
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

11

A Priority based Dynamic Load Balancing Approach in a

Grid based Distributed Computing Network

Sachin Kumar

Computer Science Department
Guru Nanak Education Trust’s Group of Institutions

Roorkee, Uttarakhand (India)

Niraj Singhal
Faculty of Electronics, Informatics and Computer

Engineering
Shobhit University, Meerut, Uttar Pradesh (India)

ABSTRACT

Load balancing in grid based distributed computing

environment increases the availability and scalability of entire

system. Dynamic load balancing has the potential to perform

better than static load balancing, but they are inevitably more

complex. The overhead involved is much more but one can

not negate their benefits. Load balancing strategies try to

ensure that every processor in the system performs almost the

same amount of work at any point of time. Process migration

is one of the important tasks in dynamic load balancing which

usually deals with the migration of task from overloaded

computing nodes to under-loaded nodes. Although numerous

works has been done on the issue of process migration and

load balancing. Communication overhead is still a problem

which is to be reduced in grid based networks. In this paper,

we propose an algorithm that finds an under-loaded node

whenever an overloaded node is found, and also takes the idea

of assigning a priority to each computing node in the grid

system based on their computing power. The proposed

algorithm reduces the communication overhead and proves to

be cost effective.

Keywords

Distributed Computing, Grid, Load Balancing, Task

Migration, Communication Overhead.

1. INTRODUCTION
In a grid based distributed computing environment, where

several autonomous systems are interconnected, equal load

distribution is main concern. The traffic on particular

machine could be large at a moment while on the other end, it

could be negligible. A high degree of parallelism can be

achieved if different tasks run on different machines

simultaneously. In order to increase the performance of

distributed computing environment, various researchers have

proposed many schemes for load balancing. These include

process, data or thread migration. Various schemes have been

designed to support process migration. Although, the basis for

designing all these systems have been purely problem driven;

some of these systems are functional but others are purely

hypothetical [2].

Load balancing based on the idea of migration of excess load

from heavily loaded nodes to lightly loaded nodes. The

problem starts with determining when to migrate a process or

task. This solution is typically based on local load situation:

for example, a simple procedure may be the comparison of the

load between various nodes and a determination of the node to

which the task is to be migrated. Static algorithms collect no

information and make probabilistic balancing decisions, while

dynamic algorithms collect varying amounts of state

information to make their decisions. The most significant

parameter of the system was found to be the cost of

transferring a job from one node to another. It is the cost that

limits the dynamic algorithms, but at the high end of

complexity are the dynamic algorithms which do collect

varying amount of information. Potentially, the more

information an algorithm can collect, the better decision it will

make. The problem with the complex balancing algorithms is

that they cannot keep up with the rapidly changing state

information of the system. Two broad categories of load

balancing are commonly recognized. In source-initiative

algorithms, the host where jobs arrive takes the initiative to

transfer the jobs, whereas in receiver-initiative algorithms, the

hosts are able and willing to receive transferred jobs.

In this paper, we propose an approach which provides a

lightly loaded node whenever an over loaded node is found.

To process the large parallel tasks, it is decomposed into a

number of tasks to distribute them among processors and then

computed outputs are gathered to produce final results. In a

grid based network, an equal distribution of tasks to the

processors may result the fast processors to finish their work

earlier than slow processors, due to heterogeneity of

processors in the network. In this situation, some processors

are idle while others suffer from overload of work [2]. If we

distribute the work load among the processors a according to

their efficiency then we can achieve better response time. To

check the efficiency of processors, a sequential program is run

on all the processors and time taken to finish that work by all

processors is collected and used to assign an assignment

factor and priority to all the processors.

The organization of the paper is as follows: In section II, the

related work on load balancing is discussed. Section III

represents the proposed work. Finally, we conclude in

section IV.

2. RELATED WORK
Various scheduling algorithms have been proposed for

parallel and distributed systems, as well as for Grid computing

environment. For a dynamic load balancing algorithm, it is

not acceptable to frequently change state information because

of the high communication overheads. In [3] an estimated

load information scheduling algorithm (ELISA) and Perfect

Information Algorithm (PIA) is proposed. In PIA, when a job

arrives, a processor computes the job‟s finish time on all

buddy processors using exact information about the current

load of a buddy processor, its arrival rate and service rate. The

source processor selects a buddy processor with the minimum

finish time and immediately migrate a job on that buddy

processor, if it can finish the job earlier than this processor. In

the decentralized load balancing algorithm proposed in [5] for

a Grid environment. Although this work attempts to include

the communication latency between two nodes during the

triggering process on their model, it did not consider the

actual cost for a job transfer. In [6, 7], a sender processor

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

12

collects status information about neighbouring processors by

communicating every load balancing moment. This can lead

to frequent message transfers that results in large

communication overhead which is undesirable. Preemptive

and non-preemptive process migration techniques are

proposed in [4]. In this process migration takes place

efficiently by considering memory usage and load on

processor.

3. PROPOSED WORK
In a grid based distributed computing environment where

heterogeneity exists among processors, it is necessary to

prevent the processors from suffering of overload of work and

also to minimize the idle time of processors. There should be

such distribution of work that all processors will finish their

work at almost same time. This is an idle case, but the

variation in the finishing time of all the processors can be

minimized by assigning them work proportional to their

computing power. The priority of each node can be assigned

in advance by running a sequential program on each processor

and maintaining the estimated time taken by the processors to

complete that program. An example of priority assignment for

total „N‟ nodes is shown in Table 1.

Table 1: Priority assignment based on time taken to

complete the sequential program by different processors

Node No

Estimated Time

Taken to Complete

Sequential Program

Priority

P1 8.4 ms 3

P2 20 ms 9

P3 9.4 ms 4

P4 10 ms 5

P5 16.6 ms 8

P6 9.4 ms 4

P7 11.1 ms 6

P8 6.6 ms 1

P9 14.2 ms 7

P10 7.1 ms 2

The nodes with high computing power allotted the high

priority. Nodes with equal completion time get equal priority.

If we distribute the tasks to nodes according to their priority

then there will be least chances that a node will be overloaded.

If still a node found overloaded the proposed algorithm will

find a suitable node which is under loaded by looking first at

the high priority node, if this node is not idle or heavily

loaded then we keep on looking for other lightly loaded node

in decreasing order of their priority and the task migration will

take place. Using this approach, faster nodes make system

balanced as early as possible.

In our proposed algorithm, a migrating server node (MSN)

returns light weighted node whenever required. It is done by

checking the status of all the nodes which are under-loaded.

When a node is overloaded, it calls the MSN which then finds

a suitable node and then performs the load balancing. Our

approach is based on the principle that in a distributed

environment at least one node should be there which is lightly

loaded. CPU queue length is considered.

Algorithm:

Ni: List of computing nodes in decreasing order of priority

MSN (): MSN function which returns a lightly loaded node

every time a heavily loaded node found

Initialization: Assume that each node is having some

load

 Ni Load; /*Load defines at least one

process is there*/

Procedure: Main ()

 {

Call MSN () /* MSN will search a light

weighted node

Let Nt is overloaded node with load T

Begin
Available_Node MSN ();

Migrate_load (Nt, Available_Node)

End

 }

Procedure: MSN ()

 {

Let E be the threshold level of CPU queue length of

a node below which node is considered as lightly

loaded.

For j=1 to n do /*n be the total number of

computing nodes in a cluster*/

If(CPU_queue_length(Nj) < E)

{

 Return Nj;

}

 }

Procedure: Migrate_load(overloaded_node, under-loaded

node)

 {

Under-loaded node = T; /*overload is assigned to

available node given by MSN ()*/

Load [Ni] = Load [Ni] – T; /*overload is reduced

from the overloaded node*/

 }

The existing load balancing algorithms usually find the under-

loaded node by their status information exchange between the

nodes. In the proposed algorithm, we have a function called

msn () which finds the available under-loaded nodes by

looking into a queue where all the processors are scheduled in

the decreasing order of their computing power. Hence, the

probability that first node in the queue will be the under-

loaded node is high as the first node is having the highest

computing power and it may assume that it has finished the

assigned work and can be idle that time, if not msn () will

check the second node having second highest computing

power and so on. Hence, it reduces the communication

overhead as compare to other existing algorithms in which it

is necessary to collect the status information of all the nodes

to find out which node is under-loaded.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.5, July 2012

13

4. CONCLUSION AND FUTURE WORK
The main goal in distributed system is to execute the process

at minimum cost i.e. time is most important factor that can be

considered in cost estimation. This is attributable to the fact

that new dynamic load balancing policy achieves a higher

success, in comparison to the previously used load balancing

techniques, in reducing the likelihood of nodes being idle

while there are tasks in the system [16]. Although the main

objective is to propose load balancing algorithms using

parameter estimation for heterogeneous grid environments,

this work can be extended by providing fault tolerance into

the system as fault tolerance is a very important characteristic

for any distributed system. Our future work considers the

implementation and evaluation of the complexity of the

proposed approach for load balancing.

5. REFERENCES
 [1] Livny M. and M. Melman, “Load Balancing in

Homogeneous Distributed Systems”, Proc. ACM

Computer Network Performance Symp., vol 11, 1982.

 [2] S. Sharma, S. Singh and M. Sharma, “Performance

Analysis of Load Balancing Algorithms”, World

Academy of Science, Engineering and Technology, vol

38, 2008

 [3] Linda F. Wilson and Wei Shen, “Experiments in Load

Migration and Dynamic Load Balancing in SPEEDS”,

Proceedings of the Winter Simulation Conference,

1998.

 [4] L. Anand, D. Ghose and V. Mani, “ELISA: An

Estimated Load Information Scheduling Algorithm for

Distributed Computing Systems”, International Journal

of Computer and Mathematics with Applications, April

1999.

 [5] P. Kanungo and M. Chandwani, “A Process Migration

Methodology for Distributed Computing Environment”,

Indian Journal of Computing Technology, May 2006.

 [6] M. Arora, S.K. Das and R. Biswas, “A Decentralized

Scheduling and Load Balancing Algorithm for

Heterogeneous Grid Environment”, Proceedings

International Conference of Parallel Processing

Workshops (ICPPW ‟02).

 [7] H. Shan, L. Oliker and R. Biswas, “Job Super Scheduler

Architecture and Performance in Computational Grid

Environments”, Proceedings ACM/IEEE Conference of

Super Computing, Nov. 2003.

 [8] L. Oliker, R. Biswas, H. Shan and W. Smith, “Job

Scheduling in Heterogeneous grid Environment”,

Technical Report LBNL-54906, Lawrence Berkeley

National Laboratory, 2004.

 [9] Yagoubi B. and Y. Slimani, “Dynamic Load Balancing

Strategy for Grid Computing”, Proceedings of World

Academy of Science, Engineering and Technology,

May 2006.

 [10] Sachin Kumar and Niraj Singhal, “A Study on the

Assessment of Load Balancing Algorithms in Grid

Based Network”, International Journal of Soft

Computing and Engineering, March 2012.

 [11] N. G. Shivratri, P. Krueger, and M. Singhal, “Load

Distributing for Locally Distributed Systems”,

Computer, Vol. 25, 1992.

 [12] Ali M. Alakeel, “A Guide to Dynamic Load Balancing

in Distributed Computing Systems”, International

Journal of Computer Science and network Security,

June 2010.

 [13] J. Lee, P. Keleher and A. Sussman; “Decentralized

Dynamic Scheduling across Heterogeneous Multi-core

Desktop Grids”, IEEE, May 2010.

 [14] T. Amudha, T. T. Dhivyaprabha; “QoS Priority Based

Scheduling Algorithm and Proposed Framework for

Task Scheduling in a Grid Environment”, IEEE

International Conference on Recent Trends in

Information Technology, MIT, Anna University,

Chennai, June 2011.

 [15] Sameer Singh Chauhan, R. C. Joshi, “QoS Guided

Heuristic Algorithm for Grid Task Scheduling”,

International Journal of Computer Applications, June

2010.

 [16] E. Saravanakumar and P. Gomathy, “A Novel Load

Balancing Algorithm for Computational Grid”,

International Journal of Computational Intelligence

Techniques, Vol. 1, No. 1, 2010.

 [17] Said Fathy El-Zoghdy, “A Capacity Based Load

Balancing and Job Migration Algorithm For

Heterogeneous Computational Grids”, International

Journal of Computer Networks & Communication

(IJCNC) Vol. 4, No. 1, January 2012.

