submitted tasks is heterogeneous in their

completion time and execution time, by means, there are

clearly large tasks and small tasks.

Improved Max-min pseudo code is represented in Fig 2. We

denotes the expected completion time matrix asCijthat is

defined as rj, which represents ready time of resource

RjandEij, that is Execution Time of task Ti on resource Rj.

Fig 3 is a flowchart of proposed algorithm.Original Max-min

similar exactly to Improved Max-min unless step (1) of Fig 3,

"Select task with max execution time Then assign to be

executed by resource with min completion time" would be

changed to " Select task with max completion time Then

assign to be executed by resource with min execution time".

Fig 2: The Improved Max-Min Algorithm

Fig 3: Improved Max-Min Flowchart

Our algorithm derived from Max-min so that it has the same

time complexity Ο(mn2), similar to original Max-min, Min-

min and RASA where m is the number of resources and n is

Step 1:

Step 2:

Step 3:

Yes

No

Start

Compute Expected Execution Time &

Completion Time of each task on resources

Meta Tasks not empty

End

Select task with max execution time

Then
assign to be executed by resource with min

completion time

Delete selected task from Meta-Tasks List

Update Ready time of resource

Then
Update Expected Complete time

1. for all submitted tasks in meta-task; Ti
2. for all resources; Rj

3. Cij = Eij + rj

4. While meta-task is not empty
5. find task Tkcosts maximum execution time.

6. assignTk to the resource Rj which gives minimum

completiontime.

7. remove Tk from meta-tasks set

8. update rjfor selected Rj

9. update Cij for all j

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

25

the number of tasks. Although of having the same execution

time similar to Max-min, Min-min and hybrid one; RASA, it

produces better makespan with more reliable scheduling

schema. Improved Max-min supports load balance of

available resources and allow concurrent execution of

submitted tasks with higher probability rather than original

Max-min. Next section explains simple example to expose

results.

5. IMPLEMENTATION AND

EXPERIMENTS

5.1 Illustrative Example
In order to illustrate our algorithm, assumewe have four tasks

T1, T2, T3 and T4are in meta-tasks and scheduling manager has

two resources R1 and R2as problem set 2. Table 1, represents

processing speed and bandwidth of communication links of

each resource while Table 2, represents the volume of

instructions and data in tasks T1 to T4. Using data given in

Table 1 and Table 2, to calculate the expected completion

time and execution time of the tasks on each of the resources.

Table 1.Resources Specification

Resource
Processing Speed

(MIPS)
Bandwidth(MBBS)

R1 150 300

R2 300 15

Table 2.Meta-Tasks Specification

Task Instruction Vol. (MI) Data Vol. (MB)

T1 256 88

T2 35 31

T3 327 96

T4 210 590

Table 3 demonstrates calculated complete time of the tasks

and execution time at the same time. On next step of the

algorithmiteration, data in table 3 will be updated until all

tasks are allocated. Fig 4 includes Gantt Charts representing

the results of using original Max-min strategy on meta-tasks

while Fig 5 includes two Gantt Charts representing the results

of applying RASA and Improved Max-min, respectively. In

Fig 4, the original Max-minachieves total makespan 9 seconds

and uses only one resource R1. For next Fig, 5.a, RASA

algorithm achieves total makespan 9 seconds, choose

alternatively between large tasks and small tasks respectively

because of number of resources is even [2] and uses just only

one resource. Fig 5.b, describes Gantts Charts of our proposed

scheduling algorithm which achieves makespan 8 seconds,

introduces load balance between R1 and R2 and concurrency

execution of tasks.Although the orders of the tasks scheduled

in RASA and Improved Max-min is different, the makespan

of each is at least equally if not smaller due to Improved Max-

min. Based on experimental results, Improved Max-min

algorithm produces mapping schema with better total

makespan.

Table 3.Completion time of the tasks on each of the

resources

Task / Resource R1 R2

T1 2.0 6.0

T2 1.0 3.0

T3 3.0 8.0

T4 3.0 40.0

Fig 4: Gantt Charts of Max-min algorithm

b. Imp. Max-min

Fig 5: Gantt Charts of Improved Max-min and RASA

algorithms.

5.2 Evaluation of Experiments
The Improved algorithm is simulatedusing JAVA 6

Technology. Table 4 demonstrates different available

resources of problem samples used for evaluation. Table 5

represents different submitted tasks in meta-tasks for each

problem samples. We use data in table 4 and 5 to calculate

makespan of each problem sample using different scheduling

algorithms. Fig 6is used to describe the problem samplesand

total time for completion; makespan using considered

algorithms Max-min and Improved Max-min. While Fig 7

compares makespan of Min-min, Max-min, RASA and

Improved Max-min as whole. We use data in Table 5 to

construct Fig 6 and 7. It is obviously that the proposed

algorithm schedules tasks with same makespan or less rather

than others.

Based on results, our proposed Improved Max–min

produces the same total completion time or smaller than

RASA and always smaller than original Max-min. Also,

Improved Max-min scheduling presents concurrency

execution of tasks using available resources and load balance

in small distributed environment, cloud computing.

Table 4.Problem Samples Resources Specification

Problem

Sample
Resource MIPS MBBS

P 1
R1 50 100

R2 100 5

P 2
R1 150 300

R2 300 15

a.RASA

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

26

P 3
R1 300 300

R2 30 15

Table 5.Problem Samples Meta-Tasks Specification

Problem

Sample Task MI MB

P 1

T1 128 44

T2 69 62

T3 218 94

T4 21 59

P 2

T1 256 88

T2 35 31

T3 327 96

T4 210 590

P 3

T1 20 88

T2 350 31

T3 207 100

T4 21 50

Table 6.Makespan of Problem Samples using algorithms

Problem

Sample

Min-

min

Max-

min
RASA

Imp. Max-

Min

P 1
11 11 10 10

P 2
9 9 9 8

P 3
5 5 5 4

Fig 6:Comparison of makespan

Fig 7:Comparison of makespan

6. CONCLUSIONS AND FUTURE

WORKS
Min-Min and Max-Min algorithms are common applicable in

small scale distributed systems [23]. When the number of

small tasks is more than number of the large tasks in a meta-

task, the Max-min algorithm schedules tasks, in which the

makespan of the system relatively depends on how many,

executing small tasks concurrently with large one. If can't

execute tasks concurrently, makespan become large. To

overcome such limitations of Max-Min algorithm, a new

modification is applied for Max-min scheduling algorithm. It

uses the advantages of Max-Min and covers its disadvantages.

This study is only concerned with the number of the resources

and the tasks. The study can be further extended byapplying

the proposed algorithm on actual cloud computing

environment and considering many other factors such as

scalability, availability, stability and others.Also, in future we

can improve the presented algorithm to be optimized and

produce more efficient makespan using one of heuristics

algorithms as genetic algorithm (GA) and genetic

programming (GP).

7. REFERENCES
[1] SalimBitam, "Bees life algorithms for job scheduling in

cloud computing", International Conference on

Computing and Information Technology, 2012.

[2] SaeedParsa and Reza Entezari-Maleki , "RASA: A New

Grid Task Scheduling Algorithm", International Journal

of Digital Content Technology and its Applications,Vol.

3, pp. 91-99, 2009.

[3] I. Foster, and C. Kesselman, The Grid 2: Blueprint for a

New Computing Infrastructure, Second Edition, Elsevier

and Morgan Kaufmann Press, 2004.

[4] L. Chunlin, and L. Layuan, "QoS based resource

scheduling by computational economy in computational

grid," Journal of Information Processing Letters, Vol.

98, pp. 119-126, 2006.

[5] X. He, X-He Sun, and G. V. Laszewski, "QoS Guided

Min-min Heuristic for Grid Task Scheduling," Journal of

Computer Science and Technology, Vol. 18, pp. 442-

451, 2003.

[6] L. Mohammad Khanli, and M. Analoui, "Resource

Scheduling in Desktop Grid by Grid-JQA," The 3rd

International Conference on Grid and Pervasive

Computing, IEEE, 2008.

[7] L. Mohammad Khanli, and M. Analoui, "Grid_JQA: A

QoS Guided Scheduling Algorithm for Grid Computing,"

0

2

4

6

8

10

12

p1 p2 p3

m
ak

e
sp

an

problem sets

Max-min

Imp. Max-Min

0

5

10

15

p 1 p 2 p 3

M
ak

e
sp

an

problem set

Min-min

Max-min

RASA

Imp. Max-min

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.12, July 2012

27

The Sixth International Symposium on Parallel and

Distributed Computing (ISPDC’07), IEEE, 2007.

[8] E. Elmroth, and J. Tordsson, "Grid resource brokering

algorithms enabling advance reservations and resource

selection based on performance predictions," Journal of

Future Generation Computer Systems, Vol. 24, pp.585-

593, 2008.

[9] B.T. Benjamin Khoo, B. Veeravalli, T. Hung, and C.W.

Simon See, "A multi-dimensional scheduling scheme in a

Grid computing environment," Journal of Parallel and

Distributed Computing, Vol. 67, pp. 659-673, 2007.

[10] B. Yagoubi, and Y. Slimani, "Task Load Balancing

Strategy for Grid Computing," Journal of Computer

Science, Vol. 3, No. 3, pp. 186-194, 2007.

[11] M. Maheswaran, Sh. Ali, H. Jay Siegel, D. Hensgen, and

R. F. Freund, "Dynamic Mapping of a Class of

Independent Tasks onto Heterogeneous Computing

Systems, Journal of Parallel and Distributed Computing,

Vol. 59, pp. 107-131, 1999.

[12] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell,

M. Halderman, D. Hensgen, E. Keith, T. Kidd, M.

Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust and

H. J. Siegel, "Scheduling Resource in Multi-User,

Heterogeneous, Computing Environment with

SmartNet,"In the Proceeding of the Seventh

Heterogeneous Computing Workshop, 1998.

[13] T. D. Braun, H. Jay Siegel, N. Beck, L. L. Boloni,

M.Maheswaran, A. I. Reuther, J. P. Robertson, M.

D.Theys, and B. Yao, "A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks

onto Heterogeneous Distributed Computing Systems,

"Journal of Parallel and Distributed Computing, Vol. 61,

pp. 810-837, 2001.

[14] F. Dong, J. Luo, L. Gao, and L. Ge, "A Grid Task

Scheduling Algorithm Based on QoS Priority Grouping,"

In the Proceedings of the Fifth International Conference

on Grid and Cooperative Computing (GCC’06), IEEE,

2006.

[15] E. UllahMunir, J. Li, and Sh. Shi, 2007. QoSSufferage

Heuristic for Independent Task Scheduling in Grid.

Information Technology Journal, 6 (8): 1166-1170.

[16] K. Etminani, and M. Naghibzadeh, "A Min-min Max-

min Selective Algorithm for Grid Task Scheduling,"The

Third IEEE/IFIP International Conference on Internet,

Uzbekistan, 2007.

[17] A. Afzal, A. Stephen McGough, and J. Darlington,

"Capacity planning and scheduling in Grid computing

environment," Journal of Future Generation Computer

Systems, Vol. 24, pp. 404-414, 2008.

[18] P. Brucker, Scheduling Algorithms, Fifth Edition,

Springer Press, 2007.

[19] R. Buyya, and M. Murshed, "GridSim: A toolkit for the

modeling and simulation of distributed resource

management and scheduling for grid computing,"

Journalof Concurrency and Computation Practice and

Experience, pp 1175–1220, 2002.

[20] D.I. George Amalarethinam and P. Muthulakshmi, "An

Overview of the scheduling policies and algorithms in

Grid Computing ", International Journal of Research and

Reviews in Computer Science, Vol. 2, No. 2, pp. 280-

294, 2011.

[21] FatosXhafa, Ajith Abraham, "Computational models and

heuristics methods for grid scheduling problems", Future

Generation Computer systems, Vol. 26, pp. 608-621,

2010.

[22] T. Casavant and J. Kuhl, "A Taxonomy of scheduling in

General purpose distributed computing systems", IEEE

Trans on Software Engineering, Vol. 14, No. 2, pp. 141-

154, 1988.

[23] T. Kokilavani and Dr. D.I. George Amalarethinam,

"Load Balanced Min-Min Algorithm for Static Meta-

Task Scheduling in Grid Computing", International

Journal of Computer Applications, Vol. 20, No. 2, pp.

43-49, 2011.

