
International Journal of Computer Applications (0975 – 8887)

Volume 49– No.16, July 2012

14

Analysis of Joins and Semi Joins in a Distributed

Database Query

Manik Sharma
Assistant Professor & Head

Department of Comp. Science
Sewa Devi S.D College TT

Dr. Gurdev Singh
Professor

Department of IT
VIET, Banur, Rajpura

Rajinder Virk
Phd,Associate Professor

DCSE
Guru Nanak Dev University

ABSTRACT

Database is defined as collection of files or table, where as
DBMS stands for Database Management System which is
collection of unified programs used to manage overall
activities of the database. The two dominant approaches used
for storing and managing database are centralized database

management system and distributed database management
system in which data is placed at central location and
distributed over several locations respectively. Independent of
the database approach used, one of the foremost issue in the
database is the retrieval of data by using multiple table from
central repository in centralized database and from number of
sites in distributed database. Joins and semi joins are primitive
operations used to extract required information from one, two
or multiple tables. In this paper the focus is given on

computing and analyzing the performance of joins and semi
joins in distributed database system. The various metrics that
will be considered while analyzing performance of join and
semi join in distributed database system are Query Cost,
Memory used, CPU Cost, Input Output Cost, Sort Operations,
Data Transmission, Total Time and Response Time. In short
the intention of this study is analyze the performance and
behavior of join and semi-join approach in distributed

database system.

Keywords

Distributed Database, Data Transmission, Response Time,
Total Time, Join, Semi join etc.

1. INTRODUCTION
Data is one the vital entity in the database is managed by two
using two major database approaches known as Centralized
Database Management Approach and Distributed Database
Management Approach. Centralized database management is

one the traditional approach of database management, in
which all of the data in database is sited on central location.
Centralized database approach has overcome several
limitations of file oriented approach of prior times. Since in
centralized database approach the data is placed on central
repository hence it is easy to access or extract data from
multiple tables as compare to distributed database approach
where data is distributed over several sites. In centralized

database the database query can be easily transformed into set
of relational algebra’s operation, but in distributed database
system one has to put more effort to analyze the amount of
data exchange in addition to corresponding set of relational
algebra’s operations. Distributed database system [1] [4] [8]
is defined as collection of logically interrelated data
distributed over several sites.
 The number of nodes in distributed system is connected
either by using wired or wireless network media. In other

words distributed database system [3][10] is defined as the
convergence of database system and Computer Network. One
of the major issues in the distributed database design is the

placement of data and program across the number of

computer or site available in the system.
After making placement of data and application program one
has to focus on transforming a distributed query into
equivalent low level query so that actual implementation and
execution strategy of the query can be carried out. In
distributed database system, it is obvious the database query
will extract data from several different sites, so in this case the
important factor is to reduce to amount of data transmission to

maximum extent.

2. OBJECTIVE OF STUDY
The various objectives of this study are:

 To understand the significance of joins and semi

join in distributed database.

 To compute and analyze different metrics of query

using join and semi join operations in distributed
database system.

 To compute the cost of query using cost based

query optimizer and provides some variant alternate
for the query.

 To compute and analyze the data transmission from

one site to another in processing query using joins
and semi joins approach in distributed database.

 To compute and analyze Total Time and Response

Time of query implemented with join and semi join
approach in distributed database.

3. JOINS AND SEMI JOINS
Before proceeding further let us first understand the concept
of Join and Semi joins.
Join [6] is one of the most imperative operations in database
theory that is used to extract information from two or more
than two tables. Technically join operation is one of the
special cases of Cartesian product. In join unlike Cartesian

product before concatenation the tuples of the join tables are
checked against specified condition. There are various types
of joins like equi-join, self join, inner join, outer join etc.
Independent of type all of these are used to extract data from
two or more tables. The center of attraction in this study will
be equi-join one of the most frequently used type of join.
A semi-join is one of the important operations in relation
theory that is used to optimize a joins query. Semi join [3] is

used to reduce the size of relation that is used as an operand.
A semi-join from Ri to Rj on attribute A can be denoted as
Rj⋉ Ri . Research shows that semi joins are very helpful in
optimizing the join query by reducing the quantity of data
exchanged. But one of the darken side of using semi join is
that it increases the local processing cost as well as number of
message. It returns rows that match an EXISTS sub-query
without duplicating rows from the left side of the predicate

when several rows on the right side satisfy the norms of the
sub-query. The research has shown that Semi-join and anti-

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.16, July 2012

15

join transformation cannot be done if the sub-query is on an
OR branch of the WHERE clause.
The objective of semi join in distributed database is to reduce
the data transmission [2] from one site to another.
The semi join can be implemented by using different join

methodology. The following algorithm explains the working
of semi joins in nested loop.
Open table1

While not end of table1

 Read tuple from table1

 Success=false

 Open table2

 While not end of table2

 Read tuple from table2

 If (table1.tuple==table2.tuple) then

 Success=true

 Exit loop

 End if

End while

Close table2

End while

Close table1

ragged.

4. EXPERMENTAL ANALYSIS
The processing of distributed query is different from
centralized query. One of the vital parameter in distributed

query processing is the amount of data transmission required
for getting required result. To analyze the working and
performance of joins and semi joins operation in centralized
as well as in distributed database system the following tables
EMP and DEPT are to be considered. While analyzing the
performance in centralized database system it is obvious that
EMP and DEPT table are placed on same site or location. On
the other hand while analyzing the performance in distributed
database it is assumed that EMP and DEPT tables are placed

at site1 and site2 respectively. The complete structure of the
above said table is as given below:
Dept Table

Create table DEPT

(Deptno number (2) constraint pk_dept primary key,

Dname varchar2 (14) ,

Loc varchar2 (13)) ;

Emp Table

Create table EMP

(Empno number(4) constraint pk_emp primary key,

Ename varchar2(10),

Job varchar2(9),

Mgr number(4),

Hiredate date,

Sal number (7, 2),

Comm number (7, 2),

Deptno number (2) constraint fkey_deptno references dept);

It is assumed that both relations are not fragmented. Suppose
EMP table has total 14 tuples and each tuple consumes
51bytes. Similarly DEPT table has 4 tuple and each tuple
consumes 29bytes. So total memory consumed by EMP and
DEPT table is 714bytes and 116bytes respectively. It is
further assumed that the following query is requested at site3.
Find the name, Dname, Deptno and location of the employee

where he/she works.
Select emp.ename, dept.dname, emp.job, dept.deptno from
EMP, Dept where emp.deptno=dept.deptno;

4.1 Query Processing Using Joins in Distributed Database

System
Since reduced cost and advanced communication technology
gives birth to the idea of Distributed Database Management
Systems that turn out to be an integral part of many computer

applications. Distributed Database [7] system is cluster of
distributed computers that are coupled with one another with
the help of some communication media (like twisted pair,
coaxial cable, fiber optics, satellite etc.) on which a database
is allocated and placed. It is obvious that a query may have
different equivalent transformation that lead to different
resource consumption. So in distributed database system one
has to keep in mind the consumption of resources while

selecting the execution strategy for the query.
So while execution distributed query one has to keep in mind
various factors like equivalent relational algebra’s operations,
placement of data and application programs, ordering of
relation algebra’s operations, bytes transferred from one site
to another, Total_Time, Response_Time etc.
Now let us understand the meaning and significance of Total
Time and Response Time. In the distributed cost model [8]

[9] total time which is computed by adding all the cost
components (Local Processing Cost and Communication
Cost) of a query, whereas Response Time is computed as an
elapsed time from the starting to completion of query.
Mathematically the Total_Time and Response_Time are
computed as follow:
Total_Time =

Response
Time

The original query that extract data from two tables EMP and
Dept in distributed database system can be implemented and

executed in three different ways as given below in Case I, II
and III.
Case I: In this case to implement and execute the query one
has to transfer both join table EMP and DEPT to the resultant
location i.e. at site 3. The following diagram shows the query
plan of above said case.

TCPU * # SInstructions + TIO *SIO + +TMessage * #

S_Messages +TTCost * #SBytes

 Eq- II

TCPU * # Instructions + TIO * IO + +TMessage *

#Messages +TTCost * #Bytes …. Eq-I

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.16, July 2012

16

Figure1 : Data Transmission

The total number of bytes transferred in this case will be
computed as follow:

14*51+29*5

=714+116

=830bytes

Total_Time (TM) =2TMessage+TTCost (1,05,000Bytes)

Response_Time =Max (TMessage+TTCost*714Bytes),
TMessage+TTCost*116Bytes)

Case II: transfer EMP table to Site 2 where dept table is
available. Apply join operation here i.e. at site 2 and transmit

the required result at site 3.
The following diagram shows the query plan of above said
case.

Figure2: Movement of Data

The total number of bytes transferred in this case is as follow:

51*14+35*14

=714+490

=1204bytes

Total_Time (TM) =2TMessage+TTCost(1204Bytes)

Response_Time =Max (TMessage+TTCost*714Bytes),
TMessage+TTCost*490Bytes)

Case III: This is just reverse case of Case II; in this case Dept
table will be transmitted at Site 1 where EMP table is already
available. Now apply the join operation here and transmit the
required result to site 3. The following diagram shows the
query plan of above said case.

Figure3: Movement of Data

The total number of bytes transferred in this case will be
computed as follow:

29*4+35*14

=116+490

=606bytes

Total_Time (TM) =2TMessage+TTCost(606Bytes)

Response_Time =Max(TMessage+TTCost*116Bytes),
TMessage+TTCost*490Bytes). The following table shows the
analysis of different metrics.

ID Operation Name Rows Bytes Cost
(%CPU)

Time Instance In-Out

0 Select Statement 14 518 7 (15) 00:00:01

1 Hash Join 14 518 7 (15) 00:00:01

2 Table Access Full EMP 14 238 3 (0) 00:00:01

4 Remote D 4 80 3(0) 00:00:01 Desktop R->s

4.2 Query Processing Using Semi Joins

The above said query when implemented with semi join
approach will look like as follow:

Select emp.ename, scott.d.dname@desktop job,
scott.d.deptno@desktop from emp,scott.d@desktop where
scott.d.deptno@desktop in (select scott.d.deptno@desktop
from scott.d@desktop where

emp.deptno=scott.d.deptno@desktop)

In case of semi join the joining attribute of table T1 located at
site S1 is send to the site S2 where other joining table T2 is
placed. The joining attribute is then joined with the available

join table T2. After this the projection operation is
implemented on the resultant table Temp 1 and is transmitted

back to the original site S1, where the resultant is joined back
with table T1. Now project the join attribute deptno of
Department table located at Site2 and transmit it to Site 1. The
total data transmission in this case is

2*4=8Bytes Shipped from Site 2 to Site1

 Now apply join operation at Site 1 of table1 with Transmitted

join attribute and then apply the projection operation to
extract attributes (Empno, Name, Job and Deptno). The
resultant table after join is again transmitted back to Site 2. So
the data transmission at this point is:

35*14=490Bytes

Total_Time (TM) =2TMessage+TTCost(498Bytes)

Response_Time =Max(TMessage+TTCost*8Bytes),
TMessage+TTCost*490Bytes).

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.16, July 2012

17

ID Operation Name Rows Bytes Cost
(%CPU)

Time Instance In-Out

0 Select Statement 14 770 11 (19) 00:00:01

1 Hash Join 14 770 11 (19) 00:00:01

2 Hash Join 4 184 8 (25) 00:00:01

3 View Vw_SQ_1 4 104 4 (25) 00:00:01

4 Hash Unique 4 52 4 (25) 00:00:01

5 Remote D 4 52 3(0) 00:00:01 Desktop R->s

6 Remote D 4 80 3 (0) 00:00:01 Desktop R->s

7 Table Access Full 14 126 3 (0) 00:00:01

From the above analysis one come to conclude that semi joins
gives its best when one want to reduce the amount of data
transmission from one site to another.

Data Tranmission

830

1204

606
498

0

200

400

600

800

1000

1200

1400

Join Type I Join Type II Join Type III Semi Join

Series1

Figure 4: Analysis of Data Transmission

Figure: Analysis of Join and Semi Join

Operations

5. JOINS VERSUS SEMI JOINS

One of the interesting questions is when the query has to be
executed with Join and when with semi join. The selection of

join and semi joins in distributed system is directly depends
upon the data transmission from one site to another. In this
study the major fact that came out is that semi joins is found
more useful than join when the data transmission from one
site to another is more. The following pseudo-code will
explain the case when join or semi join will be selected for
execution of query.

Assumption: it is assumed that table T1, T2 are placed over
site S1,S2 and the query is requested and resulted on Site S3.
In the following pseudo-code Scost refers to cost of semi join
operation, JA is joining attribute, R is resultant table compiled
after joining join attribute with joining table followed by
selection and projection operation if required, JCost is cost of
join operation. Here cost means transmission cost only.

Step1: Read Table T1

Step2: Read Table T2

Step3: Read Operation

Step4: Project JA from the required table

Step5: Scost=Cost (JA) + Cost (π(JA JT) + Cost (R)

Step6: Jcost=Cost (T1) + Cost (T2)

Step7: IF (SCost<JCost) Then

 Execute Operation with Semi Join

 Else

 Execute Operation with Join

 End IF.

6.CONCLUSION

From the above analysis in distributed database system the
analysis shows that join approach gives its best in data

transmission when a relation having lower cardinality is
transmitted to the location where a relation of upper
cardinality and larger tuple size is placed. In regard to total
time it is clear from above analysis that the query executed
with semi join possess lesser total time when data transfer is
more. It is very difficult to conclude which one is better in
join and semi joins. From the above study it is clear that the
data transmission in a distributed query using semi join is
always lesser than the data transmitted in distributed query

using joins operation however data accessed using semi join
may be larger than join operation. No doubt semi joins
implement more operation as compare to join, but it reduces
the number of bytes transferred from one site to another to
great extent. Further one is able to conclude that semi joins
are beneficial if the transmission cost is of main consideration,
otherwise joins will be preferred.

6. ACKNOWLEDGMENTS
Authors are highly indebted to Dr. Gurvinder Singh,
Associate Professor and Head, DCSE, Guru Nanak Dev
University, Amritsar for his precious guidance from time to
time.

International Journal of Computer Applications (0975 – 8887)

Volume 49– No.16, July 2012

18

7. REFERENCES

[1] Nilarun Mukherjee, Synthesis of Non Replicated

Dynamic Fragment Allocation Algorithm in Distributed
Database System”, Published in Proceeding of
international conference on advances in Computer
Science , 2010

[2] Ramez Elmasri, Shamkant B. Navathe, “Fundamentals of
Database System”, Fifth Edition, Pearson Education,
Second Impression, pp 894, 2009.

[3] M. Tamer Ozsu, Patrick Valduries, “Principles of

Distributed Database System”, Second Edition, Pearson
Education, pp 169.

[4] T.V. Vijay Kumar, Vikram Singh, “Distributed Query
Processing Plans Generation Using GA”, International
Journal of Computer Theory and Engineering, Vol 3.
No.1, Feb 2011.

[5] Narasimhaiah Gorla, Suk-Kyu Song, “Subquery
allocation in Distributed Database using GA”, JCS & T,

Vol. 10, No.1.

[6] Deepak Shukla, Dr. Deepak Arora, “An Efficient
Approach of Block Nested Loop Algorithm based on
Rate of Block Transfer”, IJCA, Vol.21, No.3, May 2011.

 [7] Swati Gupta, Kuntal Saroha, Bhawna, “Fundamental
Research in Distributed Database”, IJCSMS, Vol. 11,

Issue 2, Aug 2011.

[8] Reza Ghaemi, Amin Milani Fard, Hamid tabatabee,
“Evolutionary Query Optimization For Hetrogenous
Distributed Database System”, World Academy of
Science, Engineering and Technology, 43, 2008.

[9] Johann Christoph Freytag, “The Basic Principles of
Query Optimization in Relational Database Management
System”, Internal Report, IR-KB-59, March 1989.

[10] T.V. Vijay Kumar, Vikram singh, Ajay Kumar Verma,
“Distributed query Processing Plans Using GA”, IJCTE,
Vol 3. , No.1, 2011.

