
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.11, July 2012

32

A New Proposed Algorithm for OBBx-index Structure

K. Appathurai
 Asst.Prof. And Head

Department of Information Technology
Karpagam University

S. Karthikeyan
Director, School of computer Science

Karpagam University
Coimbatore – 21

ABSTRACT

Even though lot of spatio-temporal indexing techniques for

moving objects are availed, some more intelligence has been

given to the advance of techniques that professionally support

queries about the past, present, and future positions of moving

objects. This paper proposes the new index structure called

POBBx (Parameterized Optimal BBx) which indexes the

positions of moving objects, given as linear functions of time,

at any time. The index supports queries that select objects

based on temporal and spatial constraints, such as queries that

retrieve all objects whose positions fall within a spatial range

during a set of time intervals. The proposed work reduces lot

of searching efforts done by the existing method and

minimized time complexity. The simulation results shows that

the proposed algorithm provides enhanced performance than

OBBx index structure.

Keywords

Moving Objects, POBBx index, OBBx index, Migration and

BBx-trees.

1. INTRODUCTION
Spatio-temporal databases deals with moving objects that

change their locations over time. In common, moving objects

report their locations obtained via location-aware instrument

to a spatio-temporal database server. Spatiotemporal access

methods are underground into four categories: (1) Indexing

the past data (2) Indexing the current data (3) Indexing the

future data and (4) Indexing data at all points of time. All the

above categories are having set of indexing structure

algorithms [1- 4, 10, 13]. The server store all updates from

the moving objects so that it is capable of answering queries

about the past [4, 5, 8, 9, 15]. To predict future positions of

moving objects, the spatio-temporal database server may need

to store supplementary information, e.g., the objects’

velocities [7, 17]. Many query types are maintained by a

spatio-temporal database server, e.g., range queries “Find all

objects that intersect a certain spatial range during a given

time interval”, k-nearest neighbor queries “Find k restaurants

that are closest to a given moving point”, or trajectory queries

“Find the trajectory of a given object for the past hour”. These

queries may execute on past, current, or future time data. A

large number of spatio-temporal index structures have been

proposed to support spatio-temporal queries efficiently [12,

13]. This paper is based on the source paper [21].

2. RELATEDWORK
Some modern appraisals of moving-object indexing

techniques exist that focus on different views [1, 6, 7]. The

first variant of indices includes the TPRtree (Time-

Parameterized R-tree) family of indexes [2, 5]. One of the

initial works is the Historical R-tree (HR-tree) [18], which

logically constructs a “new” R-tree each time an update

occurs. Repetition of object is the major negative aspect of R-

tree. After R-tree Pfoser et al. propose the Spatio-Temporal R-

tree (STR-tree) and the Trajectory-Bundle tree (TB-tree).

Yongquan Xia, Weili Li , and Shaohui Ning, Moving Object

Detection Algorithm Based on Variance Analysis [16] is

derived. Besides Muiti-Version 3D R-tree (MV3R-tree) [19]

is proposed by Tao and Papadias. Then, B. Liu. Querying

about the Past, the Present, and the Future in Spatio-Temporal

Databases [20]. Besides Dan Lin, Christian S. Jensen, and Ooi

proposed [10] algorithm to supports queries about the past,

present, and future A recent algorithm is proposed by

K.Appathurai , S.Karthikeyan [21,22] to supports queries

about the past, present, and future .

3. OBBx INDEX Structure

The main aim of the OBBx (Optimal Broad Bx) algorithm is to

decreases the complexity of BBx index structure. Besides the

overall performance of the OBBx algorithm is good than BBx

index about 40%. The scalability is considered as twice for

the better result. The OBBx-index the nodes consist of the

form (x _rep; tstart; tend; pointer.) where x_rep is nothing but

one dimensional data obtained from the space-filling curve;

tstart denotes the time when the object was inserted into the

database and tend denotes the time that the position was

deleted, updated, or migrated (migration refers to the update

of a location done by the system). tstart and tend are the

minimum and maximum tstart and tend values of all the

entries in the child node, respectively. In addition, each node

contains a pointer to its right sibling to facilitate query

processing. The OBBx-index is a forest of trees, with each tree

having an associated timestamp signature tsg and a lifespan.

The timestamp signature parallels the value tlab from the Bx-

tree and is obtained by partitioning the time axis in the same

way as for the Bx-tree. The lifespan of each tree corresponds

to the minimum and maximum lifespan of objects indexed in

the tree. The roots of the trees are stored in an array, and they

can be accessed efficiently according to their lifespan. This

array is relatively small and can usually be stored in main

memory. Initially the maximum update interval is found out

among all the moving objects.

The maximum interval value is making it as twice for

scalability. Figure 1 shows a BBx-index with n = 2. Objects

inserted between timestamps 0 and 0:5tmu are stored in tree

T1 with their positions as of time 0:5tmu; those inserted

between timestamp 0:5tmu and tmu are stored in tree T2 with

their positions as of time tmu; and so on. Each tree has a

maximum lifespan: T1’s lifespan is from 0 to 1:5tmu because

objects are inserted starting at timestamp 0 and because those

inserted at timestamp 0:5tmu may be alive throughout the

maximum update interval tmu, which is thus until 1:5tmu; the

same applies to the other trees.

1. Find out the maximum update interval for each

object and the maximum interval value is stored in

ui.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yongquan%20Xia
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Weili%20Li
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.11, July 2012

33

2. The maximum update interval Ui is multiplied by

two and then based on this scalability the linear

array is formed for ts1,ts2,ts3, etc.,

3. Array of n equal intervals of ts1, ts2, ts3, etc

4. Each object lifespan are find out that is stored in

LE.

5. Based on the lifespan the data are stored in the tree.

6. If the insertion node C is lesser than the node N then

the node C inserted on left else inserted on right. If

already the nodes are there the same way created

and stored. The insertion time for each object is

stored in the variable Arr and total object is inserted

is stored in the variable Tot

7. For each move from one tree to another, While Arr

not equal to Null, it is checked whether all the

moving objects are reached to the new tree or not, if

it is reached call the function update or else all the

function migration.

Fig 1: Algorithm to Tree Construction, Object Insertion,

Updation and Migration

Each tree has lifespan after that the tree values are updated to

next tree. So first check whether all the objects are reached or

not if it is reached then update all the objects to next tree and

then the objects are removed or deleted from the existing old

tree because to avoid duplication of index. The following

algorithm shows how the updation takes place in OBBx. In

this algorithm first identify the tree where the update object is

located and then find out the position of the object in that tree

and then the object is removed and updated in new tree from

old tree.

Update Node[i] to ts[Pos-1]

Algorithm Update(Eo; En)

Input: Eo and En are old and new objects respectively

tindex  time Eo is indexed in the tree

find tree Tx whose lifespan contain tindex

posindex  position of Eo at tindex

keyo  x-value of the posindex

locate Eo in Tx according to keyo

modify the end time of Eo’s lifespan to current time

t’index  time En will be indexed

pos’index  position of En at t’index

keyn  x-value of the pos’index

insert En into the latest tree according to keyn

Fig 2: Algorithm for Update

Each tree has lifespan after that the tree values are updated to

next tree. So first check whether all the objects are reached or

not if any object is not reached then that object is identified

and then migrated to next tree. Next that objects are removed

or deleted from the existing old tree because to avoid

duplication of index. The following algorithm shows how the

migration process takes place in OBBx. In this algorithm first

identify the tree where the migrate object is located and then

find out the position of the object in that tree and then the

object is removed and migrated in new tree from old tree.

Migrate Node[i] to ts[Pos-1]

Algorithm Migrate(Eo; En)

Input: Eo and En are old and new objects respectively

tindex  time Eo is indexed in the tree

find tree Tx whose lifespan contain tindex

posindex  position of Eo at tindex

keyo  x-value of the posindex

locate Eo in Tx according to keyo

modify the end time of Eo’s lifespan to current time

Fig 3: Algorithm for Migrate

4. STATEMENT OF PROBLEM
In OBBx index structure the searching process is one of the

major crisis, during updation and migration process the

searching took more time in OBBx index. and took more

efffort and time for the whole process of indexing. Due to this

high effort the memory space utilization, processor utilization,

execution time and cost increases. Besides in tree the node

insertion, deletion also complex process when the number of

moving objects is high.

5. PROPOSED ALGORITHM
The main aim of the proposed work is to reduce the searching

process so that the efficiency is improved and got better result

than OBBx index structure. While in case of OBBx index

during node value updation or migration first it find tree Tx

whose lifespan contain tindex again in that tree it find the

position of the node and then based on the key value it find

the node there the end time is changed to current time. So for

each updation or migration the searching is the major role. In

this proposed work the scalability is similar to OBBx index

and during values transferred from one tree to another the old

tree address and position also passed along with the moving

object. So during updation or migration from one tree to

another no need to search old tree and the position . so lot of

searching time and effort is reduced. Due to this reduction of

searching the node accesses also reduced, besides the

utilization of memory also reduced and automatically the

processing speed improved than OBBx index. All these are

clearly mentioned in performance studies section.

The proposed algorithm of POBBx index is as follows,

1. Find out the maximum update interval for each

object and the maximum interval value is stored in

ui.

2. The maximum update interval Ui is multiplied by

two and then based on this scalability the linear

array is formed for ts1,ts2,ts3, etc.,

3. Array of n equal intervals of ts1, ts2, ts3, etc

4. Each object lifespan are find out that is stored in

LE.

5. Based on the lifespan the data are stored in the tree.

6. If the insertion node C is lesser than the node N then

the node C inserted on left else inserted on right. If

already the nodes are there the same way created

and stored. The insertion time for each object is

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.11, July 2012

34

stored in the variable Arr and total object is inserted

is stored in the variable Tot

7. For each move from one tree to another, While Arr

not equal to Null, it is checked whether all the

moving objects are reached to the new tree or not, if

it is reached call the function update or else all the

function migration.

Update Node[i] to ts[Pos-1]

Algorithm Update(Eo; En)

Input: Eo and En are old and new objects respectively

Oodum indexed position of the object Eo.

Thisarr last tree value of the object Eo.

Curpos current position of the object En. 

Curtim current time of the object En

Curarr current tree of the object En which lifespan

contains Curtim.

Remove the object Eo from the tree Thisarr of the position

Oodum.

Locate object En in the tree Curarr of the position Curpos.

Oodum indexed position of the object En.

Thisarr last tree value of the object En.

Migrate Node[i] to ts[Pos-1]

Algorithm Migrate(Eo; En)
Input: Eo and En are old and new objects respectively

Oodum indexed position of the object Eo.

Thisarr last tree value of the object Eo.

Curpos current position of the object En. 

Curtim current time of the object En

Curarr current tree of the object En which lifespan

contains Curtim.

Fig 4: Algorithm to Tree Construction, Object Insertion,

Updation and Migration

6. PERFORMANCE STUDIES
The below figure 5 shows how the objects moving randomly

in un specified path and it describes the clear path of the every

moving objects. In this example 6 moving objects are consider

for indexing. The starting time is 45 ms and the ending time is

205.98214875 ms, this is clearly shown in the figure 5. In

figure 5 the x axis is time and y axis is points i.e. by Hilbert

curve the multidimensional data is converted as points (single

dimensional data).

Fig 5 : This figure shows how the objects moving

randomly in un specified path. And It describes the clear

path of the every moving objects.

The below figure 6 shows how the processing speed are vary

for all the three cases. The OBBx index performance is better

than other methods.

Fig 6 : This figure shows the comparison of processing

speed of BBx,OBBx and POBBx

Actually in this strategy the number of created tree is same in

OBBx index method and POBBx Index techniques. But vary

in BBx index method because of scalability. This is clearly

shown in the below figure 7.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.11, July 2012

35

Fig 7 : This figure shows the comparison of creation of

number of trees in BBx,OBBx and POBBx

The below figure 8 shows the number of migration hits in all

the three cases. The number of migration hits are same in

OBBx index method and POBBx Index techniques. But vary

in BBx index method because of scalability.

Fig 8 : This figure shows the comparison of number of

migration hits of BBx,OBBx and POBBx

The below figure 9 shows the number of node access in all the

three cases. In POBBx index method the searching process is

less when compared with OBBx index method, so

automatically the number of node access is very less than

other methods.

Fig 9 : This figure shows the comparison of number of

node access of BBx,OBBx and POBBx

7. RESULTS
Using MATLAB the following results are produced.

The number of Moving Objects consider is : 6

Starting Time : 45.00000000

Ending Time : 205.98214875

For BBX, Maximum Anticipated Time Interval : 9.22356835

For OBX, Maximum Anticipated Time Interval :

18.44713669

For POBX, Maximum Anticipated Time Interval :

18.44713669

Processing Time for BBX Indexing : 1.473893e+001

Processing Time for OBBX Indexing : 8.053991e+000

Processing Time for POBX Indexing : 7.022134e+000

Migration Hits for BBX Indexing : 51

Migration Hits for OBBX Indexing : 25

Migration Hits for POBX Indexing : 25

Node Accesses for BBX Indexing : 3.747000e+002

Node Accesses for OBBX Indexing : 3.217000e+002

Node Accesses for POBX Indexing : 2.601000e+002

8. CONCLUSION
This paper presents a advanced indexing technique, the

POBBx-index (Parameterized Optimal BBx-index), which can

answer queries about the past, present and the future positions

of moving objects. The POBBx -index is based on the

concepts underlying the OBBx-index. It avoids duplicating

objects like the OBBx-index and thus achieves significant

space saving and efficient query processing. Moreover there is

no change in number of trees created in both OBBx-index and

POBBx-index. But lot of searching time is vastly reduced in

POBBx-index than OBBx-index. So the processing speed is

increased than OBBx-index structure. Extensive performance

studies were conducted that indicate that the POBBx-index

outperforms the existing method, with respect of historical,

present and predictive queries. In both the cases there is no

change in number of migration hits. The Future work is

planed to further reducing of migration hit and improve the

performance.
8. REFERENCES
[1] Long-Van Nguyen-Dinh, Walid G. Aref, Mohamed

F. Mokbel 2010. Spatio-Temporal Access Methods:

Part 2 (2003 - 2010). Bulletin of the IEEE Computer

SocietyTechnical Committee on Data Engineering

[2] M. Pelanis, S. ˇ Saltenis, and C. Jensen. Indexing

the past, present, and anticipated future positions of

moving objects.TODS, 31(1):255–298, 2006.

[3] Z.-H. Liu, X.-L. Liu, J.-W. Ge, and H.-Y. Bae.

Indexing large moving objects from past to future with

PCFI+-index. In COMAD, pages 131–137, 2005.

[4] V. Chakka, A. Everspaugh, and J. Patel. Indexing

large trajectory data sets with SETI. In CIDR, 2003

[5] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An

optimized spatio-temporal access method for predictive

queries. In VLDB, 2003.

[6] C. Jensen, D. Lin, and B. Ooi. Query and update

efficient B+-tree based indexing of moving objects. In

VLDB, 2004.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.11, July 2012

36

[7] M. Mokbel, T. Ghanem, andW. G. Aref. Spatio-

temporal access methods. IEEE Data Eng. Bull.,

26(2):40–49, 2003.

[8] J. Ni and C. V. Ravishankar. PA-tree: A parametric

indexing scheme for spatio-temporal trajectories. In

SSTD, 2005.

[9] P. Zhou, D. Zhang, B. Salzberg, G. Cooperman,

and G. Kollios. Close pair queries in moving object

databases. In GIS, pages 2–11, 2005.

[10] Dan Lin, Christian S. Jensen, Beng Chin Ooi,

Simonas Sˇ altenis, BBx index :Efficient Indexing of the

Historical, Present, and Future Positions of Moving

Objects, MDM 2005 Ayia Napa Cyprus

[11] P. K. Agarwal and C. M. Procopiuc. Advances in

Indexing for Mobile Objects. IEEE Data Eng. Bull.,

25(2): 25–34, 2002.

[12] G. Kollios, D. Gunopulos, V. J. Tsotras. On

Indexing Mobile Objects. In Proc. PODS, pp. 261–272,

1999.

[13] K.Appathurai, Dr. S. Karthikeyan. A Survey on

Spatiotemporal Access Methods.International Journal of

Computer Appliations. Volume 18, No 4, 2011.

[14] [14] Mohamed F. Mokbel, Xiaopeng Xiong,

Moustafa A. Hammad, and Walid G. Aref, Continuous

Query Processing of Spatio-temporal Data Streams in

PLACE, 2004 Kluwer Academic Publishers. Printed in

the Netherlands

[15] Su Chen · Beng Chin Ooi · Zhenjie Zhang, An

Adaptive Updating Protocol for Reducing

Moving Object Database Workload.

[16] Yongquan Xia, Weili Li , and Shaohui Ning,

Moving Object Detection Algorithm Based on Variance

Analysis, 2009, Second International Workshop on

Computer Science and Engineering Qingdao, China

[17] Arash Gholami Rad, Abbas Dehghani and

Mohamed Rehan Karim, Vehicle speed detection

in video image sequences using CVS method, 2010,

International Journal of the Physical Sciences

Vol. 5(17), pp. 2555-2563.

[18] M. A. Nascimento and J. R. O. Silva. Towards

Historical R-trees. In Proc. ACM Symposium on

Applied Computing, pp. 235–240, 1998.

[19] Y. Tao and D. Papadias. MV3R-Tree: A Spatio-

Temporal Access Method for Timestamp and

Interval Queries. In Proc. VLDB, pp. 431–440, 2001.

[20] J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying

about the Past, the Present, and the Future in

Spatio-Temporal Databases. In Proc. ICDE, pp. 202–

213, 2004.

[21] K. Appathurai, Dr. S. Karthikeyan (2012), “A New

Proposed Algorithm for BBx-Index Structure”,

IJCSI International Journal of Computer Science Issues,

Vol. 9, Issue 3, No 1, May 2012

[22] K. Appathurai, Dr. S. Karthikeyan (2012), “ A

Novel Indexing Method for BBx- Index

structure”, Int.J.Computer Technology &

Applications,Vol 3 (2), 779-784

13. AUTHORS PROFILE
K. Appathurai was born on 12th May 1974. He received

his Master degree in Computer Applications from

University of Bharathidasn in 1998. He completed his M.Phil

from Manonmaniam Sundaranar University in 2003. He is

working as an Asst. Professor and Head of the Department of

Information Technology at Karpagam University,

Coimbatore. Currently He is pursuing Ph.D. His fields of

interest are Spatial Database.

Dr. S. Karthikeyan received the Ph.D. Degree in Computer

Science and Engineering from Alagappa University,

Karaikudi in 2008. He is working as a Professor and Director

in School of Computer Science and Applications, Karpagam

University, Coimbatore. At present he is in deputation and

working as Assistant Professor in Information Technology,

College of Applied Sciences, Sohar, Sulatanate of Oman. He

has published more than 14 papers in Natrional/International

Journals. His research interests include Cryptography and

Network Security

.

http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Yongquan%20Xia
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Weili%20Li
http://www.computer.org/search/results?action=authorsearch&resultsPerPage=50&queryOption1=DC_CREATOR&sortOrder=descending&queryText1=Shaohui%20Ning

