
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

23

Development of a Structured Framework to Minimize

Impact of Requirement Volatility

Harsh Dev

Professor,
Deptt. of CS&E,
PSIT, Kanpur

Ranjana Awasthi
Research Scholar

Deptt.of CS&E,
Singhania University, Rajasthan

ABSTRACT
Minimizing the impact of the requirement volatility in

software development process is a critical issue for both

researchers and practitioners. Requirement volatility is

unavoidable; therefore we need to find correct solution to

manage changing requirements. Despite having many

methods and tools, that are available to manage the

requirement change, we need to evolve a method that deals

with the change in a way that minimizes the impact to the

stakeholders. In this paper, we have proposed RVMIN

framework that is incorporated in SDLC, in a way that it

minimizes impact of change on the stakeholder in terms of

time and cost. This framework is based on both an empirical

study that we have conducted and our extensive literature

review of Software Process Improvement (SPI) and

Requirement Engineering (RE).

Keywords

SPI, Requirement Engineering, Requirement Volatility,

RRC(Request Review Committee), RFC(Request for change),

CRI(Change Request Implementation), RVMIN Framework.

1. INTRODUCTION
A Fortune 100 company embarked on a project to design and

build a sophisticated software package that it would ultimately

deploy to its offices throughout the world. Two years and

about $10 million later, the field offices refused to use the

software because it didn't do what it was intended to do.

Instead of helping to streamline an important business

process, the software actually hindered it [1].

According to a survey by the Standish Group [1] which had

the total sample size of 365 respondents and represented 8,380

applications:

 31 percent of all software projects are canceled

before they are completed (a waste of $81 billion).

 52.7 percent of projects cost 189 percent of their

original estimate.

 In large companies, 9 percent of projects are on time

and within budget.

 In small companies, 16 percent of projects are on

time and within budget.

Top three reasons why projects are "impaired", according to

above said survey are listed in Table 1.

Table 1. Top three project impairment factors (Standish

Group survey)

Project Impairement

Factors

% of Responses

Lack of user input

Incomplete requirements

& specificaions

Changing requirements

& specifications

12.8%

12.3%

11.8%

As this table shows, poor requirements are the biggest

problem. If it isn't clear what we are to build, how can we

estimate the cost of building it? How can we create a project

plan, assign resources, design system?[1] We need accurate

requirements to perform all these activities. Requirements

evolve as project proceeds, but carefully written requirements

give a basic start point. Then, as the project advances, we can

fill in the details and update planning documents as the

requirements grow.

Changes to software systems are unavoidable since it is not

possible to come up with a complete and correct set of

requirements that remains constant throughout a software

system’s life. Thus, the management of change in software

systems has been a continual problem in the software

industry. If not handled properly, it is very likely that requests

for changes in requirements will have a negative impact on

software quality, cause cost overruns, delays, and unsatisfied

users and, in worst situations, cancelled projects.

2. SYSTEM DEVELOPMENT LIFE

CYCLE
System development operates in acyclic manner beginning

with the identification of user’s needs, feasibility study,

followed by the evaluation and cost benefit analysis of the

candidate system and finally design and implementation of

chosen candidate system.

The Waterfall Model is the earliest and most used method of

structured system development. The water fall model is

designed to follow the above said set of actives in a sequential

order. Starting with system requirement engineering the

model ends with system operation. This model clearly

explains what activities take place in each phase.

The waterfall model is an attempt to put discipline into

software development process by forcing standard

documentation. Before we move to the coding phase, the

design documentation has to be written. Each module has to

be tested before going to the next sequent module. The typical

programmer would prefer the coding before the documenting.

Consequently some programmers consider the whole model to

be painful, because it tries to force a discipline.

Fig 1: Classical waterfall model [Ref: Ian Somerville]

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

24

Despite many advantages of waterfall model, the assumption

that is usually invalid in a waterfall process is that the

requirements will not change during the lifecycle of the

project. In reality, requirements change a lot in most (though

not all) projects, especially once the customer gets their hands

on it. The failure of traditional waterfall process to recognize

this is a fundamental flaw. A mistake in the requirements

phase cannot be detected in a waterfall process until near the

end, when the customer gets to see the (nearly finished)

product. This leads to a huge cost in correcting the mistake.

Waterfall model is based on the empirical observation of 30

years ago (ref: Barry Boehm, Software Engineering

Economics, Prentice Hall, 1981.) that the cost of change rises

exponentially (base 10) by phases. The conclusion is that we

should make the big decisions up front, because changing

them is so expensive.

The traditional waterfall software process model has largely

been replaced by iterative, incremental and agile approaches

to software development, in order to accommodate

requirements changes during the project lifecycle. As the

waterfall model has been used from years to produce quality

products, thus our research is based on suggesting some

changes in this basic model.

3. REQUIREMENT AND

REQUIREMENT VOLATILITY
Most requirements are elicited during the early stages of a

software project and evolve throughout the system’s life

cycle. Requirements evolve or change in order to satisfy the

changing needs of the system stakeholders. According to

Humphrey [4], the customer does not initially know what is

needed of a software system and as a consequence,

requirements are wrong and will change and evolve over time.

Some relevant examples of changes, as mentioned below, are

noted in [5], [6]:

•changes in technology, which is unavoidable

•the requirements changes as a result of increased

understanding of the problem during development

•the user’s needs evolve as a consequence of changes in

business policies and procedures

•the problem the system is intended solve, changes as a

consequence of changes in business policies and processes

•market changes, and

•legislative or regulatory changes

These types of changes will have more or less severe impact

on the software depending on a number of factors like time of

change (early/late development stages, after delivery, etc.) or

type of change. Requirement changes may occur during 1)

Software design 2) Coding 3) Testing 4) Implementation 5)

Documentation. From the literature study as indicated above,

we can broadly specify that each requirement change is

regarded as being

1) Either due to defect in original requirement, or

2) Caused due to change in requirements at later

stages.

For condition 1, we have already suggested a solution [7][8].

In this paper we propose a framework for the cases when

requirement volatility is caused due change in

requirements at later stages i.e. condition 2. The proposed

framework will not only help the requirement engineer to

develop an understanding of the requirement change process,

but also help in identifying & minimizing the variables that

have direct effect on change, thus minimizing the impact of

requirement volatility in development process.

4. THE FRAMEWORK (RVMIN): (Tool

Suggested to minimize volatility) - A Basic

Design process

A. Method of study
We performed the study on software developers/requirement

analyst of ISO/ CMM certified companies. Main target of

study was to identify the problems faced by the stakeholders

(developer, requirement analyst and end users). In this study

they were asked to fill in a questionnaire consisting of 35

questions. Along with some fundamental questions, the main

points of study were as follows:

 What procedures are currently followed by the analysts

for requirement gathering?

 How are changed requirements incorporated in the

system in current scenario?

 What is the impact of requirement changes in software

development process?

 What can be done to minimize the impact requirement

changes software development process?

The study revealed two basic things:

1. Very few requirement engineers are formally

trained in requirement engineering. So, this was

one of the important points that were taken care of

while designing the framework.

2. The other point of study was that, the changes are

implemented according to change management

process, but some standard method needs to be

designed that would reduce the impact of

requirement volatility.

Throughout the design process, we kept both these points in

mind.

B. Design
The base of design of the framework was the concept that in a

change management process, if standardized methods and

procedures are used for efficient and prompt handling of all

changes, it minimizes the impact of change, and consequently

improves the day-to-day operations of the organization.

(Wikipedia, 2010) According to ISO 20000-1 Requirements

Summary, the objective of change management (9.2) is as

follows:

To ensure all changes are assessed, approved, implemented

and reviewed in a controlled manner.

Proposed framework/solution
The paper proposes a framework that is based on the above

definition and talks about slight additions to the classical

waterfall model being used today (Fig 1).

RVMIN framework has much in common with the current

methodologies being used, but there are important

modifications. The study conducted by us indicates that

although most of the development organizations are following

any one formal development model, but it was observed that

in most of the organizations requirement gathering is done by

experienced person, but they are most of the times not

formally trained in requirement engineering. The study thus

indicates two changes that are desired in the classical

waterfall model [Fig 1]:

http://c2.com/cgi/wiki?WaterFall
http://c2.com/cgi/wiki?BarryBoehm

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

25

1. Addition of one mandatory step “Strict Adherence to

RE practices” during analysis phase that incorporates

use of formal training/ procedures being followed by the

person doing requirement analysis.

2. Use of RVMIN, suggested framework, for incorporating

any requirement changes that may occur at later stages.

Classical waterfall model may be modified as below:

Fig 2: Modified Classical waterfall model

As seen above, requirement changes may occur during 1)

Software design 2) Coding 3) Testing 4) Implementation 5)

Documentation. Also, we have seen if standardized methods

and procedures are used for efficient and prompt handling of

all changes; it minimizes the impact of change. Keeping these

points in mind we have designed the solution. Any change

desired should pass through RVMIN Framework so that the

changes are implemented in a controlled manner and impact

of changes is minimized

C. RVMIN Framework
RVMIN framework suggests a wider scope for the

requirement analyst by concentrating on formal procedures

during the requirement change. These steps offer a way that

help analyst to capture and implement the change in

requirements in such a manner that impact of requirement

volatility is minimized. This paper also presents the

suggestions that will help the analyst to have better

requirements.

Fig 3: RVMIN Framework

The proposed framework is in accordance with ISO 20000-1

Requirements Summary. RVMIN Framework consists of four

phases:

1. Request For Change(RFC)

2. Request Change Review Committee(RRC)

3. Change Analysis using suggested checklist

4. Change Request Implementation

5. Change Evaluation

4.1 Request for Change (RFC)
Request for change is a formal request, in writing, that is

created when customer desires any new functionality in the

system and formulates a REQUIREMENT. It mainly

identifies the potential change desired in the system. The

change request is checked for validity. Customers can

misunderstand requirements and suggest unnecessary

changes. This request for change may be generated, whenever

the customer proposes a new change, because of any of the

reasons mentioned above in introduction.

Formally, changes to a single requirement may have rippling

effect throughout the system and impact on other

requirements and broader organizational goals. Once the

requirements are base-lined, any proposed change must be

made via a formal request which is reviewed in relation to

Propose Change

Propose Change

I

T

O

P

E

R

A

T

I

O

N

S

B

U

S

I

N

E

S

S

D

E

M

A

N

D

S

Change Evaluation

Change Request

Implementation

Change Analysis

using Suggested

Checklist

Request Change

Review

Committee(RRC)

Request for Change

Get

confirmation

for change

Propose

Change

Access impact

of change on

cost & effort

required for

rework

Normalize

Request

Find affected &

dependent

requirements

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

26

possible impact on scope, schedule, cost, quality of product

and work in progress.

4.2 Request Change Review

Committee(RRC)
Requirements change review committee(RRC) should be

formed having the members from both the sides. This

committee will decide the degree of change and its impact

cost wise and time wise and revision of PERT chart etc.

Request for change is handed over to RRC for detailed

analysis. As this committee contains the members from both

the sides, any implications of cost, time quality etc. can be

analyzed and decision can be reached whether a change is to

be implemented or not. The changes that are suggested for

incorporating are to be signed by all the members.

Signing this document will ensure that both the parties are in

agreement for additional cost for change in requirement. In

many situations this will help in reducing the requirements

volatility because customer will seriously give the

requirements as additional cost is involved in requirements

change. Instead of giving futile requirements, only the

genuine requirement changes will be given in request for

change.

4.3 Change Analysis using suggested

checklist
Change Analysis using checklist suggested by us, is the most

important step in this framework where the project manager

determines the feasibility of request for change. A checklist is

proposed to standardize the procedure, and will help the

project manager to perform this activity.

Change analysis is performed in following sub-steps:

Normalize request
Most of the requests for change do not contain quality

requirements. We need to improve the quality of requirements

and validate them. This step may help in reducing the impact

of the requirement volatility [7].

Find affected and dependent requirements
Due to the dependencies between requirements, the change of

some requirements would have an impact on correlated

requirements, which leads easily to the diffusion of impact.

This makes the evaluation of impact uncertain and difficult.

The requirements which are directly affected by the change

are discovered. Traceability information is used to find

dependent requirements affected by the change.

Assess impact of change on cost & effort

required for rework
If requirement changes are desired during SDLC - there are

many ways to handle these changes. Two variables that play

an important role in assessing the impact of these changes are:

Efforts - Person Hours (i.e. Efforts involve in design, coding,

testing, etc. (i.e. COST))

Delivery Date - Time involved

Example:
1. No change in efforts / No change in Time line (i.e.

delivery date)

 - Accommodate changes.

2. No change in efforts / Change in Time line (i.e. more

time required)

 - Notify customer with new delivery date and if they are ok

then accommodate changes.

3. Change in Effort / No change in timeline (with some

extra effort, same time line can be achieved)

(a) If effort is not significant (example: In 200 person hour’s

project, extra 10 hrs. required)

 - Accommodate changes

(b) If effort is significant (example: In 200 person hours

project, extra 50 hrs. required) -

 - Prepare revised SOW (statement of work) and send to

customer for sign off

 - If signed off, Accommodate changes

4. Change in Effort / Change in timeline
If effort is significant and time line also impacted with

change

- Prepare revised SOW and send to customer for sign off,

- Notify customer with new delivery date. (Is it closer to

deployment in production date then suggest to release in next

release cycle?)

- If signed off, accommodate changes and release in next

release cycle

To analyze the impact of the change on cost & effort required

for rework, a checklist as proposed by Karl Wiegers is used.

Propose change
The actual changes which must be made to the requirements

are proposed.

Get confirmation for change
Negotiations with customers are held to check if the costs of

the proposed changes are acceptable.

4.4 Change Request Implementation (CRI)
During change request implementation, changes requested in

request for change are implemented and testing and

verification is carried out. Also, this is integrated to system &

deployed to user site.

4.5 Change evaluation
During change evaluation, change implementation results are

evaluated, and traceability links are updated.

Change request is rejected

 If the change request is invalid. This normally arises if a

customer has misunderstood something about the

requirements and proposed a change which isn’t

necessary.

 If the change request results in consequential changes

which are unacceptable to the user.

 If the cost of implementing the change is too high or

takes too long.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

27

5. VALIDATION OF THE

FRAMEWORK
The suggested framework, described in this paper, was

validated by implementing it in real life projects to find out

whether it provides any benefits to the users or not? The

objective of this case study is to investigate the amount of

help that RVMIN framework offers in a real project by

comparing the case study that uses the framework with some

other project that does not use the framework.

We chose Think Computers as the software organization

where the study could be conducted. One of the main reasons

for the choice was due to most of RE process had been ad hoc

in most previous software projects.

Think Computers is an interdisciplinary, professional

consulting firm, which has its primary purpose as the

application of Managerial, Information system and

Engineering skills to the solution of a wide number of

problems in various commercial environments. The firm has

in the past provided Software solutions and government

training in size from small private organizations to ISO/

CMM companies. Owing to the requirements of professional

excellence, more than half of Think computers, Technical and

Management personnel have significant levels of direct

industry experience in addition to academic and consulting

credentials

Think Computers has a large number of developers with

experience in development tools. A team of senior consultants

and 4th generation developers develops the product. To

provide a broad knowledge base of expertise to their clients,

think Computers project teams also include specialized staff

members in required disciplines. A team of senior consultants

and 4th generation developers work together in developing the

products.

An experimental tryouts and statistical analyses at a large

scale with typical representative samples may be needed to

standardize the framework. More developmental activities

using the framework may be carried out by the researchers

and practitioners.

5.1 Result Analysis
5.1.1 Quantitative Analysis
We chose two projects X and Y, with similar project

attributes, of the company to compare the results of the study.

The two projects were also similar in the number of person

involved, level of complexity, allotment of resources and use

of technology (VB.NET in this case) and the planned

duration of the project.

Project X is developed using modified waterfall model

suggested by us that uses RVMIN framework, whereas

project Y used ad-hoc RE practices. It was observed that

though requirements for project X were 20% more than the

requirements in project Y, it required less development time

to develop project X. Also, project X was only 10% overtime

against 25% of project Y.

Fig 4: Quantitative Analysis of the effect of

implementation of RVMIN Framework

From the above we may conclude that, the comparative

evaluation of the two projects shows the advantages of using

the proposed RVMIN framework.

5.1.2 Qualitative Analysis
In addition to the quantitative analysis presented in the last

section, a questionnaire was conducted among all the

developers, requirements engineers as well as managers who

were involved in the project X. The objective of the survey

was to get further feedback about the usage of RVMIN

framework. The questions used in the survey are shown in

Table 6.1.

Total of 4, 20 and 4 questionnaires were issued to Managers,

Developers and Requirement Engineers respectively out of

which 3, 14 and 4 were filled and returned.

Response of developers was also positive as more than 60%

of the developers agree that the use of RVMIN framework has

helped in minimizing the impact of requirement volatility.

Fig 5: Response of developers regarding impact of

RVMIN framework

Following figure shows response of the managers regarding

questions asked about the use of RVMIN framework.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

28

Fig 6: Response of manager regarding impact of RVMIN

framework

As can be seen from above figure, management was very

positive regarding the overall performance of the use of

RVMIN framework for effective use of RE Process.

Same is the case with requirements engineers. This is an

indication that the requirements engineers liked the idea of

developing a project-specific RE process.

From Fig 7, we see that Requirement Engineers support the

fact that the framework RVMIN is very helpful for

developing the most suitable process model for the project.

Fig 7: Response of Requirement Engineer regarding

impact of RVMIN framework

The results obtained in this case cannot necessarily be

generalized and cannot guarantee that similar success would

be achieved in other applications as well.

6. CONCLUSION
Our research attempts to find out a method that helps the

industry to minimize the impact of requirement volatility. In

this paper two modifications have been suggested in the

traditional waterfall model. Firstly, the requirement gathering

should be performed by formally trained requirements

engineer, who strictly adheres to RE practices. Secondly, to

incorporate the suggested framework (RVMIN) for

implementing the requirement change process, irrespective of

the stage at which the change is being requested. By using

these steps the impact of requirement volatility can be

minimized.

The quantitative and qualitative analysis presented above

suggests that Think Computers was able to develop a much

better requirement specification using suggested framework.

Earlier projects(Y) used ad-hoc RE processes. The

requirement engineers and project manager emphasized that

the high quality of requirements specifications had a positive

impact on the software project. The data collected from case

study in the company shows that the impact of requirement

volatility was lower in project X as compared to project Y,

also requirement volatility and conflicts were greatly reduced.

Using RVMIN framework, the RE process becomes very

smooth and systematic, and thus minimizes the volatility in

requirement. The suggested framework (RVMIN) is used for

implementing the change process, irrespective of which stage

the change is being requested, and is used to minimize the

impact of requirement volatility. The framework has been

tested and validated in real world situations in the industry

and has been found suitable for use.

7. REFERENCES
[1]www.ibm.com/developerworks/rational/library/4166.html

[2] The Standish Group, The CHAOS Report, 1995

 [3] I. Jacobson, G. Booch, and J. Rumbaugh, “The Unified

Process,” IEEE Computer, vol. 16, pp. 96–102, 1999.

 [4] Humphrey W.S. 1989. Managing The Software Process.

SEI Series in Software Engineering, Addison-Wesley.

 [5] Boehm Barry 1981. Software Engineering Economics.

Prentice Hall.

 [6] Somerville I. 2007. Software Engineering. Addison-

Wesley.

 [7] Ranjana Rajnish et al, “Improving Requirements Quality:

An Approach to Reduce Impact of Requirements

Volatility”, International Journal of Emerging

Technologies and Applications in Engineering

Technology and Sciences (IJ-ETA-ETS) ISSN: 0974-

3588

 [8] Dr. Harsh Dev, Ranjana Rajnish and Rajnish Vyas,

“Writing Quality Requirements (SRS): An Approach to

Manage Requirements Volatility”, Indian Journal of

Computer Science and Engineering, June’2010, Vol 1,

Issue 1, pg28-37, ISSN: 0976-5166

[9] T. Javed, M. Maqsood, and Q. Durrani, “A Study to

Investigate the Impact of Requirements Instability on

Software Defects”, SIGSOFT Software. Eng. Notes, vol.

29(3), pp. 1 – 7, 2004.

[10] N. Nurmuliani, D. Zowghi, and S. Fowell, “Analysis of

requirements volatility during software development life

cycle,” in Proceedings of the 2004 Australian Software

Engineering Conference (ASWEC’04), IEEE Computer

Society, 2004.

 [11] S. Harker, K. Eason, and J. Dobson, “The Change and

Evolution of Requirements as a Challenge to the Practice

of Software Engineering”, Proceedings of IEEE

International Symposium on Requirements Engineering,

(San Diego, CA, USA), pp. 266–272, 1993.

http://c2.com/cgi/wiki?BarryBoehm

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

29

[12] J. Brier, L. Rapanotti, and J. Hall. 2006. Problem-Based

Analysis of Organizational Change: A Real-World

Example. In Proceedings of the International Workshop

on Advances and Applications of Problem Frames.

 [13] Mathisen E., Ellingsen K. And Fallmyr T. 2009. Using

Business Process Modeling to Reduce the Effects of

Requirement Changes in Software Projects. 2nd

International Conference on Adaptive Science &

Technology.

[14] A. Blyth, “Modeling the business process to derive

organizational requirements for information technology,”

SIGOIS Bull., vol. 16(1), pp. 25–33, 1995.

[15] C. Ebert, “Understanding the Product Life Cycle: Four

Key Requirements Engineering Techniques,” IEEE

Software, vol. 23(3), pp. 19–25, 2006.

[16] B. Nuseibeh and S. Easterbrook. 2000. Requirements

Engineering: A Roadmap. In Proceedings of the

Conference on the Future of Software Engineering.

[17] K. Orr, “Agile Requirements: Opportunity or

Oxymoron?”, IEEE Software, vol. 21(3), pp. 71–73,

2004.

[18] S. Harker and K. Eason. 1999. The use of Scenarios for

Organizational Requirements Generation. In Proceedings

of the Thirty-Second Annual Hawaii International

Conference on System Sciences.

[19] R. Kazman, G. Abowd, L. Bass, and P. Clements,

“Scenario-based analysis of software architecture,” IEEE

Software, vol. 13(6), pp. 47–55, 1996.

[20] W. W. Royce, “Managing the development of large

software systems.” in Proc. Wescon., pp. 1–9, 1970.

[21] K. Beck, “Embracing change with extreme

programming„” IEEE Computer., pp. 70–77, 1999.

