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ABSTRACT 

Frequent pattern discovery is a heavily focused area in data 
mining. Discovering concealed information from Web log 
data is called Web usage mining. Web  usage mining  
discovers  interesting  and  frequent  user  access patterns  
from  web  logs. This paper contains a novel approach, based 
on k-mean and frequent pattern tree (FP-tree), for frequent 

pattern mining from Weblog data.   
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1. INTRODUCTION 
The expansion of the World Wide Web has resulted in a large 
amount of data. Web mining discovers and extracts useful 
information from  the  World  Wide  Web (WWW) 
documents  and  services using  the  data  mining  techniques.  
Most  users  obtain  WWW information  using  a  combination  

of  search  engines  and browsers; however these two types of 
retrieval mechanism do not  address  all  of  a  user's  
information  needs.  The  resulting growth  in  on-line  
information  combined  with  the  almost unstructured  web  
data  necessitates  the  development  of computationally 
efficient web mining tools. Web Mining can be classified [1] 
as, web content mining, web structure mining and web usage 
mining. Web content mining means automatic search of 

information resources available online [2], in short, mining 
the data on the Web.  Web  structure  mining  means mining  
the  web  document's  structure  and  links,  in  short, mining  
the  Web  structure  data.  Web  usage  mining  includes the 
data from server access logs, user registration or profiles, user 
sessions or  transactions,  in  short,  mining  the  Web  log 
data.  Web  mining  subtasks  are  (a)  resource  finding  and 
retrieving,  (b)  information  selection  and  pre-processing,  
(c) patterns  analysis  and  recognition,  (d)  validation  and 

interpretation, and (e) visualization [3]. 
The majority of the web logs include information regarding 
fields: IP Address, User Name, Time Stamp, Access Request, 
Result Status, Byte Transferred, Referrer URL and User 
Agent. There are many efforts towards mining various 
patterns from Web logs [4] [9] [11]. 
Mined information of Web logs can be used for various 
purposes like: To improve the design of web sites used to 

gather business intelligence to improve sales and 
advertisement, analyzing system performance, building 
adaptive Web sites [7] [6] [10]. 
The organization of the paper is as follows. Section 2, discuss 
the related work. In section 3, proposed approach is discussed 
in detail. Results on the experiments conducted are discussed 
in section 4. Finally conclusion is discussed in section 5. 

2. RELATED WORK 
In Web usage mining several data mining techniques can be 
used. Association rules are used in order to discover the pages 
which are visited together even if they are not directly 
connected, which can reveal associations between groups of 
users with specific interest [12]. This information can be used 
for example for restructuring Web sites by adding links 

between those pages which are visited together. Association 
rules in Web logs are discovered in [14] [15] [16] [17] [18]. 
Sequence mining can be used for discover the Web pages 
which are accessed immediately after another. Using this 
knowledge the trends of the activity of the users can be 
determined and predictions to the next visited pages can be 
calculated. Sequence mining is accomplished in [13], where a 
so-called WAP-tree is used for storing the patterns efficiently. 

Tree-like topology patterns and frequent path traversals are 
searched by [14] [19] [20] [21]. 
 

3. PROPOSED METHODOLOGY 

3.1 Preprocessing   
During user visit to the web pages in a website, web log files 
are created in the Web Server. The Preprocessing includes the 
steps of Parsing, Cleaning and Session Identification. The 
preprocessing step is executed for each web log file at a time. 
Actually the web log files are flat text files that contain many 

space or tab delimited fields.  The  important  fields  in  any  
web log  file  are  Data,  time,  Client  IP  address,  Server  IP  
address, Server  Port,  URL  Visited  and  User  Agent  filed  
that  gives details  of  the  browser  and  operating  system  
versions.    In parsing step splits the text file is into specific 
fields and extracts the required fields into a database table.  In 
this case,  we  need  the  fields,  date,  time,  Client  IP  
address,  URL Visited and User Agent.   
Once these fields are split, extracted and stored in a database 

table,  the  extracted  records  are  then  cleaned  to  remove  
the images,  icons  and  unwanted  requests.  So delete all 
records that have .JPEG, .GIF and .CSS files in the URL 
Visited field. As a result the cleaned database with relevant 
records is obtained. 
The next step in preprocessing is user session identification 
[13]. The log entries in the web log files are chronologically 
ordered based on the different user’s requests from their client 

machine to the web server. 

3.2 The K-Means Method 
The data  is  clustered  using  the  Standard K-means  
algorithm [12] [13]  which  is  a  multi-pass  technique. The k-
means algorithm takes the input parameter, k, and partitions a 
set of n objects into K clusters so that the resulting intra 
cluster similarity is high but the inter cluster similarity is low. 
Cluster similarity is measured in regard to the mean value of 
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the objects in a cluster, which can be viewed as the cluster’s 
centroid or center of gravity. The algorithm   iterates between 
the following steps till convergence: 

1. Initialize K centroids at random for K clusters and 
assign each vector to the closest cluster centroid. 

2. Compute the centroids of all current clusters.   
3. Generate a new partition by assigning each item to 

the closest cluster centroid.  
4. If cluster memberships change compared to the last 

iteration, go to step 2, else stop 

3.3 Frequent Pattern Tree Basics  
Let I = {I1, I2, I3…In} be a set of items, and a transaction 
database T = {t1, t2, t3…tm} where ti (i ε [1: m]) is a 
transaction which contains a set of items in I. The support 
(absolute occurrence of frequency, not the relative one as in 
some literature) of a pattern A, which is a set of items, is the 
number of transactions containing A in T. A, is a frequent 
pattern if A's support is no less than a predefined, minimum 

support threshold, ξ. 
Given a transaction database T and a minimum support 
threshold, ξ, the problem of finding the complete set of 
frequent patterns is called the frequent pattern mining 
problem. 
A frequent pattern tree (or FP-tree in short) is a tree structure 
consists of one root labeled as "null', a set of item prefix sub-
trees as the children of the root, and a frequent-item header 

table. Each node in the item prefix sub-tree consists of three 
fields: item-name, count, and node-link, where item-name 
registers which item this node represents, count registers the 
number of transactions represented by the portion of the path 
reaching this node, and node-link links to the next node in the 
FP-tree carrying the same item-name, or null if there is none. 
Each entry in the frequent-item header table consists of two 
fields, (1) item-name and (2) head of node-link, which points 
to the first node in the FP-tree carrying the item-name. Based 

on this definition, we have the following FP-tree construction 
algorithm. 
Let’s first examine an example in [5] using the frequent-
pattern growth approach. Suppose we have transaction data 
base shown in Figure 1 with minimum sup-port count be 2. 
The first scan of the database derives the set of frequent items 
(1-itemsets) and their support counts (frequencies). The set of 
frequent items is sorted in the order of descending support 

count. Thus, we get the set L= {{I2: 7}, {I1: 6}, {I3: 6}, {I4: 
2}, {I5: 2}}. An FP-tree is then constructed using the 
algorithm in [5]. First, create the root of the tree, labeled with 
“null.” Scan database a second time. The items in each 
transaction are processed in L order and a branch is created 
for each transaction. For example, the scan of the first 
transaction, “T1: I1, I2, I5,” which contains three items (I2, 
I1, I5 in L order), leads to the construction of the first branch 

of the tree with three nodes, {I2: 1}, {I1:1}, and {I5: 1}, 
where I2 is linked as a child of the root, I1 is linked to I2, and 
I5 is linked to I1. The second transaction, T2, contains the 
items I2 and I4 in L order, which would result in a branch 
where I2 is linked to the root and I4 is linked to I2. However, 
this branch would share a common prefix, I2, with the 

existing path for T100. Therefore, we instead increment the 
count of the I2 node by 1, and create a new node, {I4: 1}, 
which is linked as a child of {I2: 2}. In general, when 
considering the branch to be added for a transaction, the count 
of each node along a common prefix is incremented by 1, and 

nodes for the items following the prefix are created and linked 
accordingly. 

TID List of Item_IDs 

T1 I1,I2,I5 

T2 I2,I4 

T3 I2,I3 

T4 I1,I2,I4 

T5 I1,I3 

T6 I2,I3 

T7 I1,I3 

T8 I1,I2,I3,I5 

T9 I1I2,,I3 

Figure 1: Database and corresponding FP-tree 

To facilitate tree traversal, an item header table is built so that 
each item points to its occurrences in the tree via a chain of 
node-links. The tree obtained after scanning all of the 
transactions is shown in Figure 1 with the associated node-
links. In this way, the problem of mining frequent patterns in 
databases is transformed to that of mining the FP-tree. 

3.4 Mining FP-tree 
Start from each frequent length-1 pattern, construct its 
conditional pattern base, then construct its (conditional) FP-
tree, and perform mining recursively on such a tree. The 
pattern growth is achieved by the concatenation of the suffix 

pattern with the frequent patterns generated from a conditional 
FP-tree. 
The FP-growth method transforms the problem of finding 
long frequent patterns to searching for shorter ones 
recursively and then concatenating the suffix. It uses the least 
frequent items as a suffix, offering good selectivity. The 
method substantially reduces the search costs. Mining the FP-
tree by creating conditional pattern bases is described in the 

figure 2. 

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated 

I1 {{I2,I1:1},{I2,I1,I3:1}} {I2:2,I1:2} {I2,I5:2},{I1,I5:2},{I2,I1,I5:2} 

I4 {{I2,I1:1},{I2:1}} {I2:2} {I2,I4:2} 

I3 {{I2,I1:1},{I2:2},{I1:2}} {I2:4,I1:2},{I1:2} {I2,I3:4},{I1,I3:4},{I2,I1,I3:2} 

I1 {{I2:4}} {I2:4} {I2,I1:4} 

Figure 2:  Mining the FP-tree by creating conditional (sub-) pattern bases
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3.5 KFP-tree algorithm 
Input:  Web log File 

Output: Frequent Patterns 

Steps 

A. Preprocessing 

B. Clustering 
a) Arbitrarily choose k objects from D as the initial cluster 

centers. 
b) Repeat  
c) (Re) assign each object to the cluster, to which the object is 

the most similar, based on the mean value of the objects in the 
cluster; 

d) Update the cluster means (It mean calculate the mean value of 
the objects for each cluster) 

e) Until no change 

C. Mining frequent patterns 
1. FP-tree construction 
Scan the transaction database D once. Collect F, the set of 

frequent items, and their support counts and sort F in support 
count descending order as L, the list of frequent items. Create 
the root of an FP-tree, and label it as “null.” For each 
transaction Trans in D do the following. Select and sort the 
frequent items in Trans according to the order of L. Let the 
sorted frequent item list in Trans be [p|P], where p is the first 
element and P is the remaining list and call insert tree ([p|P], 
T), which is performed as follows. If T has a child N such that 

N.item-name=p.item-name, then increment N’s count by 1; 
else create a new node N, and let its count be 1, its parent link 
be linked to T, and its node-link to the nodes with the same 
item-name via the node-link structure. If P is nonempty, call 
insert tree (P, N) recursively. 
2. Mining the FP-tree  
The FP-tree is mined by calling FP-growth (FP-tree, α) 
FP-growth (Tree, α) 
a) if Tree contains a single path P 

b) then for each combination (denoted as ) of the nodes in 

the path P do 
c) generate pattern with support = minimum support 

of nodes in β; 
d) else for each a in the header of Tree do { 
e) generate pattern β =  ai α with support = ai .support; 

f) construct β's conditional pattern base and then  's 

conditional FP-tree Treeβ; 
g) if Treeβ =6 0 
h) then call FP-growth (Treeβ , β) 
i) Clustering groups the similar web access records from the 

weblogs. Using the similarity property of the records in 
the clusters, KFP-tree algorithm generates the frequently 
accessed web pages efficiently. 

 

4. EXPERIMENTAL RESULT 
The problem I have solved to mine frequent patterns in 
weblogs. As web logs are often very large in size buts parse in 
density, the efficiency of frequent pattern mining algorithm is 

important. In this section, I present a performance comparison 
of FP-growth with the recently proposed efficient method 
KFP-tree. 
All the experiments are performed on a 2.40-GHz Pentium PC 
machine with 1 Gigabytes main memory, running on 
Microsoft Windows XP. All the programs are written in java. 
Please also note that run time used here means the total 
execution time, i.e., the period between input and output, 
instead of CPU time measured in the experiments in some 

literature. The synthetic data sets which we used for our 

experiments were generated using the procedure described in 
[8]. 
The results in figure 3 proved that the proposed algorithm is 
seen to perform better in aspect of computation time. 

 

Figure 3: Comparing the Run Times of the FP-tree and 

KFP-tree algorithms 

Thus KFP-tree algorithm  takes  lesser  run  time and  prunes 
more  rules  than the  traditional  frequent  pattern analysis,  
FPA approach.  Thus this  is  a  hierarchical  frequent  pattern  
mining  approach  that  is found suitable for analyzing web 
log data and to predict useful information from the analyzed 

data.   
 

5. CONCLUSION 
I have proposed a novel approach, based on k-mean and 
frequent pattern tree (FP-tree), for frequent pattern mining 

from Weblog data. Weblog databases are homogenous 
databases in binary format. Initially the binary data is 
clustered using the multi-pass K-means algorithm. The similar 
groups of data or clusters are used in FP-tree procedure for 
frequent item-set generation. Experiments are performed 
using real and synthetic data, and found KFP-tree algorithm is 
more efficient compared to FP-tree algorithm. The future 
work regarding this paper is to apply the same for different 

web sites to confirm the results.  
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