
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

26

Design of High Performance Multiplier Unit using

SDTBNS for DSP Applications

Subhashis Maitra
Electronics and Communication Engineering

Department, Kalyani Government Engineering
College, Kalyani, Nadia, West Bengal, India

Amitabha Sinha
School of Information Technology, West Bengal
University of Technology, Kolkata, West Bengal,

India

ABSTRACT

In this paper, a new number system “Single Digit Triple Base

Number System (SDTBNS)” using 2, 3 and 5 as the bases

have been introduced. Advantages of SDTBNS over Single

Digit Double Base Number System (SDDBNS) have been

discussed here. Dynamic range of the numbers represented

in SDTBNS has also been dealt with in details. Analysis

on complexity of the multiplication unit and execution time

reveal the novelty of the proposed number system.

Application of this number system in digital signal

processing(DSP) has been explored and an efficient

implementation of linear convolution has been presented.

Keywords
SDTBNS, SDDBNS , DSP, FIR Filter , DFT, DIT, Linear

Convolution , FFT.

1. INTRODUCTION
High performance, flexibility and low power consumptions

are the most important issues in the current signal

processing architectures. Signal processing algorithms are

computationally intensive and therefore, the major issues are

to enhance the speed of the multiplications and additions

units. Double Based Number Systems (DBNS) [1][2][3]. In

Double-Base number system, any integer can be represented

as

1

.2 .3m m

n
i j

m

m

x d

where {1,0}md and ,m mi j are integers. But this

representation is highly redundant. If any representation

contain minimum numbers of two integer terms , the

representation is called canonic representation[4][5][6].

However to find the canonic DBNS representation of any

integer is a difficult task. Hence the concept about near-

canonic DBNS representation has been developed using

greedy algorithm , where it has been proved that the

maximum number of two- integer terms is equal to

𝑂(
log x

log log x
)[1][7][8], where x is the integer to be converted to

DBNS. DBNS are becoming more attractive for their

capabilities of performing multiplication operations

efficiently. As double based number systems employ

bases as 2 and 3, the indices ([i, j] pairs) to the bases 2 and 3

are used for addition and multiplication. Analysis of the

recent literatures [1][9] indicates that how multiplication of

two signed numbers can be performed in DBNS using only

three adders, one look-up-table and one barrel shifter.

However, there are certain limitations of DBNS[1][10]. To

represent a wide range of numbers using DBNS, number of

bits of the indices need to be increased. This in turn

increases the address space of LUT(Look-up-table)

exponentially and leads to the increase in access time ,

hardware requirements and design complexities. These

drawback can be eliminated using the proposed number

system, a novel concept and is known as “Single Digit Triple

Based Number Systems (SDTBNS)” in which bases used are

2,3 and 5. SDTBNS is an extension of TBNS (Triple Base

Number System) [11] where the numbers can be represented

using the following equation

Y= di,j,k2i3j5k
i,j,k

 (1)

For further enhancement of the performance of arithmetic

operations and to reduce the hardware complexities, here we

introduce SDTBNS, a modified version of SDDBNS

[12][13][14]. Any number Y in SDTBNS is represented as

 Y=2i.3j.5k (2)

In TBNS and therefore, in SDTBNS one of the bases has been

chosen as 5, since the decimal point shifting can be achieved

easily only by adding or subtracting the indices of the

bases 2 and 5. This cannot be achieved with other bases

(like 7,11 etc.) and hence any number (integer and fraction)

can be represented using the bases 2, 3 and 5 [such as

11,1.1and 0.11 can be represented as 230.3-27.57, 229.3-27.56

and 228.3-27.55 respectively]. Table 1 shows the representation

of different integers in SDTBNS form and Table 2 shows the

representation and accuracy level [in dB] of different

numbers in both SDTBNS and SDDBNS. Considering the

above advantages of SDTBNS, here an efficient

implementation of popular DSP functions like linear

convolution and DFT have been introduced .

2. ALGORITHM TO CONVERT ANY

INTEGER OR FRACTION INTO

SDTBNS
The algorithm to convert any number (integer or fraction) into

its equivalent SDTBNS form is given below

Let Y=2i.3j.5k

Step 1: Set a value of i, j and k so that 2i.3j.5k nearly equals

to Y.

Step 2: For a fixed value of i (or j or k) change j and k by j

and k , that is j to j+j and k to k-k or j to j-j and k to

k+k (or i and j by i and j or j and k by j and k) until

the value of 2i.3j.5k falls into a given predefined accuracy.

Step 3: Compare the accuracy.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

27

Step 4: If accuracy does not matched , repeat step1 to step3,

otherwise stop.

Note: Although different composite numbers can be

expressed in SDTBNS form , different prime number can also

be expressed in this form with lesser error than SDDBNS. For

example to represent 7, the error in SDTBNS is 0.0005

whereas in SDDBNS, the error is 0.003. The representation

of different prime number in SDTBNS, the corresponding

error and the comparison with SDDBNS are shown in Table I.

3. TBNS ADDITION AND

MULTIPLICATION
3.1 TBNS Addition

If a and b are two integers represented in the form 2i.3j.5k and

2i+1.3j.5k, the results of addition will be 2i.3j+1.5k and this

addition process obeys a definite rule

Ix(i,j,k)+Iy(i+1,j,k)=Iz(i,j+1,k) rule(1)

This can be graphically shown using three dimensional TBNS

map. Using the rule we can conclude about the solution of x+

y = z as (1,2,3),(2,4,6),(6,12,18) etc. where Ix(i,j,k) = x and

Iy(i,j,k) = y and Iz(i,j,k) = z. That is x = 20.30.50, y = 21.30.50

and z = 20.31.50. Again addition of another two integer x and

y, in the form Ix(i,j,k) and IY(i,j,k) yields the result as

Iz(i+1,j,k) obeying rule (2).

 Ix(i,j,k) +Ix(i,j,k) = Ix(i+1,j,k) rule(2)

Again if x and y are of the form 2i+1.3j.5k and 2i.3j+1.5k

respectively, then z(2i.3j.5k+1) can be obtained from the

equation

Iz(i,j,k+1) = Ix(i+1,j,k) + Iy(i,j+1,k) rule(3)

3.2 TBNS Multiplication
Let x and y be two integers represented in TBNS and their

product will be z, where 2iz . 3jz . 5kz = 2ix + iy . 3jx + jy . 5kx + ky ,

here (ix , jx , kx), (iy , jy , ky) and (iz , jz , kz) are the indices of the

bases 2, 3 and 5 of the three given integers respectively. It is

clear that the multiplication process is simply a three

dimensional shifts in TBNS map.

Let us consider the example of multiplication of two integers

12 and 45. The representation of 12 and 45 in SDTBNS, take

the form as 12 = 22.31.50 and 45 = 20.32.51 and 12x45 =

22+0.31+2.50+1=22.33.51 and it obeys rule(4).

Iz(i+2,j+3,k+1)=Ix(i+2,j,k+3)+Iy(i+3,j,k+1) rule(4)

The above rules are for addition and multiplication in

TBNS[10][11]. The rules are also applicable for the proposed

SDTBNS.

Table 1

Different values of i , j and k to represent different integers in SDTBNS

Numbers 1st combination of i,j,k 2nd combination of i,j,k 3rd combination of i,j,k

i j k error i j k error i j k error

7 55 -30 -2 0.0005 -52 17 12 0.0007 38 32 -37 0.0005

11 30 -27 7 0.0005 -24 10 5 0.0013 29 0 -11 0.0049

13 80 -54 4 0.006 -43 28 1 0.003 34 5 -21 0.004

17 12 -18 5 0.084 -108 59 8 0.008 28 23 -26 0.041

19 48 -32 3 0.013 -128 60 16 0.008 301 -163 -23 0.006

23 37 -41 14 0.0005 -168 62 32 0.008 20 21 -21 0.0025

29 22 -24 9 0.005 -32 13 7 0.0005 41 6 -36 0.002

31 35 -38 13 0.049 -58 28 8 0.0038 38 8 -32 0.006

37 18 -11 2 0.005 -143 73 14 0.005 78 8 -50 0.005

4. REPRESENTATION OF AN

INTEGER INTO SDTBNS FORM
In TBNS any integer can be represented as a sum of minimal

number 3-integers (numbers of the form 2i.3j.5k). But in

SDTBNS, the same can be represented using only a Single

Digit of the form 2i.3j.5k. For example, seven in SDTBNS, can

be represented as 255.3-30.5-2, where error is –82.9 dB

[20log(.0005/7)] Similarly the other integers can be

represented in

SDTBNS form for different combination of the indices i, j and

k as shown in Table 1. Table 1 gives an idea about how the

errors in SDTBNS vary with the variation of the indices (i.e. i

,j and k) to the bases 2 , 3 and 5. The value of i, j and k can be

minimized at the cost of accuracy. So an optimal value of i, j

and k are to be taken in order to reduce errors and data bus

width. For example 7 in SDTBNS can be represented as 7 =

255.3-30.5-2, 7 = 2-52.317.512 and 7 = 238.332.5-37. In the first

case the error is 0.0005 and the maximum bus width to

represent i, j and k is of 16-bit. In the second and the third

cases the errors are 0.0007 and 0.0005 whereas the maximum

bus width are of 18-bit and 21-bit respectively. So the first

case should be considered in order to get efficient result.

Table 2 shows the optimal values of i, j and k to represent

different number. From Table 2 it is clear that as the negative

error in dB increases, the system performance will be

increased. Infinite error in dB indicates no error. Figure 1

shows the error in dB for SDTBNS and SDDBNS. So it is

also clear from Table 1 that to represent 5 in SDTBNS

(5=20.30.51) and in SDDBNS (5=2-69.345), the maximum

number of bits required for the exponents of the bases 2, 3, 5

in SDTBNS is two whereas in SDDBNS, it is seven. Similarly

to represent other integer SDTBNS requires less number of

bits for the exponents.

5. ACCURACY OF SDTBNS

REPRESENTATION
It can be shown that any numbers can be represented in

SDTBNS with a high degree of accuracy. Table 2 shows the

accuracy in terms of dB for different numbers represented in

SDTBNS and in SDDBNS. The accuracy is expressed in dB

as 20log[(actual value- SDTBNS value)/actual value]. For

example, seven can be represented in SDTBNS as 255.3-30.5-2,

where error is –82.9 dB [20log(.0005/7)]. It is evident from

the tables that as the negative error in dB increases, the system

accuracy will be better.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

28

Theorem 1: Any number can be expressed in SDTBNS

form up to m or k decimal places with the same

accuracy, where m or k are the exponents to the bases 2 and 5

respectively to represent an integer as 2m.3n.5k.

Table 2

Numbers represented in SDTBNS

integer i j k Error in dB for SDTBNS Error in dB for SDDBNS

7 55 -30 -2 -82.9 -80

11 30 -27 7 -85.41 -43.4

13 -13 12 -1 -74 -50.70

17 21 -18 5 -66 -75

19 17 11 -13 -79 -39

23 37 -41 14 -93.2 -38

29 22 -24 9 -74.6 -41

31 35 -38 13 -56 -43

37 18 -11 2 -77.4 -56

41 -35 -48 20 -74.3 -70

43 25 -27 10 -83.4 -41.07

47 21 -20 7 -73 -43.89

53 27 -31 12 -80.4 -38.02

57 17 12 -13 -79 -48.27

59 19 -20 8 -67 -49.9

61 7 -8 5 -85 -47.40

67 12 -14 7 -76.87 -45.64

87 -15 16 -1 -63.82 -50.3

89 14 -15 7 -52.75 -40.9

103 42 -34 8 -80.25 -60

190 34 -24 5 -66.5 -58

306 70 -58 13 -77.67 -70

Proof: Let us assume that X = 2m . 3n . 5k

Now for k > m, let k = k1 + m, then

 X = 2m . 3n . 5k1+ m = 10m . 3n . 5k1 (3)

Again for k < m, let m = m1 + k, then

X = 2m1+ k . 3n . 5k = 10k . 3n . 2m1 (4)

So from (3) and (4), it is clear that the value of X can be

changed by diving it with 10 for m or k times and can be

expressed with same accuracy.

Theorem 2: The accuracy can be increased if the ratio of the

change of the exponents to the bases 2 and 5 can be made

equal to q, where q may be an integer or fraction and known

as accuracy factor.

Proof: Let us assume that any number X can be represented

in SDTBNS form as X= 2m.3n.5k,

Let X changes by X due to the change of m to m, n to n

and k to k

Hence, X+X = 2m+m.3n+n.5k+k [where X is the accuracy]

=2m.3n.5k.2m.3n.5k = 2m.3n.5k. X

Now let 5k = .2m1.3n1.

So X+X = .2m+m1.3n+n1.X

Let 3n+n1 = 2m2.

Hence, X+X = ..2m+m1+m2.X

Now for X tends to 0, either . tends to one or

m+m1+m2 tends to zero.

For .=1, (5k/2m1.3n1) . (3n.3n1/2m2) =1

or 5k.2-(m1+m2).3n = 1.

Again let, 5 = .2q, where << 1,

So k. 2qk. 2- (m1+m2).3n = 1 and hence either

qk - (m1+m2) = 0 or n = 0, since k << 1.

So qk =m1+m2 =m.

6. APPLICATIONS OF SDTBNS

6.1 To Find DFT of a Signal
Here we will discuss how SDTBNS can be used to implement

the linear convolution. The proposed architecture for

SDTBNS is shown in Fig-2. Here, we have taken an example

to compute the linear convolution of the signal x(n)={1,-

1,1,0,0} using DFT in SDTBNS.

Suppose, h(n)={2,2,1,0,0}. Let us assume that the length of

both the sequences is L = M = 3. (Where the

duration of x(n) and h(n) are L and M samples respectively)

Therefore we add M – 1 = 2 zero samples to the sequence x(n)

and L – 1 = 2 zero samples to h(n) so that the length of both

the sequences is L+M-1 = 5. Here N = 5. Then the Fourier

transform of the sequence x(n) is given by,

X(k) = x n e−
j2πnk

N = x(n)e−
j2πnk

54
n=0

(N−1)
n=0 ,

that is, X(0)=1,

X(1) = 1-1(0.309-j0.951)+1(-0.809- j0.587)

 = - 0.118 + j0.364

X(2) = 1-1(-0.809-j0.587)+1(0.309 + j0.951)

 =2.118 + j1.5387

X(3) = 1-1(-0.809+j0.587)+1(0.309-j0.951)

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

29

 = 2.118 - j1.5387

X(4) = 1-1(0.309+j0.951)+1(-0.809 +j0.587)

 = -0.118 - j0.364

Figure 1. Different numbers vs. error represented in SDTBNS and SDDBNS.

Fig.2. SDTBNS Architecture

In SDTBNS, the real and imaginary parts for different values

of N have been shown in Table 3 whereas the real and

imaginary parts of the corresponding X(n) are shown in

Table 4.

Similarly values of H(n) for different values on n are, H(0) =

5

H(1) = 2(1)-2(0.309-j0.951)+1(-0.809- j0.587)

 = 1.809-j2.489

H(2) = 2(1)+2(-0.809-j0.587)+1(0.309 + j0.951)

 = 0.691-j0.223

H(3) = 2(1)+2(-0.809+j0.587)+1(0.309- j0.951)

 = 0.691+j0.223

H(4) = 2(1)-1(0.309+j0.951)+1(-0.809 +j0.587)

 = 1.809+j2.489

The real and imaginary parts for H(n)‟s in SDTBNS are given

in Table 5.

Again we know that, Y(k) = X(k)H(k). Hence the value of

Y(k) and the corresponding errors in SDTBNS are given in

the Table 6. From Fig.3, it is clear that the results using

SDTBNS are accurate with the theoretical values.

Table 3

Real and Imaginary parts of different values of N

No. i j k Error in dB

0.309 -37 34 -8 -49.8

0.587 8 -7 1 -59.8

0.809 31 -30 7 -44

0.951 -17 18 -5 -46

5 10 15 20 25 30 35 40 45
-100

-90

-80

-70

-60

-50

-40

-30

Different Integers ---->

E
rr

o
r

--
--

--
->

Error in SDTBNS

Error in SDDBNS

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

30

Table 4

Real and Imaginary parts of X(n)

No. i j k Error in dB

0.118 8 -7 0 -42

0.364 33 -32 7 -45

2.118 42 -39 9 -72.5

1.5387 52 -50 12 -48

Table 5

Real and Imaginary parts of H(n)

No. I j k Error in dB

0.223 25 -23 4 -46.9

1.809 0 2 -1 -46

0.691 -44 45 -12 -44.7

2.489 -10 13 -4 -61.9

6.2 To Find FFT of a Signal using DIT

Algorithm
Let us assume that the DFT of the sequence x(n) =

{1,2,3,4,4,3,2,1} are to be found out using DIT

(Decimation-in-time) Algorithm. The twiddle factor

associated with the flow graph are supposed to be W0
8 = 1;

W1
8= 0.707 - j0.707; W2

8= -j and W3
8 = - 0.707 - j0.70. Now

if x(n) = {1,2,3,4,4,3,2,1}, the inputs to the first stage will be

selected from the LUT as x(0) =1, x(1) = 4, x(2) = 3, x(3) =

2, x(4) = 2, x(5) = 3, x(6) = 4 and x(7) = 1. The outputs of the

first stage are x‟(0 = x(0) + x(1) W0
8, x‟(1) = x(0) - x(1) W0

8,

x‟(2) = x(2) + x(3) W0
8, x‟(3) = x(2) - x(3)W0

8, x‟(4) = x(4) +

x(5)W0
8, x‟(5) = x(4) - x(5)W0

8, x‟(6) = x(6) + x(7)W0
8 and

x‟(7) = x(6) - x(7)W0
8. Where x(1)W0

8 = 1x1 =

20.30.50.20.30.50 = 20.30.50 can be found out from the

BST(Barrel Shifter) which is then added with x(0) in A7 of

the first SDTBNS unit in the first stage. There are eight such

units and each alternate units has an inverter at their input for

subtraction. The architecture is shown in Figure 7. The output

of the second stage are x”(0) = x‟(0) + x‟(2) W0
8, x”(2) =

x‟(0) - x‟(2) W0
8 , x”(1) = x‟(1) + x‟(3) W2

8, x”(3) = x‟(1) -

x‟(3) W2
8, x”(4) = x‟(4) + x‟(6) W0

8, x”(6) = x‟(4) - x‟(6) W0
8,

x”(5) = x‟(5) + x‟(7) W2
8 and x”(7) = x‟(5) – x‟(7) W2

8. Now

for the case x”(0) = x‟(0) + x‟(3)W0
8 = 5 + 5x1 =

5+20.30.51x20.30.50 = 10 which can be obtained from A7 of the

first SDTBNS unit in the second stage. The final output are

x”‟(0) = x”(0) + x”(4) W0
8, x”‟(4) = x”(0) – x”(4) W0

8 , x”‟(1)

= x”(1) + x”(5) W1
8, x”‟(5) = x”(1) - x”(5) W1

8, x”‟(2) = x”(2)

+ x”(6) W2
8, x”‟(2) = x”(2) - x”(6) W2

8, x”‟(3) = x”(3) +

x”(7)W3
8 and x”‟(7) = x”(3) - x”(7)W3

8. Now x”‟(0) = x”(0)

+ x‟(4)W0
8 x”‟(0) = 10 +10x1 = 10 + 21.30.51

 x20.30.50 = 20

which can be obtained from A7 of the final SDTBNS unit

after third clock pulse. Similarly the other output can be

obtained from the final adder of the individual SDTBNS unit.

As shown in Fig. 7, there is only one counter. For the 1st clock

pulse, the multiplexers are set to select the twiddle factor W0
8

= 1. At the same time the sequences x(0) = 1, x(1)=4 , ……

x(7) = 4 will be selected from the look-up-table. Here the

look-up-table converts the input sequence to the sequence {1,

4, 3, 2, 2, 3, 4, 1}. Now x(0), x(1) and W0
8 will be fed to the

input of the SDTBNS unit which gives the value x‟(0) = x(0)

+ x(1) W0
8 = 1+4x1 = 5. The output of the second SDTBNS

unit is x‟(2) = x(2) + x(3) W0
8 = 3+2x1 = 5. Similarly the

outputs from the other two SDTBNS units are x‟(4) = 5 and

x‟(6) =5. For the 2nd pulse, the counter gives „001‟ which

select W0
8= 1 from M2. The first MRNS (Mixed Radix

Number System) unit of the second layer then gives the output

as x”(0) = x‟(0) + x‟(2)W0
8 = 5+5x1= 10. The output of the

2nd SDTBNS unit of the second layer is x”(4) = x‟(4) +

x‟(6)W0
8 = 5+5x1 = 10. At the 3rd pulse the counter C3 gives

„010‟ which selects W0
8 = 1 from M3. The output of the

SDTBNS unit of the third layer is x”‟(0) = x”(0) + x”(4) W0
8

= 10+10 = 20. For the 2nd pulse, -W0
8 = -1 is selected from

M1 and the output of the four SDTBNS unit in the first layer

are x‟(1)=x(0) - x(1) W0
8 , x‟(3) = x(2) - x(3) W0

8, x‟(5) = x(4)

- x(5) W0
8 and x‟(7) = x(6) - x(7) W0

8 respectively whereas

the output from the SDTBNS unit in the second layer are then

x”(0) and x”(4). Now for the 3rd pulse W2
8 = -j is selected

from M2 and the output of the SDTBNS unit in the second

layer are x”(1) = x‟(1) + x‟(3) W2
8 and x”(5) = x‟(5) + x‟(7)

W2
8 respectively and at the same time the output of the

SDTBNS unit in the third layer is x”‟(0) = 20. The output

from the SDTBNS units in the first layer at the 3rd pulse are
x‟(0) = x(0) + x(1) W0

8, x‟(2) = x(2) + x(3) W0
8, x‟(4) = x(4)

+ x(5) W0
8 and x‟(6) = x(6) + x(7)W0

8 respectively. At the 4th

pulse the output of the first layer are x‟(1) = x(0) - x(1) W0
8,

x‟(3) = x(2) - x(3)W0
8, x‟(5) = x(4) - x(5) W0

8 and x‟(7) =

x(6) - x(7) W0
8 respectively, the output of the second layer

x”(2) = x‟(0) - x‟(2) W0
8 and x”(6) = x‟(4) – x‟(6)W0

8

respectively (since - W0
8 = -1 is selected from M2 for „11‟)

and the output of the third layer is x”‟(1) = x”(1) + x”(5) W1
8

(since W1
8 = 0.707 –j0.707 is selected at the 4th pulse). Thus

we get the output sequences as {20, -5.828- j2.414, 0, - 0.172

- j0.414, 0, - 0.172+j0.414, 0, -5.828+j2.414}. At the time

when W1
8 = 0.707 –j0.707 is selected, the operation to be

performed is at first x1”‟(1) = 0.707. x”(5) +x”(1) and then

x2”‟(1) = 0.0 – 0.707.x”(5), where x”‟(1) = x1”‟(1) + j x2”‟(1).

Table 6

Real and Imaginary parts of Y(n)

Y(k) S i J k Error in

dB

Y(0) 1 0 0 1 -infi

Y(1) Real -1 8 -5 -1 -41.6

1 23 -19 3 -50.1

Imaginary 1 -2 6 -4 -48.5

1 33 -30 6 -41.4

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

31

Fig.-3. SDTBNS vs. Theoretical results.

7. DYNAMIC RANGE
The range of representation of different integers in SDTBNS

is much more than that in SDDBNS representation. For

example, in SDTBNS representation using only one bit (i.e.

the indices is either 0 or 1), the maximum number of integers

that can be represented without any error is

eight(1,2,3,5,6,10,15,30) and that with error is 22(30-8),

whereas in SDDBNS, the maximum number of integers that

can be represented without any error is only four(1,2,3,6) and

with error is 2(6-4). Similarly for two bit, the range (without

any error) in SDTBNS and SDDBNS are 22x22x22 = 64 and

22x22 = 16 respectively and with error are 22x32x52 - 22x22x22

= 900- 64 = 836 and 22x32 - 22x22 = 36 – 16 = 20 respectively.

So if we use SDDBNS, the requirement of hardware needed

for arithmetic operation is approximately four times greater

than that if we use SDTBNS, to cover the same range,

otherwise the execution time will be more than that for

SDTBNS. To increase the dynamic range

in case of SDDBNS, the requirements of hardware are to be

increased as shown in Fig.6.The figure shows that we have to

use a decoder to enable which look-up-table has to be used

for a specified range. We have to use two gate array to input

the ALU (a3) and the BS (Barrel Shifter) from the

corresponding look-up-table, while the other look-up-tables

remain disabled . The input to the Decoder comes from the

SDDBNS converter. In general for N-bit, the range of number

that can be represented in SDTBNS is 2N greater than that in

SDDBNS.

8. SIZE OF DIFFERENT HARDWARE
The size of the lookup table, barrel shifter and other hardware

components can be reduced to a great extent if we use

SDTBNS in place of SDDBNS. This can be understood from

the following example considering the Fig.2.and Fig.7. Here it

is supposed that two numbers (both are 7) are to be multiplied.

Now 7 is equivalent to 255.3-30.5-2 in SDTBNS and 2109.3-67 in

SDDBNS. In case of multiplication using SDTBNS, the sum

of the indices to the bases 2, 3 and 5 will be 110, -60 and -4

respectively and using SDDBNS, the sum of the indices to the

bases 2 and 3 will be 218 and -134 respectively. Hence

maximum 7-bit, 6-bit and 3-bit respectively are required to

represent 55, 30 and 2(including sign bit). Again to represent

109 and 67, maximum 8 bits (including sign bit) are required.

So the size of the ALU (A3,A2 and A1) for SDTBNS and

ALU (a2 and a1) for SDDBNS will be of 8 and 9 bit wide

respectively. The data bus length for the results from the

ALUs in SDTBNS and SDDBNS will be of maximum 8 and 9

bit respectively. Now 5-4 = 2276.3-180. Again to represent 180, 9

bits are required and hence the size of the ALU (A4) will be

of maximum 9-bit wide and the data bus length from A4 will

be of 9-bit since the output from A4 (–240) needs maximum

9-bits (including sign bit). Now the indices to the base 3 in

a1[lower case for adder in SDDBNS] is -134. So the size of

LUTD1 used for SDDBNS multiplication is of 134 address

space. Again the indices to base 5 in A3 is -4 and hence the

size of LUTT1 used in SDTBNS multiplication is of 4 address

space. The output from LUTD1 and LUTT1 are 3x2-264(3-

134) and 2276.3-180 respectively. The size of a3 will be of

maximum 10-bits wide and that of the BSD will be of 30-bits

wide [to shift the mantissa either right or left by 14 times, 28-

bits (-46 (MOD32) = -14) are required and 2-bits for

representing 3]. A5 will be of maximum10-bits wide (110

needs 8-bits and 276 needs 10-bits) wide. The output of A4 is

–240. Hence the address space of LUTT2 will be 240. Now 3-

240 = 3x2-382. The input to A6 are –382 and 386 and hence

the size of A6 is 9-bit wide. The output of A6 is 4. Again to

represent 3, 2-bits are required and to shift 3 (either right or

left) by 4 times, 8 –bits are required. Hence the size of the

BST is of 10-bit wide as mentioned in Table 7. This table is

true only in the case of multiplication of 7 with 7. For higher

range, all the different parameters expressed in Table 7, will

be increased further if SDDBNS is used. So it is clear from

Table 7 and from the above discussion that, if we use

SDTBNS in place of SDDBNS, we will get advantages

w.r.to the hardware requirement and bus length. Table 8

gives an idea how the sizes and the requirements of

hardware component increases with the ranges (considering

the ranges as 1-25,26-50,51-75, 76-100). Fig.7 shows that in

SDDBNS, four LUT are to be used to cover the whole range

that can be done with a single LUT in SDTBNS. Though a

single look-up-table can also be used in SDDBNS, but in that

case the address space of that LUT will be excessively high

and hence access time will be more. Also the design of LUT

in SDDBNS is much more complex. Fig. 4. and Fig.5. give

an idea about how SDTBNS are more attractive than

SDDBNS .

0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real values of the Coefficients ----->

Im
a

ji
n

a
ry

 v
a

lu
e

s
 o

f
th

e
 C

o
e

ff
ic

ie
n

ts
 -

--
--

>

Values using SDTBNS

Theoritical Values

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

32

9. TIMING COMPLEXITY
Considering Fig.6 and Fig 7, it can be understood that how the

execution time can be reduced using SDTBNS. Let us assume

that, TD = delay in decoder used in SDDBNS architecture, TA

= delay in the ALU used for SDTBNS and SDDBNS (it is

assumed that the processing speed for addition in the ALU

used for both SDDBNS and SDTBNS are same).

Since the address spaces for the LUTT used for SDTBNS

are of maximum 176 (as shown in Table 8) and that for

SDDBNS are of maximum 1390, so TLT (Delay in the look-

up-table used in SDTBNS) < TLD(Delay in the look-up-table

used in SDDBNS).

TG = delay in gate array used in SDDBNS .

Since the size of the barrel shifter used in SDTBNS is of

maximum 10 bits length and that used in SDDBNS is of

maximum 30 bits length, TBST (Delay in the barrel shifter

used in SDTBNS) < TBSD (Delay in the barrel shifter used in

SDDBNS). Then total execution time in SDDBNS is

TSDDBNS= TA(for a1 or a2)+ TD + TLD + 2TG + TA (for a3) +

TBSD +TA (for a4) and that in SDTBNS,

TSDTBNS = TA (for A1 or A2 or A3)+ TLT (for LUTT1) + TA

(for A4 or A5) + TLT (For LUTT2) + TA (for A6) + TBSD + TA

(for A7) .

Now since TLT < TLD and TBST < TBSD and since TG is

multiplied by two , hence TSDTBNS < TSDDBNS.

10. SDTBNS REDUCTION RULES
We can use a geometrical interpretation for each of the

bases(2, 3 and 5) to represent any integer in SDTBNS. Non-

zero SDTBNS digits are represented as black squares. This

interpretation helps us to demonstrate simple identities on

special combination of the black cells. For example 21.30.50

+20.31.50 = 20.30.51. In general 2i+1.3j.5k + 2i.3j+1.5k =

2i.3j.5k+1. Figure 8 (a) and (b) show the two integers 21.30.50

and 20.31.50 represented in SDTBNS form and Figure 8(c)

shows the result.

11. ADDITION OF TWO SDTBNS

NUMBERS
Suppose a and b are two integers that can be represented in

SDTBNS as 2i1.3j1.5k1 and 2i2.3j2.5k2. Then the result of

addition of a and b will be

c = a +b = 2i1 . 3j1 . 5k1 + 2i2 . 3j2 . 5k2
 = 2i2 . 3j2 . 5k2 [1+ 2i1 . 3j1 . 5k1 / 2i2 . 3j2 . 5k2]

 = 2i2 . 3j2 . 5k2 [1+ 2i1 . 3j1 . 5k1 . 2−i2 . 3−j2 . 5−k2]

 = 2i2 . 3j2 . 5k2[1 + A] = 2i2 . 3j2 . 5k2 . A1

Now A can be found out using the proposed SDTBNS unit.

The output of the barrel shifter of the SDTBNS unit is then

added with binary one in the adder unit A8 and the output is

A1. A1 is then multiplied in the same SDTBNS unit whose

output gives the result of a + b.

12. ACCURACY OF SDTBNS OVER

SDDBNS
The accuracy to represent different numbers in SDTBNS

shows its advantage over SDDBNS. Table.1.depicts the

representation of different numbers

for different values of i, j and k and also represents the error

in dB. Figure 9(a) and (b) represent the accuracy level of

different numbers using different combination of i, j and k in

dB and in percentage. From the figures it is clear that curve C

gives better accuracy over A and B. Figure 10 represents how

the accuracy of SDTBNS, depends on the values of i and k.

For the curve A accuracy changes from 0.0147 to -0.015 and

in each step the corresponding accuracy will be the previous

accuracy(p.a.) – 0.0063. The change in the values of i

and k are from -623.0 to 733.0 and from 290.0 to -294.0

respectively and steps for the changes of i and k are 339 and

146 respectively. Hence m = 339 and k = 146 and q =

m/k = 2.32. For curve B and C, corresponding accuracies

changes from -0.0524 to -0.0234 in step of (p.a. - 0.0073)

and 0.0445 to 0.0153 in step of (p.a. – 0.0073) respectively.

For both cases, „q‟ remains same. The term „q‟ is known as

„accuracy factor‟ and it is mentioned in Theorem 2 that it

varies with the exponents of the bases 2 and 3.

Figure 4. Hardware requirements for SDTBNS and SDDBNS.

1 1.5 2 2.5 3 3.5 4
5

10

15

20

25

30

35

Different Ranges of Number---->H
a
rd

w
a
re

 R
e
q

u
ir

e
m

e
n

t
in

 S
D

T
B

N
S

 a
n

d
 S

D
D

B
N

S

Hardware Requirement in SDTBNS

Hardware Requirement in SDDBNS

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

33

Figure 5. Hardware complexities for SDTBNS and. SDDBNS.

Figure 6. Architecture of SDDBNS used to cover the whole range that can be represented in SDTBNS.

1 1.5 2 2.5 3 3.5 4
200

400

600

800

1000

1200

1400

1600

Different Ranges of Number--->H
a
rd

w
a
re

 C
o

m
p

le
x
it

ie
s
 i
n

 S
D

T
B

N
S

 a
n

d
 S

D
D

B
N

S

Hardware Complexity in terms of Address Space of LUT in SDTBNS

Hardware Complexity in terms of Address Space of LUT in SDDBNS

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

34

Fig.7. Architecture to find out DFT using DIT Algorithm.

Fig.8(a). 21.30.50 represented in SDTBNS (b). 20.31.50 represented in SDTBNS (c)) 20.30.51 represented in SDTBNS map.

Figure 9. Accuracy of representation of different number using SDTBNS (a) in dB and (b) in percentage.

5 10 15 20 25 30 35 40
-100

-50

0

50

Numbers ---->

E
rr

o
r

in
 d

B
 -

--
->

Figure 9(a)

5 10 15 20 25 30 35 40
-40

-20

0

20

numbers---->E
rr

o
r

in
 p

e
rc

e
n

ta
g

e
--

--
>

Figure 9(b)

A

B C

A

B

C

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

35

Figure 10. Variation of accuracy with respect to the variation of i and k.

Table 7

Size of ALU and Address Space for LUT used in SDTBNS and SDDBNS

No. System ALU size Address space of LUT Size of BS Maximum

length Address

Bus

Maximum

length of data

bus

SDDBNS a1,a2 are 9-bit wide and a3 is

10-bit wide.

Address spaces for LUTD1 is

134.

30-bit 8-bit 10-bit

SDTBNS A1,A2,A3 are 8-bit wide , A4

, A6 are 9-bit wide,A5 is 10-bit

wide.

Address spaces for LUTT1

and LUTT2 are 4 and 240

respectively

10-bit 8-bit 10-bit

Table 8

Size of different Hardware required in SDTBNS and SDDBNS

No

system

range No. of

ALU

ALU

size(max)

No. of

LUT

LUT size No. of

Decoder used

Gate array

SDDBNS 1-25 3 12-bit 2 852 address space One 2:1 12 ,2-input OR Gate
26-50 3 13 bit 4 1390 address space One 4:1 13 ,4-input OR Gate

51-75 3 13 bit 8 1300 address space One 8:1 13 ,8-input OR Gate

76-100 3 13 bit 16 1388 address space One 16:1 13, 16 input OR Gate

SDTBNS 1-25 6 9 bit 2 Maximum 144 address space No decoder No gate array
26-50 6 10 bit 2 Maximum 144 address space No decoder No gate array
51-75 6 9 bit 2 Maximum 176 address space No decoder No gate array
76-100 6 10 bit 2 Maximum 132 address space No decoder No gate array

13. CONCLUSIONS
Here a new concept to represent any integer in SDTBNS

form has been illustrated and also a comparative study with

SDDBNS has been discussed. From this illustration, ideas

about the advantages of SDTBNS w.r.to SDDBNS in terms of

bit efficiency, hardware complexity and speed have been dealt

clearly. Using the concept of the proposed method, we have

shown the implementation of linear convolution and DFT.

The experimental results clearly indicate the high level

accuracy in implementing DSP functions using the

proposed number systems. The performance analysis of the

DSP algorithms implemented using SDTBNS also indicates

its novelty. Here We have also shown the optimal value of the

indices i, j and k to represent any number within a specified

accuracy.

14. REFERENCES
[1] Vassil S Dimitrov, Graham A. Jullien, Senior Member,

IEEE, and William C. Miller, Senior Member,

IEEE ,Theory and Application of the Double-

Base Number System, IEEE Transaction on

Computers, Vol. 48, No.10,Oct. 1999.

[2] P. Kornerup, “Comp. Arithmetic: Exploiting

Redundancy in No. Representations,” Proc. ASAP ‟95,

Strasbourg, France .

-1000

-500

0

500

1000

-400

-200

0

200

400

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Integer i ------->Integer j ------->

In
te

g
e
r

k
 -

--
--

--
>

A

B

C

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.9, July 2012

36

[3] A. Avizienis, “Signed-digit Number Representation for

Fast Parallel Arithmetic”, IRE Trans. Electronic

Computer

[4] V.S. Dimitrov, G.A. Jullien and W.C. Miller, “An

Algorithm for Modular Exponentiation”, Information

Processing Letters, vol.66, no. 3, pp. 155-159,

1998.

[5] T. N. Shorey and R. Tijdeman, “Exponential

Diophantine Equations, Cambridge University

Press,1986.

[6] S. S. Pillai, “On the equation 2a - 2b = 3c – 3d ”, Bulletin

of the Calcutta Math. Soc., vol. 37, pp. 15- 20, 1945.

[7] V. Dimitrov and T.V.Cooklev, “Two algorithm for

modular exponentiation based on nonstandard

arithmetic”, IEICE Transactions on Fundamentals of

Electronics, Communications and Computer Science,

vol. E78-A, no. 1, pp. 82 -87, Jan. 1995, special issue on

cryptography and information security.

[8] J. A. Solinas, “Low-weight binary representations for

pairs of integers”, Center for Applied Cryptographic

Research, University of Waterloo, Waterloo, ON,

Canada, Research Report CORR 2001-41, 2001.

[9] J. Adikari, V. Dimitrov and L. Imbert, “Hybrid Binary-

Ternary Joint Sparse Form and its Application in Elliptic

Curve Cryptography”, Draft, July 2, 2008, supported by

the Natural Science and Engineering Research Council

of Canada.

[10] D.Hankerson, A.Menezes and S.Vanstone, Guide to

Elliptic Curve Cryptography, Springer, 2004.

[11] Pavel Sinha, Amitabha Sinha, Krishanu Mukherjee and

Kenneth Alan Newton, “Triple Base Number Digital

and Numerical Processing System”, Patent filed under

E. S. P. Microdesign Inc., Pennsylvania, U.S.A., U. S.

Pat. App. No. 11/488, 138.

[12] S. Sadeghi-Emamchaie, G. A. Jullien, V.S. Dimitrov and

W.C. Miller, “Digital Arithmetic using analog Arrays”,

Proc., Eighth Great Lakes Symp. on VLSI, pp. 202-207,

L. L., Feb.98.

[13] S. Maitra, A. Sinha, “A Single Digit Tripple Base

Number System – A New Concept for Implementing

High Performance Multiplier Unit for DSP Aplications”,

Proceedings of the sixth International Conference on

Information, Communication and Signal

Processing(ICICS2007), December, 10-13,2007.

[14] S. Maitra, A. Sinha, “Architecture of Mixed Radix

Number System –A New Approach of Designing Digital

Filter”, proceedings of the 10th IASTED International

Conference on Signal and Image Processing(SIP2008),

August, 18-20,2008, Kailua-Kona, HI, U.S.A.

