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ABSTRACT  
Lattice basis reduction algorithms have contributed a lot 

to cryptanalysis of RSA crypto system. With 

coppersmith’s theory of polynomials, these algorithms 

are searching for the weak instances of Number-theoretic 

cryptography, mainly RSA. In this paper we present 

several lattice based attacks on low private exponent of 

RSA. 
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1. INTRODUCTION 
A normal RSA decryption/signature requires time O(log 

d     N). Selecting a small value for the secret exponent 

d can significantly increase the speed for the normal RSA 

decryption process/signature process. However, recent 

attacks show small private exponents should be handled 

with care as they may be threaten RSA’s security. In this 

paper we present some lattice based attacks mounted 

against RSA instances with small secret exponent d. 

Firstly we present the wiener attack in terms of lattices. 

The original paper of wiener used continuous fractions to 

derive the bound 0.25. Next, Boneh improved this bound 

to 0.292. Initially they solved the problem to 0.284. Later 

they improved the bound to 0.292, but used complicated 

techniques called geometrical progressive matrices. Later 

May used simplified analysis, but they got the bound 

0.290, which is worse than the Boneh method, but the 

analysis is much simpler. 

2. TERMINOLOGY 

2.1 Lattices 
A lattice is a discrete subgroup of   . Equivalently, 

given     linearly independent vectors 

                    , the set 

   (             )  {∑     
 
        }, is a 

lattice. The   are called basis vectors of  and   
{          } is called a lattice basis for    Thus, the 

lattice generated by a basis   is the set of all integer 

linear combinations of the basis vectors in     The 

determinant of a lattice, denoted by    ( ) is the square 

root of the gramian determinant          〈     〉, which 

is independent of particular choice of basis. A general 

treatment of this topic see[1][2][3]. 

2.2 Lattice reduction 
 Lattice reduction is a old problem in number theory.  

Lattice reduction reduced the given lattice into “short” 

basis. Here “short” in the sense that Euclidean distance. 

In the literature, so many lattice reduction algorithms  

 

 

exist but the one given by Lenstra, Lenstra, Lovasz is a 

famous one. Because there exists polynomial time 

algorithm for this reduction and it solves SVP problem of 

lattices in some sense.  

2.3 LLL reduced 
The following LLL reduced version given by Lenstra, 

Lenstra, Lovasz[1],[2],[3]. 

LLL reduced: A basis               of a lattice  is 

said to be Lovasz-reduced or LLL-reduced if 

|    |  
 

 
  for         

|  
            

 |
 

 
 

 
     

    for         where the 

  
  and      are defined by the Gram-Schimdt 

orthogonalization process acting on the   . Above in 

place of   ¾ one can replace any quantity 
 

 
      The 

Lenstra –Lenstra -Lov´asz (LLL) algorithm [1][2][3]  is 

an iterative algorithm that transforms a given lattice basis 

into an LLL-reduced one. Since the definition of LLL-

reduced uses Gram-Schmidt process, the LLL algorithm 

performs the Gram-Schimdt method as subroutine. Let 

              be an LLL reduced basis of a lattice   

and   
    

      
 be it s Gram-Schimdt 

orthogonalization. Then       
   

  for every   

  and    . It can be proven that the LLL algorithm 

terminates a finite number of iterations. Let      be a 

lattice with basis{             }, and         

be such that ‖  ‖  √  for            Then the 

number of arithmetic operations needed for the 

algorithm  (      ) on integers of size  (     ) bits. 

The other properties can be found in [3]. 

2.4 RSA Cryptosystem:  

The well known RSA cryptosystem was the first publicly 

known public key cryptosystem introduced by Rivest, 

Shamir, Adleman [5]. In this paper, we consider only 

instances of RSA with balanced primes. Balanced primes 

are the primes which have the same size. Also we assume 

that   
 

 
 

 
 ⁄     

 
 ⁄      

 
 ⁄ . So, if     are 

balanced primes then the following inequality hold: 

    ( )    
 

 ⁄ .  
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2.5 Resultant of two bivaraite 

polynomials: 
The resultant of two polynomials  (   ) and 

 (   )with respect to the variable  , is defined as the 

determinant of Sylvester matrix of  (   ) and  (   ) 

when considered as polynomials in the single 

indeterminate    The resultant is non-zero if and only if 

the two polynomials are algebraically independent . 

When the polynomials are algebraically independent, the 

resultant yields a new polynomial  ( ) such that if 

(     ) is a root of both  (   ) and  (   ) then 

 (  )     

Assumption: We assume that the two polynomials return 

by LLL algorithm are algebraically independent. There is 

no theoretical proof for this one, but in practice most of 

the times achieved. 

2.6 Howgrave-Graham for Bivariate 

Integer Polynomials: 
Let  (   )         be a polynomial in 2 variables with 

at most w monomials and let m be a positive integer. 

Suppose in addition that  

1) h(     )   (      ) where        and 

      , and 

 ) ‖ (     )‖  
  

√ 
 , 

 then  (     )    holds over the integers.  

3. WIENER’S ATTACK WITH 

LATTICES 
Wiener proposed the attack [7] on short secret exponent 

attack using continuous fractions. Later May introduced 

the same attack using lattice reduction techniques. We 

present their attack here. Let      be an RSA 

modulus with balanced primes satisfying     
 

√ 
 

 

 . 

Let (   ) be a valid public key and let   be its 

corresponding exponent defined modulo  ( )   If the 

private exponent satisfies   
 

 
 

 

  then the modulus can 

be factored in time polynomial in    ( )  

For the derivation of this attack May used the 

Coppersmith techniques. Consider the key equation 

modulo N gives          (     )  and so 

(     )  (      ) is a root of polynomial  (   )  

      modulo N. In order to break the instance of RSA 

we only need to find the small roots of this polynomial 

modulo N. Typically, this would involve using the 

heuristic extensions of Coppersmith’s methods. That is, 

using lattice reduction to find two small normed bivariate 

polynomials that have the root (     ) over the integers. 

We use LLL algorithm to find lattice reduction for the 

lattice, constructed from the coefficient vectors of 

 (     ) and  (     ) where  (   )    . The 

basis matrix for the lattice is given by   . Using the 

conditions given in the theorem, it follows that  

        
 

 
 

 

  

                                  (   )   
 

√ 
 

 
 ⁄ , 

And so the bounds can be defined as   
 

 
 

 

   and  

  
 

√ 
 

 

 . All the vectors in the above lattice correspond 

that have root (     ) modulo    Thus, if two small 

vectors can be found whose norm satisfies Howgrave-

Graham’s condition, then these vectors correspond to the 

coefficient vectors of polynomials with root (     ) over 

the integers. Thus, the private exponent is revealed once 

a smallest vector is found.  If   known,       

   ( ) gives a multiple of  ( )  which can be used to 

factor the modulus.    

4. BONEH AND DURFEE SMALL 

INVERSE ATTACK 
Boneh and durfee attack [8] can recover the primes     

in polynomial time provided that           Their result 

is heuristic since it is based on coppersmith’s technique 

for finding small solutions to bivariate modular 

polynomial equations. However this attack seems to 

work very well in practice. We sketch the main idea of 

their attack.  

Consider the normal RSA scheme where     are 

balanced and defining equation of the RSA:  

    (    (   ))    

Writing s=-(p+q) and      , above equation can be 

simplified to  (   )   (     ). Also assume 

     for some     

Small Inverse Problem: Given a polynomial  (   )  

 (   )     find (     ) satisfying  (     )  

 (     ) where        and          .  So. if we 

solve the SIP for this instance, we will get    (  

 ) and consequently the factorization     The goal is to 

recover the values of   for which the roots (     ) with 

       ,           can be recovered in polynomial 

time. The main idea is, first transform the modular 

equation into an equation over the integers using 

Howgrave-Graham’s lemma for the bivariate case.  

For a positive integer   define the polynomials  

     (   )       (   )     

                     (   )      (   )     . 

 In order to apply Howgrave-Graham’s lemma, consider 

the lattice spanned by the coefficient vectors of the 

polynomials     (   )     (   ) for certain parameters 

    and    For each             use     (     ) for 
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             and     (     ) for           for some parameter   to be optimized later. For example see 

fig 1.   

Example for     and    : 

 1 X Xy             y x        

              

x               

xe -e eAX exy       

                  

xfe  -eX  eA   e        

   1 -2AX -2XY      2A            

y               

xfe   eAXY    -eY eX    

y     -2AXY        2A     Y -2X        

 

Fig1. Boneh and durfee lattice for     and    . (Empty places are filled with zeros) 

Let     denote the lattice and     be the corresponding 

basis. Running LLL algorithm we can obtain two short 

vectors       which by inequality, we have ‖  ‖ ‖  ‖  

 
 

     (   )
 

    where w is the dimension of the lattice.  

Now in order to apply Howgrave-Graham’s lemma, we 

should have  

  
 

     (   )
 

    
  

√ 
 . 

The determinant and the dimension of the lattice     

have the following rules respectively                                   

   (   )    
    

  
   

    

 
    

   

 
  (  )

 

  
  

 
     (  )  Optimizing with respect to   and 

ignoring low degree terms gives the condition  -

12                
 

 
 

 

 
√       . 

This means that if         or, equivalently if   

      , one can find in time polynomial in      the 

factorization of   and consequently break RSA. 

Improved Bounds: The results in last section show that 

the small inverse problem can be solved when   
       The bound is derived from the determinant of the 

lattice    which gives an upper bound on the lengths of 

the shortest vectors of the lattice.  In the last section, we 

compute the determinant of a lattice   generated by shifts 

and powers of    Since   is full rank and corresponding 

matrix is triangular, the determinant is just the product of 

the entries on the diagonal-carefully balanced so that this 

product is less than 1. Once         the approach no 

longer works, as the product exceeds 1 for every choice 

of    But if the some of the larger terms of this product 

were removed, we might be able to find greater values of 

   This suggests that one can ignore some rows which 

have large diagonal values. But unfortunately the 

resulting lattice is not full rank, and computing its 

determinant is not so easy. Boneh-Durfee used the 

strategy called “Geometric progressive matrices” to 

improve the bound to 0.292. For full details refer[8]. 

5. BLOMER AND MAY’S ATTACK 

Blomer and May revisited the above attack. They come 

up with the bound 0.290. Even though it is worse than 

Boneh and Durfee’s bound, analysis is much simpler 

than Boneh and Durfee. They begin their analysis by 

choosing parameters     and then construct exactly the 

same lattice as Boneh and Durfee, before removal the 

rows with corresponding basis of    . Next they remove 

certain rows of     to take an intermediate matrix  ̅  Let 

 ̅ be the lattice spanned by  ̅  Unlike Boneh-Durfee, they 

go on removing an equal number of columns in order to 

obtain a square matrix. As an example, the following 

matrix corresponds to matrix after removal of certain 

rows and columns. We denote the final matrix 

constructed by Blomer and May as     and the 

corresponding lattice    . The row vectors of the matrix 

    are no longer the coefficient vectors of the 

polynomials     (     ) and     (     ) since they 

have removed some columns from the initial basis matrix 

   . For example of a basis see fig 2. Notice that the 

basis constructed by Boneh and Durfee does not suffer 

from the same drawback since they have only removed 

rows but not columns. In order to apply Howgrave’s 

theorem, it is necessary to ensure that the linear 

combination of bivaraite polynomials evaluates to zero 

modulo   . Blomer and May show how associate the 

rows of     matrix with the polynomials      and     . 

This means that they show how to reconstruct a vector 

 ̅   ̅ by a vector      . More significantly, they 

prove that short vectors       lead to short 

reconstruction vector  ̅   ̅. Expressed in a different 

way, the size of small vectors found in the eliminated 

lattice     by LLL is the same size as those found in the 

original lattice  ̅ up to a small correction term.  For full 

details of this adjustment refer[12]. 
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Example of a Blomer and May lattice for     and    : 

 

 X Xy                  

x            

Xe eAX Exy     

               

xfe -ex  ea   e      

   -2AX -2XY      2A          

y    -2AXY        2A          

Fig 1: Blomer –May lattice for m=2 and t=1 

Although it yields a weaker bound than Boneh and 

Durfee method, the new approach followed by Blomer 

and May has some advantages. They are a) It leads to 

simple proofs since one deals with square matrices which 

significantly simplifies determinant calculations. b) It 

reduces the lattice dimension as a function of   and   

which implies that one can get closer to the theoretical 

bound. c) It makes use of structural properties of the 

underlying polynomials which makes possible extension 

to other lattice constructions using these polynomials. 

6. CONCLUSION 

 In this paper we investigate main techniques to derive 

bound for the secret exponent RSA. Wiener provided the 

bound 0.25 initially. But later Boneh improved the bound 

upto 0.292. May proposed another technique which is 

easy to analysis, but the bound they achieved is 0.290. It 

is an open problem for RSA, if secret exponent is greater 

than 0.292 without having the partial knowledge of any 

parameter. If secret exponent is greater than 0.292, then 

there is no any current knowledge for RSA security if 

there is no any partial information about the parameters 

of RSA cryptosystem.  
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