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ABSTRACT 

In this paper, a new number system “Single Digit Triple Base 

Number System (SDTBNS)” using 2, 3 and 5 as the bases 

have been introduced. Advantages of SDTBNS over Single 

Digit Double Base Number System (SDDBNS) have been 

discussed here. Dynamic  range  of  the  numbers  represented  

in  SDTBNS  has also been  dealt  with  in  details. Analysis 

on complexity of the multiplication unit and execution time 

reveal the novelty of the proposed number system. 

Application of  this  number  system  in  digital  signal  

processing(DSP)  has  been  explored  and  an  efficient  

implementation  of  linear  convolution has been presented. 
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1. INTRODUCTION 
High performance, flexibility and low power  consumptions  

are  the  most  important  issues  in the current signal 

processing architectures. Signal processing algorithms are 

computationally intensive and therefore, the major issues are 

to enhance the speed of the multiplications and  additions 

units. Double Based  Number Systems (DBNS) [1][2][3]. In 

Double-Base number   system, any integer can be represented 

as  
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where {1,0}md   and  ,m mi j  are integers. But this 

representation is highly redundant. If any representation 

contain minimum numbers of two integer terms , the 

representation is called canonic representation[4][5][6]. 

However to find the canonic DBNS representation of any 

integer is a difficult task. Hence the concept about near-

canonic DBNS representation has been developed using 

greedy algorithm , where it has been proved that the 

maximum number of two- integer terms is equal to 

𝑂(
log x

log log x
)[1][7][8], where x is the integer to be converted  to 

DBNS. DBNS are becoming more attractive  for  their  

capabilities of   performing  multiplication operations  

efficiently.  As  double  based  number  systems  employ  

bases as 2 and 3, the indices  ( [ i, j] pairs) to the bases 2 and 3 

are used for  addition and  multiplication. Analysis of  the  

recent literatures [1][9] indicates that how multiplication of 

two signed numbers can be  performed  in  DBNS  using only   

three  adders, one look-up-table and one barrel shifter. 

However, there are certain limitations of  DBNS[1][10]. To 

represent  a wide  range  of  numbers  using DBNS, number of 

bits   of  the  indices  need  to  be   increased. This  in  turn  

increases the address space of  LUT(Look-up-table) 

exponentially  and  leads  to  the  increase  in   access  time ,  

hardware  requirements  and  design  complexities. These 

drawback can be eliminated using the proposed number 

system, a novel concept and is known as “Single Digit Triple 

Based Number Systems (SDTBNS)” in which bases used are 

2,3 and 5. SDTBNS is an extension of TBNS (Triple Base 

Number System) [11] where the numbers can be represented 

using the following equation  

Y=  di,j,k2i3j5k
i,j,k

                                                     (1)                        

For further enhancement of the performance of arithmetic 

operations and to reduce the  hardware complexities, here we 

introduce SDTBNS, a modified version of SDDBNS 

[12][13][14]. Any number Y in SDTBNS is  represented as                   

             Y=2i.3j.5k                                                       (2) 

In TBNS and therefore, in SDTBNS one of the bases has been 

chosen as 5,  since the decimal point shifting can be achieved 

easily  only by adding  or  subtracting   the  indices  of the 

bases 2 and 5.  This  cannot  be achieved with other bases 

(like 7,11 etc.) and hence any number (integer and fraction) 

can be represented using the bases 2, 3 and 5 [such as 

11,1.1and 0.11 can be represented  as 230.3-27.57, 229.3-27.56 

and 228.3-27.55 respectively]. Table 1 shows the representation 

of different integers in SDTBNS form and Table 2 shows the 

representation and  accuracy level [in dB] of  different  

numbers  in both  SDTBNS and  SDDBNS. Considering the 

above advantages of SDTBNS, here an efficient 

implementation of popular DSP functions like  linear 

convolution and DFT have been introduced . 

2. ALGORITHM TO CONVERT ANY 

INTEGER OR FRACTION INTO 

SDTBNS 
The algorithm to convert any number (integer or fraction) into 

its equivalent SDTBNS form is given below 

Let   Y=2i.3j.5k                                                                              

Step 1: Set a value of i, j and k so that  2i.3j.5k nearly equals 

to Y. 

 

Step 2: For a fixed value of i (or j or k) change j and k by j 

and k  , that is j to j+j and k to k-k or j to j-j and k to 

k+k ( or i and j by i and j or j and k by j and k) until 

the value of 2i.3j.5k falls into a given predefined accuracy. 

 

Step 3: Compare the accuracy. 
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Step 4: If accuracy does not matched , repeat step1 to step3, 

otherwise stop.  

 

Note: Although different composite numbers can be 

expressed in SDTBNS form , different prime number can also 

be expressed in this form with lesser error than SDDBNS. For 

example to represent 7, the error in SDTBNS is 0.0005 

whereas in SDDBNS,  the error is 0.003. The representation 

of different prime number in SDTBNS, the corresponding 

error and the comparison with SDDBNS are shown in Table I.  

 

3. TBNS ADDITION AND 

MULTIPLICATION 
3.1 TBNS Addition 

If a and b are two integers represented in the form  2i.3j.5k and 

2i+1.3j.5k, the results of addition will be 2i.3j+1.5k and  this 

addition process obeys a definite rule 

Ix(i,j,k)+Iy(i+1,j,k)=Iz(i,j+1,k)                               rule(1)    

This can be graphically shown using three dimensional TBNS 

map. Using the rule we can conclude about the solution of x+ 

y = z as (1,2,3),(2,4,6),(6,12,18) etc. where Ix(i,j,k) = x and 

Iy(i,j,k) = y and Iz(i,j,k) = z. That is x = 20.30.50, y = 21.30.50  

and  z = 20.31.50. Again addition of another two integer x and 

y, in the form  Ix(i,j,k) and IY(i,j,k) yields the result as 

Iz(i+1,j,k) obeying  rule (2). 

       

 Ix(i,j,k) +Ix(i,j,k) = Ix(i+1,j,k)                               rule(2) 

 

Again if x and y are of the  form 2i+1.3j.5k and 2i.3j+1.5k 

respectively, then z(2i.3j.5k+1) can be obtained from the  

equation   

  

Iz(i,j,k+1) = Ix(i+1,j,k) + Iy(i,j+1,k)                      rule(3) 

 

3.2 TBNS Multiplication 
Let x and y be two integers represented in TBNS and  their 

product will be z, where 2iz . 3jz . 5kz  =  2ix + iy . 3jx + jy . 5kx + ky , 

here (ix , jx , kx), (iy , jy , ky) and (iz , jz , kz ) are the indices of the 

bases 2, 3 and 5 of the three given integers respectively. It is 

clear that the multiplication process is simply a three 

dimensional shifts in TBNS map.  

 

Let us consider the example of multiplication of two integers 

12 and 45. The representation of 12 and 45 in SDTBNS, take 

the form as 12 = 22.31.50  and 45 = 20.32.51  and   12x45  = 

22+0.31+2.50+1=22.33.51    and  it obeys rule(4).  

 

Iz(i+2,j+3,k+1)=Ix(i+2,j,k+3)+Iy(i+3,j,k+1)          rule(4) 

 

The above rules are for addition and multiplication in 

TBNS[10][11]. The rules are also applicable for the proposed 

SDTBNS. 

Table 1 

Different values of  i , j and k to represent  different integers in SDTBNS 

 
Numbers 1st combination of i,j,k 2nd combination of i,j,k 3rd combination of  i,j,k 

i j k error i j k error i j k error 

7 55 -30 -2 0.0005 -52 17 12 0.0007 38 32 -37 0.0005 

11 30 -27 7 0.0005 -24 10 5 0.0013 29 0 -11 0.0049 

13 80 -54 4 0.006 -43 28 1 0.003 34 5 -21 0.004 

17 12 -18 5 0.084 -108 59 8 0.008 28 23 -26 0.041 

19 48 -32 3 0.013 -128 60 16 0.008 301 -163 -23 0.006 

23 37 -41 14 0.0005 -168 62 32 0.008 20 21 -21 0.0025 

29 22 -24 9 0.005 -32 13 7 0.0005 41 6 -36 0.002 

31 35 -38 13 0.049 -58 28 8 0.0038 38 8 -32 0.006 

37 18 -11 2 0.005 -143 73 14 0.005 78 8 -50 0.005 

 

4. REPRESENTATION OF AN 

INTEGER INTO SDTBNS FORM 
In TBNS any integer can be represented as a sum of minimal 

number 3-integers (numbers of the form 2i.3j.5k ).  But in 

SDTBNS, the same can be represented using only a Single 

Digit of the form 2i.3j.5k. For example, seven in SDTBNS, can 

be represented as 255.3-30.5-2, where error is –82.9 dB 

[20log(.0005/7)] Similarly   the   other   integers  can  be   

represented  in  

SDTBNS form for different combination of the indices i, j and 

k as shown in Table 1. Table 1 gives an idea about how the 

errors in SDTBNS vary with the variation of the indices (i.e. i 

,j and k) to the bases 2 , 3 and 5. The value of i, j and k  can be  

minimized at the cost of accuracy. So an optimal value of i, j 

and k are to be taken in order to reduce errors and data bus 

width.  For example 7 in SDTBNS can be represented as 7 = 

255.3-30.5-2,  7 = 2-52.317.512   and 7 = 238.332.5-37. In the first 

case the error is 0.0005 and the maximum bus width to 

represent  i, j and k is of 16-bit. In the second and the third 

cases the errors are 0.0007 and 0.0005 whereas the maximum 

bus width are of 18-bit and 21-bit respectively. So the first 

case should be considered in order to get efficient result. 

Table 2 shows the   optimal values of  i, j and k to represent 

different number. From Table 2 it is clear that as the negative 

error in dB increases, the system performance will be 

increased. Infinite error in dB indicates no error. Figure 1 

shows the error in dB for SDTBNS and SDDBNS. So it is 

also clear from Table 1 that to represent 5 in SDTBNS 

(5=20.30.51) and in SDDBNS (5=2-69.345), the maximum 

number of bits required for the exponents of the bases 2, 3, 5 

in SDTBNS is two whereas in SDDBNS, it is seven. Similarly 

to represent other integer SDTBNS requires less number of 

bits for the exponents.  

5. ACCURACY OF SDTBNS    

REPRESENTATION 
It can be shown that any numbers can be represented in 

SDTBNS with a high degree of accuracy. Table 2 shows the 

accuracy in terms of dB for different numbers represented in 

SDTBNS and in SDDBNS. The accuracy is expressed in dB 

as 20log[(actual value- SDTBNS value)/actual value]. For 

example, seven can be represented in SDTBNS as 255.3-30.5-2, 

where error is –82.9 dB [20log(.0005/7)]. It is evident from 

the tables that as the negative error in dB increases, the system 

accuracy will be better.  
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Theorem 1: Any number can be expressed in SDTBNS 

form up to m or k decimal places with the same 

accuracy, where m or k are the exponents to the bases 2 and 5 

respectively to represent an integer as 2m.3n.5k.

 
Table  2 

Numbers represented in SDTBNS 
 

integer i j k Error in dB for SDTBNS    Error in dB for SDDBNS    

7 55 -30 -2 -82.9 -80 

11 30 -27 7 -85.41 -43.4 

13 -13 12 -1 -74 -50.70 

17 21 -18 5 -66 -75 

19 17 11 -13 -79 -39 

23 37 -41 14 -93.2 -38 

29 22 -24 9 -74.6 -41 

31 35 -38 13 -56 -43 

37 18 -11 2 -77.4 -56 

41 -35 -48 20 -74.3 -70 

43 25 -27 10 -83.4 -41.07 

47 21 -20 7 -73 -43.89 

53 27 -31 12 -80.4 -38.02 

57 17 12 -13 -79 -48.27 

59 19 -20 8 -67 -49.9 

61 7 -8 5 -85 -47.40 

67 12 -14 7 -76.87 -45.64 

87 -15 16 -1 -63.82 -50.3 

89 14 -15 7 -52.75 -40.9 

103 42 -34 8 -80.25 -60 

190 34 -24 5 -66.5 -58 

306 70 -58 13 -77.67 -70 

 

Proof: Let us assume that X = 2m . 3n . 5k  

Now for k > m, let k = k1 + m, then 

 X = 2m . 3n . 5k1+ m  = 10m . 3n . 5k1                              (3) 

Again for k < m, let m = m1 + k, then 

X = 2m1+ k . 3n . 5k  = 10k . 3n . 2m1                               (4) 

So from (3) and (4), it is clear that the value of  X can be 

changed by diving it with 10 for m or k times and can be 

expressed with same accuracy.   

Theorem 2: The accuracy can be increased if the ratio of the 

change of the exponents to the bases 2 and  5 can be made 

equal to q, where q may be an integer or fraction and known 

as accuracy factor. 

Proof: Let us assume that any number X can be represented 

in SDTBNS form as X= 2m.3n.5k,  

Let  X changes by X  due to the change of m to m,  n to n 

and k to k 

Hence, X+X =  2m+m.3n+n.5k+k  [where X is the accuracy]  

=2m.3n.5k.2m.3n.5k  = 2m.3n.5k. X 

Now let 5k = .2m1.3n1.  

So X+X = .2m+m1.3n+n1.X 

Let  3n+n1 = 2m2.  

Hence,  X+X = ..2m+m1+m2.X 

Now for X tends to 0, either . tends to one or 

m+m1+m2 tends to zero. 

For .=1, (5k/2m1.3n1) . (3n.3n1/2m2 ) =1 

or  5k.2-(m1+m2).3n = 1.  

Again let, 5 = .2q, where  << 1, 

So  k. 2qk. 2- (m1+m2).3n   =  1  and   hence  either 

qk - (m1+m2) = 0  or  n = 0, since k << 1. 

So qk =m1+m2 =m.  

6. APPLICATIONS OF SDTBNS 

6.1 To Find DFT of a Signal 
Here we will discuss how SDTBNS can be used to implement 

the linear convolution. The proposed architecture for 

SDTBNS is shown in Fig-2. Here, we have taken an example 

to compute  the linear convolution of the signal  x(n)={1,-

1,1,0,0} using  DFT in SDTBNS. 

Suppose, h(n)={2,2,1,0,0}. Let us assume that the length of 

both  the  sequences is L =  M = 3. (Where the  

duration of x(n) and h(n) are L and M samples respectively) 

Therefore we add M – 1 = 2 zero samples to the sequence x(n) 

and  L – 1 = 2 zero samples to h(n) so that the length of both 

the sequences is L+M-1 = 5. Here N = 5. Then the Fourier 

transform of the sequence x(n) is given by, 

X(k) =  x n e−
j2πnk

N =   x(n)e−
j2πnk

54
n=0

(N−1)
n=0   ,         

that is,  X(0)=1,     

              

X(1)  = 1-1(0.309-j0.951)+1(-0.809-  j0.587)   

         = - 0.118 + j0.364 

X(2)  = 1-1(-0.809-j0.587)+1(0.309  + j0.951)    

          =2.118 + j1.5387 

X(3)  = 1-1(-0.809+j0.587)+1(0.309-j0.951)    
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         = 2.118 - j1.5387
  

X(4)  = 1-1(0.309+j0.951)+1(-0.809 +j0.587)  

         = -0.118 - j0.364 

 

 
 

Figure 1. Different numbers vs. error represented  in SDTBNS and SDDBNS. 

 

 
 

Fig.2. SDTBNS Architecture 

 

 

In SDTBNS, the real and imaginary parts for  different values 

of N  have been shown in Table 3 whereas the real and 

imaginary parts of  the corresponding X(n)  are shown  in  

Table 4.  

 

Similarly values of H(n) for different values on n are, H(0) = 

5 

H(1)  =  2(1)-2(0.309-j0.951)+1(-0.809- j0.587) 

          = 1.809-j2.489 

H(2)  = 2(1)+2(-0.809-j0.587)+1(0.309 + j0.951) 

          = 0.691-j0.223 

H(3)  = 2(1)+2(-0.809+j0.587)+1(0.309- j0.951) 

          = 0.691+j0.223 

H(4)  = 2(1)-1(0.309+j0.951)+1(-0.809  +j0.587)  

         = 1.809+j2.489 

 

The real and imaginary parts for H(n)‟s in SDTBNS are given  

in Table 5. 

 

Again we know that, Y(k) = X(k)H(k). Hence the value of 

Y(k) and the corresponding errors in SDTBNS are given  in 

the Table 6. From Fig.3, it is clear that the results using 

SDTBNS are accurate with the theoretical values.  

 

Table 3 

Real and Imaginary parts of different values of  N 

 

No. i j k Error in dB 

0.309 -37 34 -8 -49.8 

0.587 8 -7 1 -59.8 

0.809 31 -30 7 -44 

0.951 -17 18 -5 -46 
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Table 4 

Real and Imaginary parts of  X(n) 

 

No. i j k Error in dB 

0.118 8 -7 0 -42 

0.364 33 -32 7 -45 

2.118 42 -39 9 -72.5 

1.5387 52 -50 12 -48 

 

Table 5 

Real and Imaginary parts of H(n) 

 

No. I j k Error in dB 

0.223 25 -23 4 -46.9 

1.809 0 2 -1 -46 

0.691 -44 45 -12 -44.7 

2.489 -10 13 -4 -61.9 

 

6.2 To Find FFT of a Signal using DIT 

Algorithm 
Let us assume that the DFT of the sequence x(n) = 

{1,2,3,4,4,3,2,1} are to be found out using DIT               

(Decimation-in-time) Algorithm. The twiddle factor 

associated with the flow graph are supposed to be  W0
8 = 1;  

W1
8= 0.707 - j0.707; W2

8=  -j and  W3
8  = - 0.707 - j0.70. Now 

if x(n) = {1,2,3,4,4,3,2,1}, the inputs to the first stage will be 

selected from the LUT as  x(0) =1, x(1) = 4, x(2) = 3, x(3) = 

2, x(4) = 2, x(5) = 3, x(6) = 4 and x(7) = 1. The outputs of the 

first stage are x‟(0 = x(0) + x(1) W0
8, x‟(1) = x(0) - x(1) W0

8, 

x‟(2) = x(2) + x(3) W0
8, x‟(3) = x(2) - x(3)W0

8, x‟(4) = x(4) + 

x(5)W0
8, x‟(5) = x(4) - x(5)W0

8, x‟(6) = x(6) + x(7)W0
8  and  

x‟(7) = x(6) - x(7)W0
8. Where x(1)W0

8 = 1x1 = 

20.30.50.20.30.50 = 20.30.50 can be found out from the 

BST(Barrel Shifter) which is then added with x(0) in A7 of 

the first SDTBNS unit in the first stage. There are eight such 

units and each alternate units has an inverter at their input for 

subtraction. The architecture is shown in Figure 7. The output 

of the second stage are x”(0) = x‟(0) + x‟(2) W0
8, x”(2) = 

x‟(0) - x‟(2) W0
8 , x”(1) = x‟(1) + x‟(3) W2

8, x”(3) = x‟(1) - 

x‟(3) W2
8, x”(4) = x‟(4) + x‟(6) W0

8, x”(6) = x‟(4) - x‟(6) W0
8, 

x”(5) = x‟(5) + x‟(7) W2
8 and  x”(7) = x‟(5) – x‟(7) W2

8. Now 

for the case x”(0) = x‟(0) + x‟(3)W0
8 = 5 + 5x1 = 

5+20.30.51x20.30.50 = 10 which can be obtained from A7 of the 

first SDTBNS unit in the second stage. The final output are 

x”‟(0) = x”(0) + x”(4) W0
8, x”‟(4) = x”(0) – x”(4) W0

8  , x”‟(1) 

= x”(1) + x”(5) W1
8, x”‟(5) = x”(1) - x”(5) W1

8, x”‟(2) = x”(2) 

+ x”(6) W2
8, x”‟(2) = x”(2) - x”(6) W2

8, x”‟(3) = x”(3) + 

x”(7)W3
8  and  x”‟(7) = x”(3) - x”(7)W3

8. Now x”‟(0) = x”(0) 

+ x‟(4)W0
8 x”‟(0) = 10 +10x1 = 10 + 21.30.51

 x20.30.50  = 20 

which can be obtained from A7 of the final SDTBNS unit 

after third clock pulse. Similarly the other output can be 

obtained from the final adder of the individual SDTBNS unit. 

As shown in Fig. 7, there is only one counter. For the 1st clock 

pulse, the multiplexers are set to select the twiddle factor W0
8 

= 1. At the same time the sequences  x(0) = 1, x(1)=4 , …… 

x(7) = 4 will be selected from the look-up-table. Here the 

look-up-table converts the input sequence to the sequence {1, 

4, 3, 2, 2, 3, 4, 1}. Now x(0), x(1) and  W0
8  will be fed to the 

input of the SDTBNS unit which gives the value x‟(0) = x(0) 

+ x(1) W0
8 = 1+4x1 = 5. The output of the second SDTBNS 

unit is x‟(2) = x(2) + x(3) W0
8 = 3+2x1 = 5. Similarly the 

outputs from the other two SDTBNS units are x‟(4) = 5 and 

x‟(6) =5. For the 2nd pulse, the counter gives „001‟ which 

select W0
8= 1 from M2. The first MRNS (Mixed Radix 

Number System) unit of the second layer then gives the output 

as x”(0) = x‟(0) + x‟(2)W0
8 = 5+5x1= 10. The output of the 

2nd SDTBNS unit of the second layer is x”(4) = x‟(4) + 

x‟(6)W0
8 = 5+5x1 = 10. At the 3rd pulse the counter C3 gives 

„010‟ which selects W0
8 = 1 from M3. The output of the 

SDTBNS unit of the third layer is x”‟(0) = x”(0) + x”(4) W0
8 

= 10+10 = 20. For the 2nd  pulse, -W0
8 =  -1  is selected from 

M1 and the output of the four SDTBNS unit in the first layer 

are x‟(1)=x(0) - x(1) W0
8 , x‟(3) = x(2) - x(3) W0

8, x‟(5) = x(4) 

- x(5) W0
8 and  x‟(7) = x(6) - x(7) W0

8  respectively whereas  

the output from the SDTBNS unit in the second layer are then  

x”(0) and x”(4). Now for the 3rd pulse W2
8 = -j is selected 

from M2  and the output of the SDTBNS unit in  the second 

layer are x”(1) = x‟(1) + x‟(3) W2
8  and x”(5) = x‟(5) + x‟(7) 

W2
8  respectively and at the same time the output of the 

SDTBNS unit in the third layer is x”‟(0) = 20. The output 

from the SDTBNS units in the first layer at the 3rd pulse are  
x‟(0) = x(0) + x(1) W0

8, x‟(2) = x(2) + x(3) W0
8, x‟(4) = x(4) 

+ x(5) W0
8  and x‟(6) = x(6) + x(7)W0

8  respectively. At the 4th 

pulse the output  of the first layer are x‟(1) = x(0) - x(1) W0
8, 

x‟(3) = x(2) - x(3)W0
8, x‟(5) = x(4) - x(5) W0

8 and  x‟(7) = 

x(6) - x(7) W0
8  respectively, the output of the second layer 

x”(2) = x‟(0) - x‟(2) W0
8  and  x”(6) = x‟(4) – x‟(6)W0

8 

respectively (since  - W0
8 = -1 is selected from M2  for „11‟) 

and the output of the third layer is x”‟(1) = x”(1) + x”(5) W1
8 

(since W1
8 = 0.707 –j0.707 is selected at the 4th pulse). Thus 

we get the output sequences as {20, -5.828- j2.414, 0,  - 0.172 

- j0.414, 0, - 0.172+j0.414, 0, -5.828+j2.414}. At the time 

when W1
8 = 0.707 –j0.707 is selected, the operation to be 

performed is at first x1”‟(1) = 0.707. x”(5) +x”(1) and then  

x2”‟(1) = 0.0 – 0.707.x”(5), where x”‟(1) = x1”‟(1) + j x2”‟(1).  

Table 6 

Real and Imaginary parts of  Y(n) 

Y(k) S i J k Error in 

dB 

Y(0) 1 0 0 1 -infi 

Y(1) Real -1 8 -5 -1 -41.6 

1 23 -19 3 -50.1 

Imaginary 1 -2 6 -4 -48.5 

1 33 -30 6 -41.4 
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Fig.-3.    SDTBNS vs. Theoretical results.

7. DYNAMIC RANGE 
The range of representation of different integers in SDTBNS 

is much more than that in SDDBNS representation. For 

example, in SDTBNS representation using only one bit (i.e. 

the indices is either 0 or 1), the maximum number of  integers 

that can be represented without any error is 

eight(1,2,3,5,6,10,15,30) and that with error is 22(30-8), 

whereas in SDDBNS, the maximum number of integers that 

can be represented without any error is only four(1,2,3,6) and  

with error is 2(6-4). Similarly for two bit, the range (without 

any error)  in SDTBNS and SDDBNS are 22x22x22 = 64 and 

22x22 = 16 respectively and with error are 22x32x52 - 22x22x22 

= 900- 64 = 836 and 22x32 - 22x22 = 36 – 16 = 20 respectively. 

So if we use SDDBNS, the requirement of hardware needed 

for arithmetic operation is approximately four times greater 

than that if we use SDTBNS, to cover the same range, 

otherwise the execution time will be more than that for 

SDTBNS. To increase  the dynamic  range   

in case of  SDDBNS, the  requirements of hardware are to be 

increased as shown in Fig.6.The figure shows that we have to 

use a decoder  to enable which look-up-table has to be used 

for a specified range. We have to use two gate array to input 

the ALU (a3) and the BS (Barrel Shifter) from the 

corresponding look-up-table, while the other look-up-tables 

remain disabled . The input to the Decoder comes from the 

SDDBNS converter. In general for N-bit, the range of number 

that can be represented in SDTBNS is 2N greater than that in 

SDDBNS. 

8. SIZE OF DIFFERENT HARDWARE  
The size of the lookup table, barrel shifter and other hardware 

components can be reduced to a great extent if we use 

SDTBNS in place of SDDBNS. This can be understood from 

the following example considering the Fig.2.and Fig.7. Here it 

is supposed that two numbers (both are 7) are to be multiplied.  

Now 7 is equivalent to 255.3-30.5-2 in SDTBNS and 2109.3-67 in 

SDDBNS. In case of multiplication using SDTBNS, the sum 

of the indices to the bases 2, 3 and 5 will be 110, -60 and -4 

respectively and using SDDBNS, the sum of the indices to the 

bases 2 and 3 will be 218 and -134 respectively. Hence 

maximum 7-bit, 6-bit and 3-bit respectively are required to 

represent 55, 30 and 2(including sign bit). Again to represent 

109 and 67, maximum 8 bits (including sign bit) are required. 

So the size of the ALU (A3,A2 and A1) for SDTBNS and 

ALU (a2 and a1) for SDDBNS will be of  8 and 9 bit wide 

respectively. The data bus length for the results from the 

ALUs in SDTBNS and SDDBNS will be of maximum 8 and 9 

bit respectively. Now 5-4 = 2276.3-180. Again to represent 180, 9 

bits are required  and hence the size of the ALU (A4) will be 

of maximum 9-bit wide and the data bus length from A4 will 

be of 9-bit since the output from A4 (–240) needs maximum 

9-bits (including sign bit). Now the indices to the base 3 in 

a1[lower case for adder in SDDBNS] is -134. So the size of 

LUTD1 used for SDDBNS multiplication is of 134 address 

space. Again the indices to base 5 in A3 is  -4 and hence the 

size of LUTT1 used in SDTBNS multiplication is of 4 address 

space. The output from LUTD1 and LUTT1 are        3x2-264(3-

134) and 2276.3-180 respectively. The size of a3 will be of 

maximum 10-bits wide and that of the BSD will be of 30-bits 

wide [to shift the mantissa either right or left by 14 times, 28-

bits (-46 (MOD32) = -14) are required and 2-bits for 

representing 3]. A5 will be of maximum10-bits wide (110 

needs 8-bits and 276 needs 10-bits) wide. The output of A4 is 

–240. Hence the address space of LUTT2 will be 240. Now  3-

240  =    3x2-382. The input to A6 are –382 and 386  and hence 

the size of A6 is 9-bit wide. The output of A6 is 4. Again to  

represent 3, 2-bits are required and to shift 3 (either right or 

left) by 4 times, 8 –bits are required. Hence the size of the 

BST is of 10-bit wide as mentioned in Table 7. This table is 

true only in the case of multiplication of 7 with 7. For higher 

range, all the different parameters expressed in Table 7, will  

be  increased further if SDDBNS is used. So it is clear from 

Table 7 and from the above discussion that, if we use 

SDTBNS  in  place  of SDDBNS, we will get   advantages 

w.r.to the hardware requirement and bus length.  Table 8  

gives  an  idea   how   the   sizes  and  the  requirements of 

hardware component increases  with the  ranges ( considering 

the ranges  as 1-25,26-50,51-75,  76-100). Fig.7 shows that in 

SDDBNS, four LUT are to be used to cover the whole range 

that can be done with a single LUT in SDTBNS. Though   a 

single look-up-table can also be used in SDDBNS, but in that 

case the address space of that LUT will be excessively high 

and hence access  time will be more. Also the design of  LUT 

in SDDBNS  is much  more  complex. Fig. 4. and Fig.5. give 

an  idea  about how SDTBNS are more attractive than   

SDDBNS .  
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9. TIMING COMPLEXITY 
Considering Fig.6 and Fig 7, it can be understood that how the 

execution time can be reduced using SDTBNS. Let us assume 

that, TD = delay in decoder used in SDDBNS architecture, TA 

= delay in the ALU used   for SDTBNS and SDDBNS (it is 

assumed that the processing speed for addition in the ALU 

used for both SDDBNS  and SDTBNS are same). 

Since the address spaces for  the LUTT used for  SDTBNS  

are of maximum 176 (as shown in Table 8) and that for 

SDDBNS are of maximum  1390, so TLT  ( Delay in the look-

up-table used in SDTBNS ) < TLD(Delay in the look-up-table 

used in SDDBNS). 

 

TG = delay in gate array used in SDDBNS . 

 

Since the size of the barrel shifter used in SDTBNS is of 

maximum 10 bits length and that used in SDDBNS is of 

maximum 30 bits length, TBST ( Delay in the barrel shifter 

used in SDTBNS) <  TBSD ( Delay in the barrel shifter used in 

SDDBNS). Then total execution time in SDDBNS is 

 

TSDDBNS= TA(for a1 or a2)+ TD + TLD + 2TG + TA (for a3) + 

TBSD +TA (for a4) and that in  SDTBNS, 

TSDTBNS = TA ( for A1 or A2 or A3)+ TLT ( for LUTT1) + TA 

(for A4 or A5) + TLT (For LUTT2)  + TA (for A6) + TBSD + TA 

(for A7) . 

 

Now since TLT < TLD  and  TBST  < TBSD  and since TG  is 

multiplied by two , hence TSDTBNS < TSDDBNS. 

10. SDTBNS  REDUCTION  RULES  
We can use a geometrical interpretation for each of the 

bases(2, 3 and 5) to represent any integer in SDTBNS. Non-

zero SDTBNS digits are represented as black squares. This 

interpretation helps us to demonstrate simple identities on 

special combination of the black cells. For example 21.30.50  

+20.31.50 = 20.30.51. In general 2i+1.3j.5k  + 2i.3j+1.5k = 

2i.3j.5k+1.  Figure 8 (a) and (b) show the two integers 21.30.50 

and 20.31.50   represented in SDTBNS form and Figure 8(c) 

shows the result. 

11. ADDITION OF TWO SDTBNS 

NUMBERS 
Suppose a and b are two integers that can be represented in 

SDTBNS as 2i1.3j1.5k1 and 2i2.3j2.5k2. Then the result of 

addition of a and b will be  

c = a +b = 2i1 . 3j1 . 5k1 +  2i2 . 3j2 . 5k2   
   = 2i2 . 3j2 . 5k2  [1+ 2i1 . 3j1 . 5k1 / 2i2 . 3j2 . 5k2] 

   = 2i2 . 3j2 . 5k2  [1+ 2i1 . 3j1 . 5k1 . 2−i2 . 3−j2 . 5−k2] 

   = 2i2 . 3j2 . 5k2[ 1 + A] = 2i2 . 3j2 . 5k2 . A1 

Now A can be found out using the proposed SDTBNS unit. 

The output of the barrel shifter of the SDTBNS unit is then 

added with binary one in the adder unit A8 and the output is 

A1. A1 is then multiplied in the same SDTBNS unit whose 

output gives the result of a + b. 

12. ACCURACY OF SDTBNS OVER 

SDDBNS 
The accuracy to represent different numbers in SDTBNS 

shows its advantage over SDDBNS. Table.1.depicts the 

representation of  different numbers  

for different values of  i, j and k and also represents  the error  

in  dB. Figure 9(a) and (b) represent the accuracy level of 

different numbers using different combination of  i, j and k in 

dB and in percentage. From the figures it is clear that curve C 

gives better accuracy over A and B. Figure 10 represents how 

the accuracy of SDTBNS,   depends on the values of i and k. 

For the curve A accuracy changes from 0.0147 to -0.015 and 

in each step the corresponding accuracy will be the previous 

accuracy(p.a.) – 0.0063. The change in the values of   i   

and k are from  -623.0 to 733.0 and from 290.0 to -294.0 

respectively and steps for the changes of  i and k are 339 and 

146 respectively. Hence m = 339 and k = 146 and q = 

m/k = 2.32. For curve B and C, corresponding accuracies 

changes from -0.0524 to -0.0234  in step of (p.a. -  0.0073) 

and 0.0445 to  0.0153 in step of  (p.a. – 0.0073 ) respectively. 

For both cases, „q‟ remains same. The term „q‟ is known as 

„accuracy factor‟ and it is mentioned in Theorem 2 that it 

varies with the exponents of the bases 2 and 3. 

 

 
 

Figure 4.  Hardware requirements  for    SDTBNS and  SDDBNS. 

1 1.5 2 2.5 3 3.5 4
5

10

15

20

25

30

35

Different Ranges of Number---->H
a
rd

w
a
re

 R
e
q

u
ir

e
m

e
n

t 
in

 S
D

T
B

N
S

 a
n

d
 S

D
D

B
N

S

 

 

Hardware Requirement in SDTBNS

Hardware Requirement in SDDBNS



International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.9, July 2012 

33 

 

 

Figure  5. Hardware complexities for  SDTBNS and. SDDBNS. 

 

Figure 6. Architecture of SDDBNS used to cover the whole range  that can be represented in SDTBNS. 
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Fig.7. Architecture to find out DFT using DIT Algorithm. 

                                                                                                                                  

 

Fig.8(a). 21.30.50  represented in SDTBNS (b). 20.31.50  represented in SDTBNS (c) ) 20.30.51  represented in SDTBNS map. 

 

Figure 9. Accuracy of representation of different number using SDTBNS (a) in  dB  and (b) in percentage. 
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Figure 10. Variation  of accuracy with respect to the variation of   i and k. 

Table 7 

Size of ALU  and Address  Space for LUT  used in SDTBNS and SDDBNS 

 

No. System ALU size Address space of LUT Size of BS Maximum 

length Address 

Bus  

Maximum 

length of data 

bus 

SDDBNS a1,a2 are 9-bit wide and a3 is 

10-bit wide. 

Address spaces for LUTD1 is 

134. 

30-bit 8-bit 10-bit 

SDTBNS A1,A2,A3  are   8-bit wide , A4 

, A6 are 9-bit wide,A5 is 10-bit 

wide. 

Address spaces for LUTT1 

and LUTT2 are 4  and 240 

respectively 

10-bit 8-bit 10-bit 

 

Table 8 

Size of different Hardware  required  in  SDTBNS and  SDDBNS 

 

No 

system 

range No. of 

ALU 

ALU 

size(max) 

No. of 

LUT            

LUT size No. of 

Decoder  used 

Gate array 

SDDBNS 1-25 3 12-bit 2 852 address space One 2:1 12 ,2-input OR Gate 
26-50 3 13 bit 4 1390 address space One 4:1 13 ,4-input OR Gate 

51-75 3 13 bit 8 1300 address space One 8:1 13 ,8-input OR Gate 

76-100 3 13 bit 16 1388 address  space One 16:1 13, 16 input OR Gate 

SDTBNS 1-25 6 9 bit 2 Maximum 144 address space No decoder No gate array 
26-50 6 10 bit 2 Maximum 144 address space No decoder No gate array 
51-75 6 9 bit 2 Maximum 176 address  space No decoder No gate array 
76-100 6 10 bit 2 Maximum 132 address space No decoder No gate array 

 

13. CONCLUSIONS 
Here a new concept to represent any integer in  SDTBNS 

form has been illustrated and also a comparative study with 

SDDBNS has been discussed. From this illustration, ideas 

about the advantages of SDTBNS w.r.to SDDBNS in terms of 

bit efficiency, hardware complexity and speed have been dealt 

clearly. Using the concept of the proposed method, we have 

shown the implementation of linear convolution  and  DFT. 

The experimental   results clearly indicate the high level 

accuracy in   implementing   DSP   functions   using the  

proposed number systems. The performance analysis of the  

DSP algorithms implemented using SDTBNS also indicates 

its novelty. Here We have also shown the optimal value of the 

indices i, j and k to represent any number within a specified 

accuracy.   

14. REFERENCES 
[1] Vassil S Dimitrov, Graham A. Jullien, Senior Member, 

IEEE, and William  C. Miller, Senior  Member, 

IEEE ,Theory  and  Application of the    Double- 

Base Number System, IEEE Transaction  on 

Computers, Vol. 48, No.10,Oct. 1999. 

[2] P. Kornerup, “Comp. Arithmetic: Exploiting  

Redundancy in No.  Representations,” Proc. ASAP ‟95, 

Strasbourg, France . 

-1000

-500

0

500

1000

-400

-200

0

200

400

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Integer i ------->Integer j ------->

In
te

g
e
r 

k
 -

--
--

--
>

A

B

C



International Journal of Computer Applications (0975 – 8887)  

Volume 49– No.9, July 2012 

36 

[3] A. Avizienis, “Signed-digit Number Representation for 

Fast Parallel Arithmetic”, IRE  Trans. Electronic  

Computer                           

[4] V.S. Dimitrov, G.A. Jullien and W.C. Miller, “An 

Algorithm for Modular Exponentiation”,  Information 

Processing Letters, vol.66, no. 3, pp.  155-159, 

1998. 

[5] T. N. Shorey and R. Tijdeman, “Exponential  

Diophantine Equations,  Cambridge University 

Press,1986. 

[6] S. S. Pillai, “On the equation 2a  - 2b  = 3c – 3d  ”, Bulletin  

of  the Calcutta Math. Soc., vol. 37, pp.  15- 20, 1945. 

[7] V. Dimitrov and T.V.Cooklev, “Two algorithm for 

modular exponentiation based on nonstandard 

arithmetic”, IEICE Transactions on Fundamentals of 

Electronics, Communications and Computer Science, 

vol. E78-A, no. 1, pp. 82 -87, Jan. 1995, special issue on 

cryptography and information security.  

[8] J. A. Solinas, “Low-weight binary representations for 

pairs of integers”, Center for Applied Cryptographic 

Research, University of Waterloo, Waterloo, ON, 

Canada, Research Report CORR 2001-41, 2001. 

[9] J. Adikari, V. Dimitrov and L. Imbert, “Hybrid Binary-

Ternary Joint Sparse Form and its Application in Elliptic 

Curve Cryptography”, Draft, July 2, 2008, supported by 

the Natural Science and Engineering Research Council 

of Canada.   

[10] D.Hankerson, A.Menezes and S.Vanstone, Guide to 

Elliptic Curve Cryptography, Springer, 2004.  

[11] Pavel Sinha, Amitabha Sinha, Krishanu Mukherjee and   

Kenneth Alan Newton, “Triple Base Number Digital  

and Numerical  Processing System”,  Patent filed under 

E. S. P. Microdesign Inc., Pennsylvania, U.S.A., U. S. 

Pat. App. No. 11/488, 138. 

[12] S. Sadeghi-Emamchaie, G. A. Jullien, V.S. Dimitrov and 

W.C.  Miller, “Digital Arithmetic using analog Arrays”, 

Proc., Eighth Great Lakes Symp. on VLSI, pp. 202-207,  

L. L., Feb.98. 

[13] S. Maitra, A. Sinha, “A Single Digit Tripple Base 

Number System – A New Concept for Implementing 

High Performance Multiplier Unit for DSP Aplications”, 

Proceedings of the  sixth International Conference on 

Information, Communication and Signal 

Processing(ICICS2007), December, 10-13,2007. 

[14] S. Maitra, A. Sinha, “Architecture of Mixed Radix 

Number System –A New Approach of Designing Digital 

Filter”, proceedings of the 10th IASTED International 

Conference on Signal and Image Processing(SIP2008), 

August, 18-20,2008, Kailua-Kona, HI, U.S.A. 

 

 


