
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

41

 Computing A Matrix Transpose of Multithreading for
Queueing Parallel in Matlab Programming

 I.A. Ismail G.S. Mokaddis Mariam K.Metry
Dean of Faculty of Computer Prof .of Statistics Mathematics Engineer software of AOI Science

and Informatics, Department of Mathematics, Student P h.D ,Faculty

Misr International University, Faculty of Science , Ain Shams of Science, Ain Shams

Cairo, Egypt. University, Cairo, Egypt. University, Cairo, Egypt.

ABSTRACT
This paper describes a A matrix operation (vector and

transpose) can be performed in queueing parallel model by

using multithreading software are showing. Multithreading is

useful in reducing the latency by switching among a set of

threads in order to improve the processor utilization. Closed

queueing network model is suitable for large number of job

arrivals. The model is validated by comparison of analytical

parallel and simulation result.

Keywords
Closed Queueing Network, parallel programming, simulation

and computing.

1. INTRODUCTION
Most of recent scalable shared memory architectures typically

provide different combinations of latency reducing and such

as caching and multithreading (Bhaskar.V ,

2009).Multithreading is used for hiding long memory latency

in multiprocessor systems, and aims to increase system

efficiency. A number of threads are allocated to a processing

node which switches thread contexts according to some

context switch policy, such as switch on cache misses,

synchronization locks or explicit remote references (coarse or

block multithreading); or switch on each instruction or each

cycle (fine multithreading). Finely multithreaded processors

potentially provide low context switch overhead, but require a

large number of threads and a complex thread scheduling

technique supported by hardware in order to achieve high

efficiency of pipelined execution. On a single threaded load

the utilization of a fine multithreaded processor dramatically

falls off. Multithreading technique allowed the conclusion that

a block multithreaded (Greenberg. A. G., 1991) and

(V.Vlassov,1996). Mathematical methods and simulation are

used to analyze various architectural solutions in a

MTA (Mean Thread Analysis) design. A few attempts of

mathematical evaluation of block multithreaded MTA

have resulted in deterministic analytical models and queuing

models (Scott Graham.G, 2002) and (Zhao.Y, 2006). A

technique of analytical modelling of such MTA is mainly

based on the consideration of a set of thread states and state

transitions. A thread, during its life time, cyclically passes

through four main states: switching, running, suspended and

ready. As a consequence, a processing node while executing a

set of threads cyclically passes through three states: switching,

running, and idle. The efficiency of the architecture is

evaluated as the ratio of the total running time to the sum of

the total switching, running, and idle time of the processing

node. The distribution time for each state of a thread, except

for the ready state, can be assumed to be fixed (deterministic

models) or random (probabilistic models).A first order

approximation for MTA efficiency is a set of n threads

with the following fixed timing parameters: context switching

overhead C , remote memory latency L and thread run

length R , which is the number of cycles between two

consecutive remote references resulting in context switch. The

model predicts linear dependence of MTA efficiency

remote memory latency EL on the number of threads n ,

MTA is saturated at the saturation point sN . After this

point efficiency as a function of n becomes constant sE :

1

,

Efficiency of single threaded architecture,

STA is E / (),

Efficiency of muli threaded architecture,

MTA is E (),

Linear region of MTA efficiency is

E / (),

Saturaion point is

N = {l/(R+C)

n L s

L

s

R R L

E E

nR R L C

 



  

}+1.



















(1)
A queueing model for multithreaded architecture is executing

a set of statistically identical threads. The presented solution

of a closed queueing network is a case study for a particular

state diagram for a thread execution cycle with context switch

on local memory misses. The model illustrates a usage of

queueing theory for evaluation of MTA .

2. PARALLEL PROGRAMMING

MODEL
2.1. Threads model
Multithreading is similar to multiprocessing programming the

difference is that a multithreaded program has a single

processor which manages multiple threads of control

executing asynchronously (Ricardo Bianchini,1996). The

threads library provides function calls to calls to create

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

42

threads, control threads, terminate threads, control access to

shared data through locking mechanisms, generate events and

wait for events.

2.2 Program transformations
We have identified the dependencies in a program, comes the

issue of whether we can overcome the dependencies so that

the program is queueing parallel execution.

- Forward Dependency.

- Backward Dependency.

2.2. A thread state diagram

We assume that the MTA have a typical structure

including the processing element PE , a cache, and a main

memory, part of which is shared. Assume that during its life

time the thread cyclically passes through the following timed

states:

• C : context switch, where the thread is being scheduled for

execution. Thread run length of context switch takes

CR cycles to activate a thread whose context

resides in the processing element of the MTA ,

and the resident thread CM cycles to activate a

thread from the main memory of the MTA

(memory thread).

• r : run state, where the thread is executing during a time

between two consecutive cache accesses.

• LC : cache memory access (cache latency).

• T : locality test, which is performed in the case of a cache

miss to check if data resides in local or remote

memory.

• LM: local memory access (local memory latency) which is

performed in the case of a cache miss and if data is

in the

memory.

• L: Remote memory access a local memory miss (remote

memory latency). The interval may include the time

required to send a remote fetch request,

communication round trip time, time needed to

maintain cache coherency and load requested data to a

register.

• rt : ready state, where the thread is ready for execution.

The duration of this state depends on behavior of other

threads allocated to the node and does not need to be

specified as an input parameter.

 Assume also that a local memory miss may occur with

probability LMP (local memory miss ratio), and the

probability of a cache miss is PM (cache miss ratio).

illustrates thread state transitions. Execution of the newly

reactivated thread C resumes from the state r , where the

PE executes thread instructions passing through LC (cache

access) and returning back to r if requested data is currently

cached (probability 1 PM). This loop continues until

the cache misses with probability PM , and the thread

passes to the locality-test state T where it checks locality of

the requested address. In the case of a local memory miss

(probability LMP) the thread initiates a remote memory

access and becomes suspended in the state L . In the case of

a local memory hit (probability 1 LMP) the thread

performs a local memory access LM and returns back

to r .Assume that MTA executes a fixed number n of

identical threads forever. In this case the MTA can be

represented as a closed queuing network with a finite number

n of circulating jobs (threads). The queueing network

consists of a queue Q and two subnetworks called RN

and LN . Each server of the queueing network corresponds

to a thread state and is defined mean service time. For

example, s the r state and is marked by the r service time.

Assume that all timing parameters r , L , LM , LC ,

CR ,CM and T have exponential distributions with

corresponding means, and that the mean context switch time

C is defined as:

 ; if ,

 . + .(-) ; if ,

R

R M R R

CR n n
C

CR n C n n n n


 



(2)

where Rn is a number of contexts which may reside in the

processing element of the MTA . It is difficult to analyze

the queueing network because sub network RN can not

serve more than one job at a time, i.e. not more than one

thread can be active at any time. The behavior of the network

with the above restriction can be described by the continuous

time Markov chain. Each state of the chain is marked by a

triple index (, ,)q s l .

 where:

• q : number of jobs in the queue Q

, {0,1,2,...,(1)}i n  ,

•s : the name (mean service time) of a server in the network

where the job is located,

{ , , , , , }s C r LC T LM l ,

• l : the number of jobs in sub network LN ,

{0,1,2,..., }l n .

 The chain contains states and can be analytically explored

using well known methods (Ismail.A.I., 2000)and (Anoop

Gupta,1991). To define the limiting probabilities of states, the

following system of equilibrium equations of our queueing

network must be deduced as follows

0, , 0, , 10 ,L L n T LM T nn P P P   

, , 1

1, , 1

1, , 2

0, ,

0 ()

(1) ,

C i C n i

i C n

T LM i T n i

L L n

P

P

P P

n P







 

 

  

   

 

 



International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

43

, , 1 1, , 1

, , 1

, , 1

0 ()

(1) ,

r i r n i i r n

C i C n i

LC M i LC n i

P

P

P P







   

 

 

    





, , 1 1, ,

, 1

0 ()

 ,

LC i n i i LC n iLC

Lc M LC n i

P P

P P





   

 

   



, , 1 1, ,

, 1

0 ()

 ,

T i T n i i T n i

Lc M LC n i

P P

P P





   

 

   



 (3)

where, (1) , ()L Ln i n i        ,

1 ; if i < -1,

0 ; if i= -1.

n

n


  



1 ; if > 0,

0 ; if 0.

i

i


  



1/ , 1 / ,

1 / ,

1 / ;

 =0,1,..., -1.

C r

LM

L

C r

LM

L

i n

 





 





The conservation relation is:

1 1

, , 1 , , 1
0 0

1

, , 1
0

1

, , 1
0

1

, , 1 , ,
0

1.

n n

i C n i i r n i
i i

n

i LC n i
i

n

i LM n i
i

n

i T n i o L n
i

P P

P

P

P P

 

   
 



 




 




 


 





 

 







 (4)

 Since service in the , , r LC T and LM

in servers of the RN subnetwork is useful work, the

probability of having the thread in the servers is interpreted as

efficiency of the MTA :

1

, ,, , 1
0

1 .
n

n o L ni C n i
i

E P P


 


  

(5)

 We have analyzed the chain computationally using the

matlab environment. Nevertheless, it is possible to simplify

the analytical solution of the queueing network using the

following steps.

1. Considering the RN subnetwork as a closed

queueing network with one circulating job (thread),

determine the following:

• Throughput (service rate 1/ ()R C) of the

RN subnetwork, where R is run length, i.e.,

the number of cycles between two consecutive local

memory misses in a thread (context switches in the

sPE).

• Probabilities of having the job in each

servers sP { , , , , }s C r LC T LM

2. Derive from the above information the utilization of the

MTA in saturation, i.e., 3.assuming that a running

thread is always available on each context switch.

3. Assuming that the closed queueing network consists of

/ /1M M queueing system with one server (with

service rate 1/ ()R C) and / /M M n

queueing system with n servers (each with service rate

1/ L), determine the utilization of the MTA as a

function of the number of threads circulating in the

queueing network.

2.3 Mean thread analysis MTA

We shall first consider sub network RN as a closed

queueing network (with one circulating job), in which the T

server is connected to the C server. It contains five servers :

C , r , LC , T , and LM , which are numbered

1,...,5 respectively. The fictitious job source is numbered

0 and located between T and C servers. A matrix of

transition probabilities TA , which is derived from the

structure of the closed queueing network in Equation (5) is

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 (1
TA 

0

0

0

-P) 0 P 0

(1-P)P 0 0 0 0

00 0 1 0 0

LM LM

LMLM

 
 
 
 
 
 
 
 



International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

44

transformation coefficients , 1,...,5
i

i  each of which is a

mean number of having a thread in the corresponding server

and can be defined from the following system of equations.

1,

(1). . = 0

 ; i=1,...,5

s

ii i ji j
j j i

P P 
 

  
 The

solution is =

1

2 3

4 ,

5 LM .

1,

1 / (),

1 /

 (1-P) /

M LM

LM

LM

P P

P

P



 








 



 

 The state of a closed queueing network is represented by an

exponentially distribution of m jobs in k nodes, and the

number of statesisequal to (1)!/(!(1)!)m k m k   .

Since we have assumed that one job (1)m  circulates

only .The probability of each state is the probability of having

the job in the corresponding server. The state probabilities can

be defined using product form analysis and Erlang’s formulas:

2

3

4

5

 / ,

 / ,

 / , ,

 / ,

/ .

C

r

LC

T

LM

P C D

P r D

P LC D

P T D

P LM D









 


 


 


 

 (6)

where,

2 3 4 5D C r LC T LM        The

probability of having the job in any queueing server of

RN except of the C server is the utilization of the

MTA

where, 1 / ()s CE P R C R    .

 (7)

[(1)]C M LM M

M LM

R

r L T L P P

P P



     .

 (8)

is thread run length.

Note that the mean run length R , from the above Equations

(7) and (8) can be used in the deterministic (fixed).

2.4.1. Efficiency of the MTA

It can be shown that the mean response time of the RN

sub network is C R .Assume that subnetwork RN is

represented as a server with service rate 1/ ()R C .

The network includes two queueing systems, / /1M M

and / /M M n numbered 1 and 2 . The number of

states is 1n  , where the number of circulating jobs

(threads) is n . Transformation coefficients for this queueing

network are 1 21, 1.   Probabilities of states can

be derived in the same way as for the RN network :

1 2 1 2

1 2

(,) 0,..., ; 0,..., ;

 .

n n n n n n

such that n n n

   

 

It follows that

1 2

1
11

2 0

(,)

() . .(())
! !

n inn n i

i

P n n

L L
C R C R

n i

 





 

The probability of having at least one thread in RN is

1 (0,)P n . Since a service in the r , LC ,T and

LM servers of the RN subnetwork is the product

efficiency of the MTA :

(1 (0,))nE P n  ,

1

0

[1 ()] ,
! !

n in

s
i

R
E

n i R C

  



 




(9)

where ,

/ ()L C R   .

 The mean number of running threads nR (utilization of

the RN subnetwork), the mean number of ready

threads .n r (mean number of jobs in the queue), the mean

number of suspended threads ns (utilization of the LN

servers), and the mean ready time tr (waiting time in the

queue Q) can be calculated using queuing theory:

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

45

2

1

1 (0,),

(1) (,),

 (,),

()
,

R

n

r
i

n

s
i

r
r

R

n P n

n i P i n i

n i P n i i

C R n
t

n





  



  




  









(10)

where,

R r sn n n n   .

2.4.2. Efficiency of the MTA with fixed

number of L servers

The closed queueing network in contains the L servers

which model remote accesses. The number of the L servers

k , represents the number of remote requests which can be

serviced in parallel. This number can be fixed and

independent of the number of executed threads, n . If k is

fixed and, then a state probability (the probability of having

1n jobs in the RN subnetwork and jobs in then LN

subnetwork) is



1
2

1 P(n ,n)= 1 2
2 0

 ()
() ()

n in
n i

C R
i

L L
n C R

n i 









 

 
 


,

where,

! ; if x k,
()

! ; if x>k. x k

x
x

k k





 


The Equation (10) is valid but the Equation (7) is

transformed to:

1

0 1

() [1 (,)]

 1
!! !

s

n i ik n

n k i k
i i k

E n k P o n E

ik k k k

  


 
  

   

 
  




 

(11)

 The minimum number of L servers, required to achieve a

desired efficiency of the MTA is given workload can be

obtained by repetitive computations of the efficiency.

3. THE PERFORMANCE MEASURES OF

QUEUEING PARALLEL

COMPUTING
We can be described the performance measures of

queueing parallel computing under MTA (Scott

Graham.G, 2002).

 Queue lengths

The probability that there are k or more job i is given by

(1)
() ; i k

()

k
i i

C N
P N

C N



 

(12)

The average queue length at i in the system is given by:

1

(1)
[()]

()

N

i i
i

C N
E L N

C N







(13)

The expected total number of jobs (threads) in the system:

1 1

[()] [()]
m n

i j
i j

L E L N E L N

 

  

1

1

1
() (1)

()

() (1)

m N
ui

l ii u u

n N
j u

l jj l u

L

P
C N

C N P

P
C N

P





 

 




 



 
 

 

 

 

.

 (14)

 Response time
The average response time of task in node j is given by

0 1

[()]

1 (1)
()

()

i
sys

i

N

j
i l

E L N
R

C N

P C N








 




0 11

[()]

1 (1)
()

()

i
sys

i

N
j

i jl

E L N
R

P C N

P P C N



 


 

 




 (15)

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

46

01,2,..., , .

j
j

P
i m

P



  



The total response time of the system is given by

1 1
i j

m n

s sys sys
i j

R R R

 

  

0

1 1 1 1

()(1) (1)
()

() ()

s

uum N n N
ji

i ji u j u

R

P C N C N

P C N P C N



    



  
 

 
 

   

(16)

 Waiting times
The total waiting time in the system is given by

1

1

(1) 1
[] ()

()

(1) 1
(())

()

m
u

s i
ji

n N
o

j
j jj i

C N
E W

C N

P C N

P C N





 






  


 





 

(17)

4. NUMERICAL RESULTS
We used double 32 bits,

 This is the specifications of my personal computer (PC) are

computing a matrix operations of multithreading for queueing

parallel. We studied the operations of the

4 4 dimensional transpose and inverse matrix

mathematics and four threads. We are important to studies

some operations matices for CPU (Processor = Intel (R)

Core(TM) i7-2600 3.4 GHz and Ram= 8 GB DDR3) of

computer system. Show the analytical results MTA both

sequential computing (simulation technique) and parallel

computing for multithreading in computer system by using

matlab programming.

First, we discuss to compute the operation of the 4 4

dimensional transpose matrix mathematics under 4 threads in

by using Gauss Jordan method in the following this

example:

Assuming the matrix is given by

1 0 5 6

2 3 0 4

1 4 2 2

1 1 2 1

A

 
 
 
 
 
 

 Applied MTA program, we note that vector matrix and

matrix transpose stored in the thread of one row to equal =

[1 2 1 1 ; 0 3 4 1 ; 5 0 2 2 ; 6 4 2 1] .

And the transpose matrix is given by

1 2 1 1

0 3 4 1

5 0 2 2

6 4 2 1

transposeA

 
 
 
 
 
 

.

Table 1: Compare between the computing sequential and

computing parallel of response time in queueing network

for multithreading.

Response Time

(second)

Sequential Parallel

1.03245 0.75412

Figure1: The response time by second

Compare the response time

between sequential and Parallel for

threading in queueing parallel

Table 2: Compare between the computing sequential and

computing parallel of waiting time in queueing network

for multithreading.

Waiting Time

(Microsecond)

Sequential Parallel

92832 4539

Figure 2: The waiting time by micro second.

Compare the waiting time

between sequential and Parallel

for threading in queueing parallel

By

Table1 and 2 and also Figure1 and2 of the

4 4 dimensional matrix mathematics under four threads,

the parallel queueing model is the fastest running time and to

reduce waiting time or elapsed time for multithreading of

queueing theory in computer system (CPU).

5. CONCLUSIONS
 In this chapter, the model is a closed queuing network of

MTA . The instruction streams are executed

simultaneously (multithreading) to minimize the loss of CPU

cycles. An algorithm is used to compute the normalization

constant as a function of the degree of multiprogramming

(number of active jobs) in the queueing model. The system

performance measures are derived knowing the normalization

constant. The response time is found to increase with the total

number of processors, and the response time is found to

increase with the degree of multiprogramming. In the closed

queueing network with circumstances, an increase in the

service rates of the computer system (CPU). Finally, the

optimum number of multithreading model achieves to

minimize waiting (elapsed) time per microseconds under

Sequential

Parallel

Sequential Parallel

javascript:_tabBar.moveToTab('tab0','m_c_1','2');
javascript:_tabBar.moveToTab('tab0','m_c_1','2');
javascript:_tabBar.moveToTab('tab0','m_c_1','2');

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

47

increasing the total number of processors of computer system

(CPU).

6. REFERENCES
[1] Anoop Gupta , John Hennessy , Kourosh Gharachorloo ,

Todd Mowry , Wolf-dietrich Weber, Comparative

Evaluation of Latency Reducing and Tolerating

Techniques, CiteSeex ,1991.

[2] Bhasker.V., “A closed queueing network model with

single servers for multithread architecture ”.plied

Mathematical Modelling Vol.33, PP.3599-3616,2009.

[3] Greenberg. A. G., Lubachevsky B. D., and Mitrani.I.,

“Algorithms for unbo- undedly parallel simulation

s”.ACM transactions on Computer Systems Vol.9

, No.3 , PP. 201–221. 1991.

[4] Ismail.A.I. and Elbehady .E.E.,“ Finding computable

Green's function for parallel planes and an open

rectangular channel flow”. Egyptian computer science

journal, vol.6, No.1, PP. 36-44, 2000.

[5] Ricardo Bianchini , Beng-hong Lim, “Evaluating the

Performance of Multithreading and Prefetching in

Multiprocessors”, IBM,1996.

[6] .ScottGraham.G.andKenneth.C.Sevcik.,Quantiative

System performance computer analysis using queueing

network models, prentice-hall inc., upper sadd

river, NJ,USA. 1992.

[7] Zhao.Y. and SimchiLevi.D, “Performance analysis and

evaluation of assemble-to-order systems with

stochastic sequential lead times ”. Operations Research

Vol. 54, No. 4, PP.706–724,2006.

[8] V. Vlassov , L-E Thorelli , A.

Kraynikov, A Queuing Model of Multithreading: A Case

Study, CiteSeex,1996.

