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ABSTRACT  
This paper describes a A matrix operation (vector and 

transpose) can be performed in queueing parallel model by 

using multithreading software are showing. Multithreading is 

useful in reducing the latency by switching among a set of 

threads in order to improve the processor utilization. Closed 

queueing network model is suitable for large number of job 

arrivals. The model is validated by comparison of analytical 

parallel and simulation result. 
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1. INTRODUCTION 
Most of recent scalable shared memory architectures typically 

provide different combinations of latency reducing and such 

as caching and multithreading (Bhaskar.V , 

2009).Multithreading is used for hiding long memory latency 

in multiprocessor systems, and aims to increase system 

efficiency. A number of threads are allocated to a processing 

node which switches thread contexts according to some 

context switch policy, such as switch on cache misses, 

synchronization locks or explicit remote references (coarse or 

block multithreading); or switch on each instruction or each 

cycle (fine multithreading). Finely multithreaded processors 

potentially provide low context switch overhead, but require a 

large number of threads and a complex thread scheduling 

technique supported by hardware in order to achieve high 

efficiency of pipelined execution. On a single threaded load 

the utilization of a fine multithreaded processor dramatically 

falls off. Multithreading technique allowed the conclusion that 

a block multithreaded (Greenberg. A. G., 1991) and  

(V.Vlassov,1996). Mathematical methods and simulation are 

used to analyze various architectural solutions in a 

MTA (Mean Thread Analysis) design. A few attempts of 

mathematical evaluation of block multithreaded MTA  

have resulted in deterministic analytical models and queuing 

models (Scott Graham.G, 2002) and (Zhao.Y, 2006). A 

technique of analytical modelling of such MTA  is mainly 

based on the consideration of a set of thread states and state 

transitions. A thread, during its life time, cyclically passes 

through four main states: switching, running, suspended and 

ready. As a consequence, a processing node while executing a 

set of threads cyclically passes through three states: switching, 

running, and idle. The efficiency of the architecture is 

evaluated as the ratio of the total running time to the sum of 

the total switching, running, and idle time of the processing 

node. The distribution time for each state of a thread, except 

for the ready state, can be assumed to be fixed (deterministic 

models) or random (probabilistic models).A first order 

approximation for MTA  efficiency is a set of n threads 

with the following fixed timing parameters: context switching 

overhead C , remote memory latency L and thread run 

length R , which is the number of cycles between two 

consecutive remote references resulting in context switch. The 

model predicts linear dependence of MTA  efficiency 

remote memory latency EL  on the number of threads n  , 

MTA  is saturated at the saturation point sN  . After this 

point efficiency as a function of n  becomes constant sE : 

1

,
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(1) 
A queueing model for multithreaded architecture is executing 

a set of statistically identical threads. The presented solution 

of a closed queueing network is a case study for a particular 

state diagram for a thread execution cycle with context switch 

on local memory misses. The model illustrates a usage of 

queueing theory for evaluation of  MTA . 
 

2. PARALLEL PROGRAMMING 

MODEL 
2.1. Threads model 
Multithreading is similar to multiprocessing programming the 

difference is that a multithreaded program has a single 

processor which manages multiple threads of control 

executing asynchronously (Ricardo Bianchini,1996). The 

threads library provides function calls to calls to create 
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threads, control threads, terminate threads, control access to 

shared data through locking mechanisms, generate events and 

wait for events. 
 

2.2 Program transformations 
We have identified the dependencies in a program, comes the 

issue of whether we can overcome the dependencies so that 

the program is queueing parallel execution. 

- Forward Dependency. 

- Backward Dependency. 
 

2.2. A thread state diagram 

We assume that the MTA  have a typical structure 

including the processing element PE , a cache, and a main 

memory, part of which is shared. Assume that during its life 

time the thread cyclically passes through the following timed 

states: 

• C : context switch, where the thread is being scheduled for   

execution. Thread run length of context switch takes 

CR  cycles to activate a thread whose context 

resides in the processing element of the MTA , 

and  the resident thread CM cycles to activate a 

thread from the main memory of the MTA  

(memory thread). 

• r  :  run state, where the thread is executing during a time   

between two consecutive cache accesses. 

• LC : cache memory access (cache latency). 

 

• T : locality test, which is performed in the case of a cache  

miss to check if data resides in local or remote 

memory. 

• LM: local memory access (local memory latency) which is 

performed in the case of a cache miss and if data is 

in the 

memory. 

• L: Remote memory access a  local memory miss (remote 

memory latency). The interval may include the time 

required to send a remote fetch request, 

communication round trip time, time needed to 

maintain cache coherency and load requested data to a 

register. 

• rt : ready state, where the thread is ready for execution. 

The duration of this state depends on behavior of other 

threads allocated to the node and does not need to be 

specified as an input parameter. 

    Assume also that a local memory miss may occur with 

probability LMP  (local memory miss ratio), and the 

probability of a cache miss is PM (cache miss ratio). 

illustrates thread state transitions. Execution of the newly 

reactivated thread C resumes from the state r , where the 

PE executes thread instructions passing through LC  (cache 

access) and returning back to r  if requested data is currently 

cached (probability 1 PM ). This loop continues until 

the cache misses with probability PM  , and the thread 

passes to the locality-test state T  where it checks locality of 

the requested address. In the case of a local memory miss 

(probability LMP ) the thread initiates a remote memory 

access and becomes suspended in the state L . In the case of 

a local memory hit (probability 1 LMP ) the thread 

performs a local memory access LM  and returns back 

to r .Assume that MTA executes a fixed number n of 

identical threads forever. In this case the MTA  can be 

represented as a closed queuing network with a finite number 

n  of circulating jobs (threads). The queueing  network 

consists of a queue Q and two subnetworks called RN  

and LN . Each server of the queueing network corresponds 

to a thread state and is defined mean service time. For 

example, s the r  state and is marked by the r  service time. 

Assume that all timing parameters r , L , LM , LC , 

CR ,CM  and T  have exponential distributions with 

corresponding means, and that the mean context switch time 

C is defined as: 

 

                                          ;      if ,

 . +  .( - )          ;      if ,

   

R

R M R R

CR n n
C

CR n C n n n n


 

               

(2) 

where Rn  is a number of contexts which may reside in the 

processing element of the MTA . It is difficult to analyze 

the queueing network because sub network RN  can not 

serve more than one job at a time, i.e. not more than one 

thread can be active at any time. The behavior of the network 

with the above restriction can be described by the continuous 

time Markov chain. Each state of the chain is marked by a 

triple index ( , , )q s l .  

 where: 

• q : number of jobs in the queue Q  

, {0,1,2,...,( 1)}i n  , 

•s : the name (mean service time) of a server in the network 

where the job is located, 

{ , , , , , }s C r LC T LM l , 

• l  : the number of jobs in sub network LN , 

{0,1,2,..., }l n . 

 

  The chain contains states and can be analytically explored 

using well known methods (Ismail.A.I., 2000)and (Anoop 

Gupta,1991). To define the limiting probabilities of states, the 

following system of equilibrium equations of our queueing 

network must be deduced as follows 
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where, ( 1) , ( )L Ln i n i        ,  
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The conservation relation is: 
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                                                    (4) 

 

  Since service in the , ,   r LC T and LM  

in servers of the RN  subnetwork is useful work, the 

probability of having the thread in the servers is interpreted as 

efficiency of the MTA :              

1

, ,, , 1
0

1 .
n

n o L ni C n i
i

E P P


 


                                            

(5) 

   We have analyzed the chain computationally using the 

matlab environment. Nevertheless, it is possible to simplify 

the analytical solution of the queueing network using the 

following steps. 

1. Considering the RN subnetwork as a closed 

queueing network with one circulating job (thread), 

determine the following: 

 

• Throughput (service rate 1/ ( )R C ) of the 

RN  subnetwork, where R  is run length, i.e., 

the number of cycles between two consecutive local 

memory misses in a thread (context switches in the 

sPE ). 

• Probabilities of having the job in each 

servers sP { , , , , }s C r LC T LM  

2. Derive from the above information the utilization of the 

MTA  in saturation, i.e., 3.assuming that a running 

thread is always available on each context switch. 

3. Assuming that the closed queueing network consists of 

/ /1M M  queueing system with one server (with 

service rate 1/ ( )R C ) and / /M M n  

queueing system with n servers (each with service rate 

1/ L ), determine the utilization of the MTA  as a 

function of the number of threads circulating in the 

queueing  network. 

2.3 Mean thread analysis MTA  

We shall first consider sub network RN as a closed 

queueing network (with one circulating job), in which the T 

server is connected to the C  server. It contains five servers : 

C , r , LC , T , and LM , which are numbered 

1,...,5  respectively. The fictitious job source is numbered 

0  and located between T and C  servers. A matrix of 

transition probabilities TA , which is derived from the 

structure of the closed queueing network in Equation (5) is 
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0          0        0                  1                0
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transformation coefficients , 1,...,5
i

i  each of which is a 

mean number of having a thread in the corresponding server 

and can be defined from the following system of equations. 

1,

( 1). . = 0      

                               ;   i=1,...,5 

s

ii i ji j
j j i

P P 
 

  
  The 

solution is = 
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5 LM .
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  The state of a closed queueing network is represented by an 

exponentially distribution of m  jobs in k  nodes, and the 

number of statesisequal to ( 1)!/( !( 1)!)m k m k   . 

Since we have assumed that one job ( 1)m   circulates 

only .The probability of each state is the probability of having 

the job in the corresponding server. The state probabilities can 

be defined using product form analysis and Erlang’s formulas: 
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                                                                  (6) 

 

where,  

2 3 4 5D C r LC T LM        The 

probability of having the job in any queueing server of 

RN  except of the C  server is the utilization of the 

MTA   

where,                   1 / ( )s CE P R C R    .                              

                                                                 (7) 
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R
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                                                                  (8) 

is thread run length.   

Note that the mean run length R , from the above Equations 

(7) and (8) can be used in the deterministic (fixed). 

 

2.4.1. Efficiency of the MTA  
     

It can be shown that the mean response time of the RN  

sub network is C R .Assume that subnetwork RN  is 

represented as a server with service rate 1/ ( )R C . 

The network includes two queueing systems, / /1M M  

and / /M M n  numbered 1  and 2 . The number of 

states is 1n  , where the number of circulating jobs 

(threads) is n . Transformation coefficients for this queueing 

network are 1 21, 1.    Probabilities of states can 

be derived in the same way as for the RN  network : 

1 2 1 2

1 2

( , ) 0,..., ; 0,..., ;

                        .

n n n n n n
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The probability of having at least one thread in RN is 

1 (0, )P n  . Since a service in the r , LC ,T  and 

LM  servers of the RN subnetwork is the product 

efficiency of the MTA : 

(1 (0, ))nE P n  , 

1

0

[1 ( )]  ,
! !

n in

s
i

R
E

n i R C
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
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

                       

(9) 

where ,  

/ ( )L C R   . 

  The mean number of running threads nR  (utilization of 

the RN  subnetwork), the mean number of ready 

threads .n r  (mean number of jobs in the queue), the mean 

number of suspended threads ns  (utilization of the LN  

servers), and the mean ready time tr  (waiting time in the 

queue Q ) can be calculated using queuing theory: 
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(10) 

where, 

R r sn n n n   . 

 

2.4.2. Efficiency of the MTA  with fixed 

number of L  servers 

The closed queueing network in contains the L  servers 

which model remote accesses. The number of the L  servers 

k , represents the number of remote requests which can be 

serviced in parallel. This number can be fixed and 

independent of the number of executed threads, n . If  k  is 

fixed and, then a state probability (the probability of having 

1n  jobs in the RN  subnetwork and jobs in then LN  

subnetwork) is   
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The Equation (10) is valid but the Equation (7) is 

transformed to: 
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(11) 

 

  The minimum number of L  servers, required to achieve a 

desired efficiency of the MTA is given workload can be 

obtained by repetitive computations of the efficiency. 

 

 

 

3. THE PERFORMANCE MEASURES OF 

QUEUEING PARALLEL 

COMPUTING 
We can be described the performance measures of 

queueing parallel computing under MTA (Scott 

Graham.G, 2002).  

 Queue lengths 

The probability that there are k or more job i is given by 
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The average queue length at i in the system is given by: 
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The expected total number of jobs (threads) in the system: 
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 Response time 
The average response time of task in node j is given by 
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The total response time of the system is given by  
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(16) 

 Waiting times 
The total waiting time in the system is given by 
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(17) 

4. NUMERICAL RESULTS 
We used double 32 bits, 

 This is the specifications of my personal computer (PC) are 

computing a matrix operations of multithreading for queueing 

parallel.  We studied the operations of the 

4 4 dimensional transpose and inverse matrix 

mathematics and four threads. We are important to studies 

some operations matices for CPU (Processor = Intel (R) 

Core(TM) i7-2600 3.4 GHz and Ram= 8 GB DDR3) of 

computer system. Show the analytical results MTA  both 

sequential computing (simulation technique) and parallel 

computing for multithreading in computer system by using 

matlab programming.  

First, we discuss to compute the operation of the 4 4  

dimensional transpose matrix mathematics under 4 threads in 

by using Gauss Jordan method in  the following this 

example: 

Assuming the matrix is given by  

1      0       5       6

2     3       0        4

1     4       2         2

1     1       2         1

A

 
 
 
 
 
 

 

 

  Applied MTA  program, we note that vector matrix and 

matrix transpose stored in the thread of one row to equal = 

[1  2  1  1   ;    0  3   4  1   ;   5  0  2  2   ;   6  4  2  1] . 

And the transpose matrix is given by 

1     2       1        1

0     3       4        1

5     0       2        2

6     4       2        1

transposeA

 
 
 
 
 
 

. 

Table 1: Compare between the computing sequential and 

computing parallel of response time in queueing network 

for multithreading. 

Response Time 

(second) 

Sequential Parallel 

1.03245 0.75412 

Figure1: The response time by second 

Compare the response time 

between sequential and Parallel for 

threading in queueing parallel

 
Table 2: Compare between the computing sequential and 

computing parallel of waiting time in queueing network 

for multithreading. 

Waiting Time 

(Microsecond) 

Sequential Parallel 

92832 4539 

Figure 2: The waiting time by micro second. 

Compare the waiting time 

between sequential and Parallel 

for threading in queueing parallel

By 

Table1 and 2 and also Figure1 and2 of the 

4 4 dimensional matrix mathematics under four threads, 

the parallel queueing model is the fastest running time and to 

reduce waiting time or elapsed time for multithreading of 

queueing theory in computer system (CPU).  
 

5. CONCLUSIONS 
    In this chapter, the model is a closed queuing network of 

MTA . The instruction streams are executed 

simultaneously (multithreading) to minimize the loss of CPU 

cycles. An algorithm is used to compute the normalization 

constant as a function of the degree of multiprogramming 

(number of active jobs) in the queueing model. The system 

performance measures are derived knowing the normalization 

constant. The response time is found to increase with the total 

number of processors, and the response time is found to 

increase with the degree of multiprogramming. In the closed 

queueing network with circumstances, an increase in the 

service rates of the computer system (CPU). Finally, the 

optimum number of multithreading model achieves to 

minimize waiting (elapsed) time per microseconds under 

Sequential 

Parallel 

Sequential Parallel 

javascript:_tabBar.moveToTab('tab0','m_c_1','2');
javascript:_tabBar.moveToTab('tab0','m_c_1','2');
javascript:_tabBar.moveToTab('tab0','m_c_1','2');
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increasing the total number of processors of computer system 

(CPU).  
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