
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

1

A Short Term Solution to Implement Applications about
Moving Points on top of Existing DBMSs

P. Di Felice

Dipartimento di Ingegneria Industriale e dell'Informazione, Economia

Università di L'Aquila (Italy)

ABSTRACT

There is an increasing demand for applications about moving

objects (e.g., humans, animals, cars, …). The best way to

develop robust and efficient software solutions consists in

putting them on top of a spatio-temporal database storing the

trajectories of the moving objects. Unfortunately, the

DataBase Management Systems today part of the companies’

assets do not support this complex data. In this paper, we

outline a solution that is feasible in the meantime a new

generation of DBMSs will be made available to the

community.

General Terms

Databases, trajectory databases, querying, algorithms.

Keywords

Moving points, trajectory databases, spatio-temporal

intersection, uncertainty, DBMS, PostgreSQL/PostGIS, SQL.

1. INTRODUCTION
The three–tier client–server architecture is largely adopted to

implement complex software applications because it allows to

develop and maintain as independent modules (Figure 1) the

user interface (Data Presentation Layer), the functional logic

(Business Logic Layer), and the access to the data stored into

the database server (Data Access Layer). Apart from the usual

advantages of modular software with well-defined interfaces,

such an architecture allows any of the three tiers to be

upgraded independently in response to changes in

requirements or technology. In particular, the data access

layer isolates the business layer from the details of the specific

data storage solution minimizing the impact of changes in the

database management system or in the data representation.

Figure 1. Architecture of complex software applications

A relevant category of complex applications is that

concerning moving objects. The availability of low cost

electronic devices supporting the GPS method is pushing

tremendously the software market in such a direction.

However, enterprises wish to continue using the assets in

operation (among them the DBMSs currently marketed),

avoiding new investments both in software and training of its

technical staff, particularly in a time of great recession.

Unfortunately, at present are not available mature software

technologies to deal with moving objects. The more

promising solution at the horizon, namely SECONDO [1], is

still in the pipeline. Neither it is easy to use. At the present

time SECONDO misses of a stable query optimizer

supporting the formulation of SQL scripts both for querying

and updating the database. This deficiency drastically reduces

the productivity of the developers. In other words, for the time

being SECONDO is a good aid both for figures of high

expertise and researchers, but it is not suitable to be used in a

software factory where workers too often are tight with

release deadlines.

In the short period, therefore, the best choice is to

procrastinate the use of DBMSs featuring a spatial extender

(e.g.: PostgreSQL, IBM-DB2, Oracle) even in the

development of spatio-temporal databases on top of which

applications about moving objects have to be built. Evidently,

however, it will be necessary to add spatio-temporal operators

according to the needs posed by the case at hand, drawing on

the multiple outcomes that the research has produced over the

past ten years in the field of moving objects databases. In

essence, the most immediate solution to the problem consists

in the realization of a library of functions to be in charge of

managing spatio-temporal data.

This article outlines the way to plug this gap by using open-

source software (i.e., PostgreSQL/PostGIS). Concretely, as a

proof of concept, we implement two efficient and robust

operators for moving objects based on an algorithm known in

the literature. These operators calculate the solution with

linear time in the size of the input (efficiency) making sure

that the result “absorbs” the many sources of uncertainty that

complicate the solution of problems regarding moving objects

(robustness).

In the paper, we concentrate on moving objects for which

only the position in space is relevant, therefore abstracted as

moving points (for short m-points).

The paper is organized as follows. Next section introduces

notations and definitions. In particular, the notion of (sharp)

trajectory is given. The trajectories we refer to are drawn by

m-points moving freely in the plane, which means that we do

not exclude any category of m-point (i.e., person, animal, car,

…). Sec.3 recalls the minimal background about the work

made by Güting and colleagues necessary to understand our

paper. Sec.4 motivates the need to move from sharp

trajectories to uncertain ones and the impact of this change in

connection with the intersection operation (selected for its

relevance). A revised spatio-temporal intersection algorithm is

given in Sec.5. The novelty with respect to the “original”

operator resides in the output returned which is relaxed: a) by

replacing specific timestamp values with a time interval inside

which the two m-points “might be” met, b) by enlarging the

geometry of the rendezvous points from dimension zero (a

point) to dimension two (an area). This latter aspect is the

direct consequence of replacing sharp trajectories with

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

2

uncertain ones. Sec.6 outlines a real scenario where the

adoption of the revised intersection method may be helpful to

investigate potential propagation of contagious coming from

exposure of m-points to nuclear radiations (a relevant issue,

especially after the Fukushima nuclear disaster happened in

Japan, for those institutions that are in charge of people health

care). Short conclusions end the paper.

2. NOTATIONS AND DEFINITIONS
In the following, a generic (sharp) trajectory consists of a

time ordered sequence of points:

{<P1, t1>,<P2, t2>, …, <Pn+1, tn+1>} (i.e. t1<t2<…<tn+1).

The generic pair of consecutive points PiPi+1 defines a (linear)

line segment over the time interval [ti,ti+1). In turn, a generic

point (Pi) is described by the pair <xi,yi> denoting its

geographic position expressed in a reference system (e.g.:

WGS84), while <ti=t(Pi)> is the corresponding timestamp.

The t-value adds semantics to the knowledge of the pure

geographic position of the m-point, offering a richer support

to the decisions makers.

List of notations used hereinafter:

- D: a database of trajectories,

- trjA, trjB,…: generic trajectories,

- segi: the i-th line segment of a generic trajectory,

- mpA, mpB, …: the m-points which described the

trajectories trjA, trjB, …, respectively,

- from(segi)=ti , to(segi)=ti+1 the functions that applied to

the line segment segi return the timestamps ti, ti+1,

respectively; that is, the initial and the final timestamp in

the sense of time.

Let us refer to two generic trajectories (trjA and trjB) of D. A

basic test to be carried out is to assess whether trjA and trjB

met, and in case they do, compute when and where the

rendezvous took place. From a database point of view, to

solve this twofold problem requires the availability of two

operators (let call them t_meet() and time_meet())

whose formal definition is as follows:

t_meet(): Trj × Trj → {false, true}

time_meet(): Trj × Trj → PERIODS

where Trj denotes (with abuse of overloading) the set of all

possible trajectories; while PERIODS denotes a set of disjoint

time intervals, the i-th of which is the time interval where the

i-th spatio-temporal intersection may be occurred.

3. BACKGROUND
The background about m-points goes back to the pioneer

work made by Güting and colleagues [2-4]. In particular, in

[5] they introduced the concept of sliced representation, the

basic idea of which is to decompose the temporal

development of a moving value into a set of temporal units

called slices. To each slice is associated a unit defined as the

pair {I, f(t)}, where I is a time interval and f(t) is a “simple”

function (e.g., linear) that models the movement of the m-

point inside I.

Among the many operators they proposed, we concentrate on
trajectories intersection whose signature is:

moving(point) × moving(point) → moving(point),

where moving(point) is a data type. In [6] the authors sketched
a possible algorithm of such an operator.

In the following, we recall it briefly.

The sequences of units that make up the two trajectories

involved in the spatio-temporal intersection are preliminarily

synchronized with an operation named refinement partition,

which is obtained by breaking the units into other units that

have the same value of f(t) but are defined on smaller time

intervals, so that a resulting unit of the first argument and one

of the second argument are defined either on the same time

interval or on two disjoint time intervals. This means that

through each point of any segment of both segment

sequences, a plane parallel to the x-y-axis is placed obtaining

a certain number of slices. As shown in Figure 2, for each

slice two situations can happen: either a slice only contains

one partial segment from one sequence (white zone) or two

partial segments can be found (grey zone). In the former case

there can be no intersection. In the latter case the segment

intersection test is checked in constant time, using the well-

known plane sweep algorithm. If the two segments intersect at

the point (x*,y*), then the unit {[t*,t*], f(t)=(x*,y*)} is added

to the result, where the interval I coincides with the instant t*

in which the m-points occupied the intersection point. If the

two segments share a line described by the function f*(t), then

the unit {[tini,tend), f*(t)} is added to the result.

Figure 2. A pictorial representation of the intersection

algorithm of two sharp trajectories

Let n and m be the number of consecutive segments of the two

sharp trajectories, the computation traverses both sequences

until the end of one of them is reached. Each segment is

considered exactly once since the time synchronization can be

performed on the fly. This leads to a run-time cost of O(n+m).

4. M-POINTS AND UNCERTAINTY
Working with m-points the following sources of uncertainty

come into the picture:

─ uncertainty about the knowledge of the position of the m-

points over time. The main sources are: a) uncertainty in

the knowledge of the m-point motion law (because of:

traffic condition, weather condition, the kind of way on

which the movement takes place - city street, provincial

road with many bends, mountain road with lots of ups and

downs, highway, and the speed limits to take care of); b)

measurement errors, c) computational errors, and d)

masking of the exact position of the m-points due to

privacy/anonymity reasons (e.g., [7]).

─ Uncertainty in the reconstruction of the actual trajectory

of the m-points.

Because of the manifold sources of uncertainties, it is

unsatisfactory to assume the correctness of the where-when

values returned by the computation of the spatio-temporal

intersection between sharp trajectories. That is why we

compute a more flexible answer obtained by replacing sharp

trajectories with uncertain ones and, at the same time, by

renouncing to the knowledge of the motion law of the m-

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

3

points, mostly unpredictable in the reality. Studies involving

uncertain trajectories are manifold (e.g., [8-11]). Technically

speaking, we will implement uncertain trajectories by making

recourse to the buffer function.

4.1 From sharp trajectories to uncertain

ones: implications on the intersection

operation
Let segA and segB be the generic line segments of the sharp

trajectories trjA and trjB, respectively, between which there

exists (by hypothesis) a spatio-temporal intersection. Figure 3

shows such a situation projected on the Cartesian plane: W

denotes their rendezvous point. According to the intersection

algorithm of Sec.3, W is described by the triple of values <xW,

yW, tW>, claimed to be exact.

Figure 3. Two sharp line segments (projected on the

Cartesian plane) in rendezvous (W)

In the following we move from the situation of Figure 3 to

that of Figure 4 where the sharp segments (segA and segB),

whose geometry is supposed to be exact, are replaced by the

corresponding uncertain segments, that is areas centered

around the sharp ones.

Figure 4. Two uncertain line segments (on the Cartesian

plane) in rendezvous (G)

Consequently, the answer to be returned replaces the point

<xW, yW> with the geometry G (Figure 4) and the timestamp

<tW> with the temporal interval:

[max(from(segA), from(segB)), min(to(segA), to(segB))].

Interpretation of G

G denotes the area either crossed by the two m-points in a

certain lapse of time or where they stopped for a while. Notice

that, pauses visually correspond to line segments parallel to

the time axis.

Interpretation of the time interval

To clarify the issue, let us refer to the sharp trajectories of

Figure 5. Furthermore, let us assume that the interval [t3..t4] in

which the m-point mpB moved from position 3 to position 4

partially overlaps the interval [t1..t2] in which mpA moved

from 1 to 2 (Figure 6).

If one assume to know the motion law of mpA and mpB when

they move from position 1 to 2 and from 3 to 4, respectively,

then it is possible to compute if they temporally met in W or

not, recurring to some Physics’s law to be embedded into the

unit function inside the corresponding interval I. Otherwise,

we cannot state anything. In summary, with regard to Figure 5

and the hypothesis of Figure 6, the answer to the whether

issue is “yes”, while the answer to the when issue is expressed

in terms of the temporal interval [t3..t2] where such an event

falls, if it happened; circumstance, this latter, not provable

analytically any more.

Figure 5. Two geometrically intersecting sharp

trajectories (on the Cartesian plane)

Figure 6. The temporal relationship between m-points

mpA and mpB

If we take into consideration the fact that the timestamps

linked to the points making up the trajectories to be stored in

the database are those for which the m-point position is

acquired, it follows that the extent of the interval [t3..t2] is less

or equal to the extent of the acquisition interval. In practical

terms, we can say that for most real applications this value is a

matter of minutes and, hence, absolutely satisfactory.

5. THE TIME_MEET ALGORITHM
Below, an algorithm (named time_meet) to calculate the

spatio-temporal intersection of pairs of uncertain trajectories

is presented as a slight variation of the algorithm sketched in

Sec.3. Our algorithm embodies the ideas presented in the

previous section. In particular, the uncertain trajectories are

obtained by “buffering” the sharp ones stored in the database.

Algorithm time_meet (IdTrajA integer, IdTrajB integer, float)

Input: IdTrajA, IdTrajB, and (the buffer size)

Output: table result(IdTrajA integer, IdTrajB integer,
intersection_geometry geometry, initial_time timestamp,

final_time timestamp)

Method:
1. Let trjA={<A1,t1>, <A2,t2>, …, <An+1,tn+1>} and trjB={<B1,s1>,

<B2,s2>, …, <Bm+1,sm+1>} be the trajectories in the

database identified by idTrajA e idTrajB, respectively.
2. FOR EACH pair {[ti, ti+1), [sj, sj+1)} of overlapping time

intervals detected in a synchronized scan of trjA and trjB DO

3. IF (st_intersects(st_buffer(AiAi+1,), st_buffer(BjBj+1,))

THEN

4. geom = st_intersection(st_buffer(AiAi+1,),

 st_buffer(BjBj+1,))
5. tini = max{ti, sj}

6. tend = min{ti+1, sj+1}

7. Add (IdTrajA, IdTrajB, geom, tini, tend) to the table
result

8. END IF

9. END FOR

 10. return result

 11. END time_meet

Taking advantage of the time ordering of the two trajectories,

the time_meet algorithm scans all the pairs of line segments

whose intervals temporally overlap (row 2) then, for each

pair, it checks (by means of the spatial operators

st_intersects (geometry1, geometry2) and

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

4

st_intersection (geometry1, geometry2) - see

[12]) whether and where the two participant segments

spatially intersect. The first operator (st_intersects())

assesses if it takes place the intersection between two input

geometries and returns true in the affirmative case. The

second operator, instead, returns a geometry that represents

the portion shared between geometry1 and geometry2.

Each time the segments spatially intersect the time_meet

algorithm first calculates (row 4) the shared intersecting

geometry, then it computes (rows 5-6) the temporal window

[tini,tend). The spatio-temporal intersection so determined is

added to the result (row 7). The algorithm halts when the end

of one of the two trajectories is reached and, hence, all

possible pairs {[ti, ti+1), [sj, sj+1)} of overlapping time intervals

have been taken into account.

The algorithm performs all the computations in a single scan

of the two trajectories. Since the IF-THEN block of

instructions can be executed in constant time (O(1) - the

arguments of the st_intersects() and

st_intersection() operators are buffered line segments)

and the time synchronization can be performed on the fly, the

time_meet is executed in O(n+m), where n and m indicate the

number of line segments of the two input trajectories.

As final consideration, we note that the intersection algorithm

can be easily modified to calculate the intersection test of pair

of trajectories, that is, to construct an algorithm (t_meet) that

returns true if at least one rendezvous is detected, false

otherwise.

6. A SPATIO-TEMPORAL ANALYSIS

SCENARIO
The algorithm time_meet (as well as t_meet) has been

implemented as a User Defined Function called

time_meet() (t_meet()) on top of PostgreSQL/ PostGIS.

The idea of implementing the two algorithms as UDFs to be

added to the built-in UDFs of the system has the double

benefit of making them available for being called from any

queries as well as from the external software applications that

connect to the database.

In this section, we address the need of monitoring the

movements of persons (modeled as m-points) in order to

detect cases of potential danger of nuclear radiation contagion

within known geographic areas. Studies about disease spatial–

temporal propagation are supposed to become relevant in the

next future (an example may be found in [13]). The merit of

the solution sketched below is that it is implemented in terms

of scripts that comply with the SQL of the

PostgreSQL/PostGIS DBMS.

To manage the reference scenario, it is sufficient to build a

database made up of two tables:

radioactiveAreas (ID: integer, Boundary:

geometry, DisasterTime: timestamp with

time zone ARRAY);

trajectory (Pkey: integer, SSN:

varchar(16), Shape: geometry,

Confidence: float, TimeValues:

timestamp with time zone ARRAY)

The first of them is aimed at the storage of the contaminated

areas, while the second collects the trajectories drawn by the

m-points. The trajectory geometry has been modeled as a

linestring (with linear interpolation between points), while the

timestamps of the sampling points are collected in an array of

timestamps.

The Confidence attribute stores a float value in the range

[0,1]. Let us denote with t the generic tuple in the

trajectory table and let c=t.Confidence. c expresses an

evaluation about the “overall quality” of the acquisition

process of the geometry of trajectory t. The computation of

the extension of the buffer around the trajectory has to be

done by taking c into account. In the experiments, we used the

simple law: =10/c. Accordingly, the size of “our” buffers

ranges from 100 meters (c=0.1) to 10 meters (c=1).

In the following, we implement the query:

“show the SSN of persons that might be infected by the

radiations” (Q).

Few general considerations about the problem taken into

account follow:

– let us denote with A the set of contaminated areas in the

database D (i.e., the tuples in the radioactiveAreas

table). In the following, we refer to a single

contaminated area called as a;

– let us denote with T the set of trajectories in D (i.e., the

tuples in the trajectory table), at a given date. We

will assume that all them satisfy the condition that the

timestamp of their first point is greater than the value of

the attribute DisasterTime of the single tuple in A. In

other words, we will assume that all the trajectories in T

have been covered after that the nuclear disaster took

place in the area a. Such an hypothesis is reasonable in

the reality where we can presume that things happen this

way: just after a nuclear disaster takes place the

Citizens’ Health Care Institute of the country equips

itself with the above two-table database. After that, the

database will be run as follows:

Step 1: the tuple about area a is inserted in the

radioactiveAreas table.

Step 2: the acquisition of the trajectories of the m-points

under observation will be started and daily they

will be stored in the trajectory table;

– let us denote with T*T the set of trajectories in D that

crossed the area a. By construction, T* collects only the

contaminated m-points, but unfortunately not

necessarily all of them. If trj is the generic trajectory in

T*, we call firstCrossTime the instant when, for the first

time, the m-point that described the trajectory trj entered

the area a. Current DBMSs do not support an operator

to the purpose. It is easy to understand that this is a

primary need in connection with m-points as attested in

[6], where authors proposed the operator:

inside(mp,a): m-point x region → m-bool

which returns an m-bool was structure is a time

ordered sequence of pairs: <time interval, boolean

value> (e.g., <[t1, t2), true>; <[t2, t3), false>; …>). By

scanning such a sequence, it is possible to know the

time intervals when the m-point mp was inside the input

area a. Being available the inside() operator, it is

trivial to infer the firstCrossTime value;

– let us denote with T**T and T**T*= the set of

trajectories in D that never crossed the contaminated

area a, but that had at least a rendezvous with some of

the trajectories in T* after that the m-point entered the

area a, that is in a time instant greater than the

timestamp firstCrossTime. Circumstance, this latter,

being able to cause radioactive contamination on the m-

points even if they did not cross a.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

5

To be able to develop the running example, it is sufficient to

populate the radioactiveAreas table with a single tuple

and the trajectory table with two tuples such that:

– the first tuple concerns a m-point that crossed the area a

(and, hence, it is potentially contaminated),

– while the second tuple concerns a m-point that did not

enter the contaminated area a, but, for some time, it was

nearby the other m-point (after that this latter crossed a)

and, hence, it is potentially contaminated as well.

The SQL/DML scripts are listed below:

INSERT INTO radioactiveAreas (ID, Boundary,

 DisasterTime)

VALUES (22, 'POLYGON(5 5, 11 2, 13 8, 4 8, 5

5)'::GEOMETRY, 2010-10-11 08:00:00)

INSERT INTO trajectory (Pkey, SSN, Shape,

Confidence, Timevalues)
VALUES (100, ‘DFLPLN71H05W666Q’, 'LINESTRING(40

6, 40 8, 34 8, 32 10,

30 2, 26 3, 21 4, 21 4, 21 4, 18 3, 15 2, 10

7, 7 7, 8 6, 2 4)'::GEOMETRY, 0.5,

'{"2010-10-21 08:40:00", "2010-10-21

08:50:00", "2010-10-21 09:00:00",

"2010-10-21 09:10:00","2010-10-21 09:20:00",

"2010-10-21 09:30:00",

"2010-10-21 09:40:00", "2010-10-21

09:50:00","2010-10-21 10:00:00",

"2010-10-21 10:10:00","2010-10-21 10:20:00",

"2010-10-21 10:30:00",

"2010-10-21 10:40:00", "2010-10-21

10:50:00", "2010-10-21 11:00:00"}'

::timestamp with time zone ARRAY),

(101, ‘ACDLNN85M03Z345H’, 'LINESTRING(12 12,

17 10, 20 9, 20 5, 20 5,

20 5, 20 5, 22 9, 23 10, 10 11, 8 8, 4 8, 2

10)'::GEOMETRY, 0.5,

'{"2010-10-21 08:50:00", "2010-10-21

09:00:00","2010-10-21 09:10:00",

"2010-10-21 09:20:00", "2010-10-21

09:30:00", "2010-10-21 09:40:00",

"2010-10-21 09:50:00", "2010-10-21

10:00:00","2010-10-21 10:10:00",

"2010-10-21 10:20:00", "2010-10-21

10:30:00", "2010-10-21 10:40:00",

"2010-10-21 10:50:00"}'::timestamp with time

zone ARRAY)

Figure 7. The geometry of the reference “scene” in the

Cartesian plane

Figure 7 shows the geometry of “the scene” (projected on the

x-y Cartesian plane) that reflects the content of the example

database we refer to in this section. Figure 8 shows the two

sharp trajectories in the 2D+t space.

6.1 Implementation of query Q
Aim of Q is to compute the set T*T**. The result is obtained

by combining the tuples about the m-points that crossed the

contaminated area a (i.e., the set T*) and the tuples

concerning the m-points that came in contact with the first

ones after that they became contaminated (T**). The general

formulation of Q follows.

Figure 8. The two sharp trajectories in 2D + time

SELECT DISTINCT t.SSN – – the set T*

FROM trajectory AS t, radioactiveAreas AS a

WHERE st_intersects(t.Shape, a.Boundary) AND

 id=22

UNION

SELECT DISTINCT t1.SSN – – the set T**

FROM trajectory AS t1, trajectory AS t2

WHERE t_meet(t1.Pkey,t2.Pkey,20) = true

 AND t1.Pkey<>t2.Pkey

AND t1.Pkey NOT IN – – (t1 does not belong to T*)

(SELECT t.Pkey

FROM trajectory AS t,

 radioactiveAreas AS a

WHERE st_intersects(t.Shape, a.Boundary)

AND id=22)

AND t2.Pkey IN – – (t2 belongs to T*)

(SELECT t.Pkey

FROM trajectory AS t,

radioactiveAreas AS a

WHERE st_intersects(t.Shape, a.Boundary)

AND id=22)

AND “at least one rendezvous occurred between t1 and

t2, after that t2 entered area a”

Query Q, though long, is almost trivial apart from the

computation of the last AND condition which implies to make

recourse to the time_meet() operator within a PL/pgSQL

code necessary to compensate for the lack of spatio-temporal

operators on such an implementation platform (as well as in

the others DBMSs on the market). As it was anticipated, what

we need is the inside(mp,a) operator to which the

computation of the firstCrossTime timestamp for the m-point

(mp) that entered the contaminated area a should be hooked.

The very simple example discussed in this section was built in

such a way that the final AND condition is satisfied by the

trajectory with Pkey=101 that, in fact, met the trajectory with

Pkey=100 just after this latter crossed the contaminated area.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

6

Figure 9 shows the SQL reformulation of query Q according

to our example and its output as well.

Figure 9. Q and its output

To give evidence that the trajectories Pkey=100 and

Pkey=101 actually met after that the first one crossed the

contaminated area a, it is sufficient to make recourse to the

following simple query:

SELECT time_meet(100, 101, 20).

This way, we have also the chance to show how the output of

the time_meet() operator looks like both in textual form

(Figure 10) and graphically (Figure 11 and Figure 12).

Figure 10. The SELECT time_meet(100,101,20) query

Figure 11. QGIS visualization of the query SELECT

time_meet(100,101,20)

The QGIS [14] screen of Figure 11 is very helpful because it

shows graphically the geometry of the two trajectories

projected on the x-y Cartesian plane and the rendezvous

between those two trajectories. The rendezvous (visualized as

a circle) corresponds to a stop point for the two m-points (as it

becomes clear by looking at Figure 8).

Figure 12, which is alternative to Figure 11, has the further

merit of making explicit that the time_meet() (t_meet())

operator uses uncertain trajectories in the computation of the

spatio-temporal intersection.

 Figure 12. A visualization alternative to that of Figure 11

7. CONCLUSIONS
In this paper, we outlined a way to give an answer to the large

expectations of enterprises to start up their own software

applications about historical trajectories on top of the DBMSs

they are equipped with.

On the technological side, the open-source system

PostgreSQL/PostGIS would be a great solution, obviously

either IBM-DB2/SE or Oracle Spatial are equally good.

On the methodological side, the work to be done consists in

the implementation of ad hoc operators as required by the

application at hand. In the paper, as a proof of concept, we

took into account the spatio-temporal intersection of pairs of

trajectories. The happy note comes from the literature about

the m-points that offers a reach variety of algorithms to refer

to.

8. REFERENCES
[1] Güting, R.H., Behr, T., and Düntgen, C. 2010.

SECONDO: A platform for moving objects database

research and for publishing and integrating research

implementations. IEEE Data Engineering Bulletin 33:2,
56-63.

[2] Erwig, M., Güting, R.H., Schneider, M., and

Vazirgiannis, M. 1999. Spatio-Temporal Data Types:

An Approach to Modeling and Querying Moving

Objects in Databases. GeoInformatica 3, 265-291.

[3] Güting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S.,

Lorentzos, N. A., Schneider, M., and Vazirgiannis, M.

2000. A foundation for representing and querying

moving objects. ACM Transactions on Database
Systems, 25(1), 1-42.

[4] Güting, R.H. and Schneider M. 2005. Moving Objects
Databases. Morgan Kaufmann Publishers.

[5] Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider,

M. 2000. A Data Model and Data Structures for Moving

Objects Databases. In Proc. ACM SIGMOD

International Conference on Management of Data, 319-
330.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.10, July 2012

7

[6] Cotelo Lema, J.A., Forlizzi, L., Güting, R. H., Nardelli,

E., and Schneider, M. 2003. Algorithms for Moving

Object Databases. The Computer Journal, 46(6), 680-

712.

[7] Giannotti, F. and Pedreschi, D. 2008. Mobility, Data
Mining and Privacy. Springer.

[8] Trajcevsky, G., Wolfson, O., Hinrichs, K., and

Chamberlain, S. 2004. Managing uncertainty in moving

object databases. ACM Transactions on Database

Systems, 29(3), 463-587.

[9] Abul, O., Bonchi, F., and Nanni, M. 2008. Never walk

alone: uncertainty for anonymity in Moving Object

Databases. In Proc. of the 24th International Conference
on Data Engineering.

[10] Frentzos, E., Gratsias, K., and Theodoridis, Y. 2009. On

the Effect of Location Uncertainty in Spatial Querying.

IEEE Transactions on Knowledge and Data
Engineering, 21(3).

[11] Kuijpers B. and Othman W. 2010. Trajectory databases:

Data models, uncertainty and complete query languages.

Journal of Computer and System Sciences. 76(7), 538-

560.

[12] OpenGIS Implementation standard for geographic

information. 2007. Simple feature Access, Part 2: SQL
Option (ref. number: OGC 06-104r4).

[13] Mao L. and Bian L. 2010. Spatial–temporal

transmission of influenza and its health risks in an

urbanized area di Mao and Bian. Computers,

Environments and Urban Systems. 34, 204–215.

 [14] Quantum GIS. 2011. http://www.qgis.org/

