
International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

38

Efficient and Secure Web Services by using Multi Agents

Abolfazl Esfandi

Department of Computer Engineering
Islamic Azad University
Boroujerd Branch, Iran

ABSTRACT

Mobile agents are an excellent technology for implementing

Web services. Within a set of federated Web services, mobile

agents can reduce bandwidth requirements and mitigate the

effects of high-latency network connections. This paper

presents a model for implementing Web services with mobile

agents where agents are free to move between cooperating

Web servers to implement the service functionality.

Also for increasing security of web services, we illustrate a

novel distributed protocol for multi agent environments. In

this approach, the encrypted private key and the message are

broken into different parts carrying by different agents, which

make it difficult for malicious entities to mine the private key

for message encryption, while the private key for the

encrypted key is allocated on the predetermined destination

nodes. On the other hand, all of the previously proposed

encryption algorithms can be applied in the proposed

approach that deteriorates the key discovery process. To

improve the overall security, the paper makes use of

Advanced Encryption Standard (AES) as the encryption base

for message encryption.

Our mobile agent Web services present typical WSDL

interfaces, so mobile agent functionality can be consumed

from legacy clients, and federated services can be gradually

migrated to a mobile agent implementation.

General Terms

Multi agent, Cryptographic Protocol, Mobile Agents,

Security, and Web services et. al.

Keywords

Multi agent, Cryptographic Protocol, Mobile Agents,

Security, Web services, implementation web services by

mobile agent.

1. INTRODUCTION
A mobile agent is a discrete bundle of program code and data

that can move between hosts. A mobile agent is somewhat

like an object, in that has identity and state. A mobile agent is

also like a process, in that it contains threads of execution and

encapsulates data within a definite. Because mobile agents

have threads and program code, they tend to be autonomous

entities, unlike relatively passive objects that have methods

invoked on them.

A mobile agent can move to a host and then interact with it

locally. Interacting locally:

 Reduces bandwidth requirements because an agent

can filter data at the source that would otherwise

have to be marshaled over the network.

 Moderates the effects of high latency, since there

are only agent send- and return-trips.

 Is robust in intermittently connected networks.

These good features are in contrast to those of remote

procedure calls (RPC) and Java RMI [5]. Mobile agents also

imply support for mobile code and concurrency, which are

powerful capabilities.

Because of their good features, we would like to leverage the

advantages of mobile agents in implementing Web services.

The contribution of this paper is to propose a model of

implementing Web services using mobile agents, where:

 Mobile agents are annotated with metadata to

describe services.

 Agent life-time is bound to a service request.

 Communication is restricted to unify inter-agent
communication and Web service invocations.

Beside, Security is one of the most challenging issues

particularly in networked environments because of dispersed

number of system users. In traditional security methods,

discovering the determined private key is enough for message

decryption that can be done through malicious attacks to the

network nodes or listening to communication links [15]. The

proposed approach, using the multi agent for implementation

web service and for improves private key security using two

strategies:

 Encrypting the private key using an encryption

algorithm (AES algorithm is used in our protocol

[2]).

 Breaking the encrypted private key into different

units.

Figure 1 generally illustrates the structure of a source node in

a networked environment using the proposed strategy. The

process loop presented in the figure, starts with the original

message and describes all the intermediate processes, which

ends toward outgoing links [1].

The paper is organized as follows:

The next section we will talk about basic concepts of

distributed protocol for multi agent cryptography. Then

explain the implementation and integrating of web service by

using multi agent and how mapping web service requests to

mobile agents. In section 4 we present my proposed approach

and resulted simulation and Finally, evaluation and resulted

advantages of our approach are presented.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

39

Fig 1: Block diagram of a source node structure which

uses the proposed protocol

2. MULTI AGENT ENCRYPTION

PROTOCOL
In multi agent systems malicious behaviors should be well

studied for better security provisions. A malicious attack

against a multi agent system can be considered as one of the

following points [4]:

1. Mobile agent security against other malicious mobile
agents.

2. Mobile agent security against malicious hosts.

3. Host security against malicious agents.

The proposed approach focuses on the second and the third

concept while the first one is not considered in this paper.

Our algorithm improves the overall security by splitting the

private key into several parts at the original node and

reassembling them at the destination node. The n segregated

parts are transferred towards the desired destinations using n

mobile agents. According to figure 1 the original message P,

is encrypted using a predetermined encryption algorithm Cx,y

as:

ψ = Cx,y (P) (1)

Where x,y correspond to the public and private keys of the

encryption algorithm respectively and ψ corresponds to the

encrypted message at the source node. To improve the

security the private key y is encrypted again.

The next step is splitting the message and the key into n parts.

Splitting of the message and key is accomplished through a

Split function, which can be explained as:

 ψi = Spliti (ψ) (2)

The above function is run twice, once for splitting the original

encrypted message and once for splitting the private key (ψi

corresponds to the ith part of the encrypted message).

The source node generates the required number of mobile

agents and equips each agent with the predetermined part of

the message and the key. It is supposed that the ith agent

carries the ith part of the message and the ith part of y'i (Si

corresponds to set of ψi and y'i). This process is illustrated in

Figure 2.

Fig 2: mobile agent’s transmissions from source to

destination

The destination hosts have some initialization data for this

protocol. This initialization data contains λ (private key for

key decryption) and the initial state X0. Origin (source node)

signs each mobile agent to avoid malicious behaviors on the

network and sends it through the network towards the

destination host.

At each host, each agent checks the host’s trustworthy using

its internal function. On the other hand, each host checks the

agent according to digital signatures.

Fig 3: A mobile agent structure and its internal states

As indicated in figure 3 the internal function can be

considered as:

X (Pi, E) = Pi+1 (3)

Where Pi is the current state of the mobile agent, E is used for

the environmental parameters and Pi+1 indicates the next state

of the agent according to the internal manipulations.

We eliminated the role of E in our system and focused on the

agents’ states. Each mobile agent gets Pi-1 from each host,

calculates the next state Pi and compares the resulted Pi with

its internal current state (Pi). The equality indicates that the

host is reliable for the other manipulations.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

40

It should be noted that at each host four different states may

be determined for the agent. Figure 4 describes these four

states together with the related relations.

Fig 4: Four states of each agent on a network host

The following text, expresses completely the relations

mentioned in figure 4:

1. If the previous agent has not accommodated on the
host yet the agent will kill itself. Such a host can be
considered as an unreliable host.

2. The previous agent is still working on the host. The

arriving agent should wait until complete action of

the previous agent.

3. The previous agent has left the host; the arriving

agent can run the internal function.

Finally at the destination node a Join function acts conversely

to reassemble the encrypted message:

ψ= Join (ψi) (4)

It should be noted that the integration of the ψi is according to

their initial segregation orders. The key is also reassembles

similar to the message according to (4).

The result of this process is the encrypted key that should be

decrypted using the initialized private key and obtained y.

finally ψ decrypted by private key y and destination host will

obtained original message.

Table 1. Characteristic of the three releases of AES

algorithm

Key Length

(Nk words)

Block Size

(Nb words)

Number of

Round

(Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

In this protocol, we use AES encryption algorithm for

cryptography, AES encryption algorithm is a powerful

algorithm introduced by Daemen and Rijmen [3].

This algorithm has three releases, which are illustrated in table

1. The AES algorithm runs four functions namely: SubBytes,

ShiftRows, MixColumns and AddRoundKey to complete the

encryption process. All of the different classes of AES use

these four functions.

AES-128 runs this sequence for 10 times. AES-192 runs for

12 and AES-256 runs the functions for 14 times. As table 1

shows these three releases generate different key sizes. Details

about AES encryption algorithm can be found in [2].

3. INTEGRATING WEB SERVICES

AND MOBILE AGENTS
In implementing Web services with mobile agents, some

issues are quintessential to one discipline or the other. For

example, the granularity of the unit of mobility is exclusively

a mobile agent-related issue, while marshalling data to and

from SOAP messages is exclusively a Web service-related

issue.

Other issues, such as security or transactions, are common to

Web services and mobile agents. Addressing these issues will

involve integrating the work in each area into a consistent

whole. This section describes three design issues that exist at

the boundary of mobile agents and Web services: service

provision, request-agent mapping, and agent communication.

3.1 Service Provision
Traditionally Web services are static and relatively long-lived

at a network endpoint. In contrast, a mobile agent may exist

only fleetingly on a particular host. The first question in

providing Web services with mobile agents is how a service is

described. Web Services Description Language (WSDL) [6]

describes services as operations on messages at a particular

network end-point, with bindings to concrete protocols and

message formats.

It would be possible to simply require the programmer to

provide a WSDL description of any mobile agents. How

requests to the service described in the WSDL are mapped to

a mobile agent [10].

In our proposal implementation, the methods of a class that

the programmer annotates with the Web Method metadata

attribute form the description of a Web service. This is the

same way a programmer nominates a method to be part of an

ordinary. No other special metadata is required, nor does the

programmer have to extend a particular type.

Services are deployed by means of another, ordinary Web

service called Agent Service (see Figure 5). Agent Service

accepts and loads an assembly and Web service stubs are

created for any types that contain service methods. In a single

assembly there may be several types containing service

methods. Although the types may be related, our

implementation publishes them as separate, independent

services. Clients then reference these services directly[11].

Fig 5: Agent Service interfaces

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

41

An alternative method of service provision would be to allow

agents to provide and revoke 'ad-hoc' services by identifying a

network endpoint and a bundle of methods that requests

should be dispatched to. This meshes well with the dynamic

flavor of mobile agent-based computing, however it is at odds

with web services that provide stable interfaces at a given

endpoint [13].

3.2 Mapping web service requests to

mobile agents
Like an object in object-oriented programming, a mobile

agent is an identifiable, discrete unit. The problem this

introduces is one of mapping a Web service request to a

particular mobile agent that fulfils that request. Because

agents and objects both have a concept of identity, this

problem is analogous to that of delivering service requests to

object instances in services with object-oriented

implementations.

For example, Apache SOAP deployment descriptors [7] can

map Web service requests to Java objects that have a per-

request, per-HTTP session (if the underlying SOAP transport

is HTTP), or per-application lifetime. Furthermore, individual

EJB stateful session beans can be addressed via unique URNs.

Clients discover these URNs when they call the bean’s create

method [9].

We can use a one-to-one mapping between services and

mobile agents. In this scheme, all requests to a service are

delivered to one 'singleton' agent. This single request, single

agent model is complex because of the plethora of design

choices for when the mobile agent moves away from the

service endpoint. Requests could be queued or forwarded to

the mobile agent's new location, the service could be torn

down, or a new mobile agent could be instantiated to replace

the old.

An alternative is to create a new mobile agent for each

incoming request. This will limit the lifetime of a particular

mobile agent to the length that a request takes to fulfill.

However it is a simple model because multiple, concurrent

requests can easily be handled by creating more mobile

agents. In this scheme, the viability of the Web service is not

threatened if a particular mobile agent moves away[8].

3.3 Inter-agent communication
Although inter-agent communication is ostensibly a mobile

agent issue, the introduction of another communication

mechanism (that is, the Web service method call) may make it

desirable to revisit the inter-agent communication with the

goal of unifying the mechanisms[14].

However, there is a firm requirement that a Web service

implemented with mobile agents should potentially look like

any other Web service, and this is at odds with the inter-agent

communication mechanisms of some mobile agent systems,

such as communication via a shared tuple space [12,16].

It is also reasonable to expect that a mobile agent may want to

consume a Web service. It would be useful if legacy Web

services could be surfaced to appear to the mobile agent

developer merely as another mobile agent, albeit a long-lived,

non-moving one.

4. OUR PROPOSED APPROACH AND

SIMULATION
In section 2, we present new approach to encrypting message

by multi agents, then in section three descript how can

mapped web services on mobile agents. Therefore, we use

these topics to implement Efficient and secure Web Services

by using multi agents.

In the prototype implementation, it is the stub Web service

generated by the Agent Service that accepts incoming SOAP

messages. The stub delegates to an agent host, which handles

the task of directing the request to a particular mobile agent.

The agent host does this by first creating a 'context' for

handling the request. Mobile agents inhabit contexts, and it is

through the membrane of the context that an agent

communicates with the agent host.

An instance of the type that defines the service method is

created within the context. Although everything within a

context really constitutes an agent, it is the instance of the

particular type that the programmer identifies as 'the agent'.

This is because typically any other objects are mostly merely

data, created and manipulated by the instance of the 'agent

type'.

After the agent is created, it runs. By virtue of the separation

the context provides, the agent is free to move away from its

current host while the method is executing. The act of

stopping a running agent, moving it to a new host, and

restarting it requires process migration. Any reasonable

mobile agent environment will support process migration.

The host waits for the agent to return and publish a result.

When this happens, the result is communicated back to the

client via the Web service stub. This process is illustrated in

Figure 6.

The operation of the Web service stub and agent host act to

deliver a method invocation to a mobile agent. The

programmer can take the abstract view that SOAP requests

are handled directly by a mobile agent.

After create the mobile agents and mapping web services on

those, use the Multi agent Encryption Protocol which

presented in section 2, then sent these multi agents to

destination nodes and in destination node messages will be

decrypted and used by that node.

Fig 6: Request mapping on Mobile Agent

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

42

In this protocol, we use AES encryption algorithm for

cryptography, but can use any other algorithm instead this.

Also in my approach using two level cryptography and multi

agent for transfer split message, but if required security is

lower, you can use one level cryptography and few mobile

agents, beside if need very high level of security, can use

several level cryptography and more than mobile agents.

In next section, we evaluate our approach and descript the

resulted advantages of this.

5. EVALUATION
Our approach against the older ways, have several advantages

that descript those here:

 Increasing security(by using multi agent encryption

protocol).

 Reduces bandwidth.

 Possibility use of different cryptography algorithm

in our protocol.

 Possibility local accessing to host data and do

computing on there.

 Possibility use this approach in parallel and

distributed algorithms

 Moderates the effects of high latency,(since there

are only agent send- and return-trips)

 Is robust in intermittently connected networks.

Above detail, obtained by compare with other ways to

implement of web services and proposal approach to establish

the security for those.

We also evaluated the proposed algorithm according to the

message crack probability. It is supposed that P is the crack

probability for one mobile agent. According to the proposed

approach, all the agents should be cracked to encrypt the

message. Therefore, for n mobile agents we have:

Pm = Pn (5)

Where Pm is the probability for cracking the total message. It

should be noted that the above probability is independent

from the number of malicious hosts. The number of existing

malicious host may only decrease the required time for the

message cracking. figure 7 illustrates the above relation.

Fig 7: Message crack probability regarding number of

agents

6. CONCLUSION
According to the open nature of networked environments and

security challenge of such systems, We proposed a software-

only, new approach for implementation of web services by

using multi agents and using a multi agent encryption protocol

to increasing security of web services in novel network and

create efficient and flexible web services.

In our proposed approach mobile agents are used for

implementing Web services. Clients can readily consume

mobile agent functionality as though it was an ordinary Web

service. When a mobile agent wants to consume a service, it is

possible to transparently invoke either a legacy or mobile-

agent backed Web service by doing dynamically-bound

method invocations. A set of legacy Web services can be

gradually replaced by a mobile agent-based implementation,

which may be more amenable to optimization.

7. REFERENCES
[1] Abolfazl Esfandi, Ali Movaghar Rahimabadi, "Mobile

Agent Security in Multi agent Environments Using a

Multi agent-Multi key Approach", in Proc. 2nd IEEE

International Conference on Computer Science and

Information Technology, Vol. 4, August 2009, pp. 438-

442.

[2] National Institute of Standards and Technology,

"Announcing the ADVANCED ENCRYPTION

STANDARD (AES)," Federal Information Processing

Standards Publication, no. 197, Nov. 2001.

[3] Rosenthal Joachim, "A Polynomial Description of the

Rijndael Advanced Encryption Standard", Journal of

Algebra and Its Applications, Vol. 2(2), 2003, pp. 223-

236.

[4] Xu Ke, "Mobile Agent Security Through Multi-Agent

Cryptographic Protocols", PhD Thesis, Department of

Computer Science and Engineering, University of North

Texas, May 2004.

[5] Java Remote Method Invocation (RMI) Specification.

2001,Sun Microsystems, Inc.

[6] T. Erl, “SOA: Principles of Service Design, ” Prentice

Hall/Pearson PTR, 2007.

[7] E Nagy, B., "Deployment Descriptors" in Apache SOAP

User's Guide . 2001.

[8] A. Singhal, T. Winograd and K. Scarfone, “Guide to

Secure Web Services, ” National Institute of Standards

and Technology Special Publication, 2007.

[9] Common Language Infrastructure (CLI), Partition I:

Architecture. 2002, ECMA International, Geneva.

[10] S. Chollet and P. Lalanda, “An Extensible Abstract

Service Orchestration Framework,” IEEE International

Conference on Web Services (ICWS), 2009.

[11] J. G. R. Sathiaseelan, S. A. Rabara and J. R. Martin,

“Multi-Level Secure Framework for Composite Web

Services,” ACM International Conference Proceedings

(ICIS), pp. 580–585, 2009.

[12] A. Ginige and S. Murugesan, “The Essence of Web

Engineering – Managing the Diversity and Complexity

of Web Application Development,” IEEE Multimedia,

vol. 8, no.2, pp. 22-25, Apr.–Jun.2001.

International Journal of Computer Applications (0975 – 8887)

Volume 50 – No.1, July 2012

43

[13] G. H. Hwang, Y. H. Chang and T. K. Chang,“An

Operational Model and Language Support for Securing

Web Services,” IEEE International Conference on Web

Services (ICWS), 2007

[14] Yildiz, B., Fox G., and S. Pallickara, “An Orchestration

for Distributed Web Service Handlers” International

Conference on Internet and Web Applications and

Services ICIW 2008, June 8-13, 2008 - Athens, Greece

[15] A. Menezes, P. Van. Oorschot and S. Vanstone,

“Handbook of Applied Cryptography,” CRC Press,

October 1996 – 5th reprinting, Aug. 2001, ch 12.

[16] Jana, D., Chaudhuri, A. and Bhaumik, B. 2009 Privacy

and Anonymity Protection in Computational Grid

Services. International Journal of Computer Science and

Applications, Vol, 6, No, 1, pp. 98-107.

