
International Journal of Computer Applications (0975 – 8887)

 Volume 49– No.10, July 2012

15

Efficient Discovery of Frequent Patterns using KFP-Tree
from Web Logs

Shyam Sundar Meena
Department of Computer Science & Engineering

Swami Vivekanad College of Engineering
Indore, Madhya Pradesh, India

ABSTRACT

Frequent pattern discovery is a heavily focused area in data
mining. Discovering concealed information from Web log
data is called Web usage mining. Web usage mining
discovers interesting and frequent user access patterns
from web logs. This paper contains a novel approach, based
on k-mean and frequent pattern tree (FP-tree), for frequent

pattern mining from Weblog data.

Keywords

Web mining, Pattern discovery, k-mean and FP-tree

1. INTRODUCTION
The expansion of the World Wide Web has resulted in a large
amount of data. Web mining discovers and extracts useful
information from the World Wide Web (WWW)
documents and services using the data mining techniques.
Most users obtain WWW information using a combination

of search engines and browsers; however these two types of
retrieval mechanism do not address all of a user's
information needs. The resulting growth in on-line
information combined with the almost unstructured web
data necessitates the development of computationally
efficient web mining tools. Web Mining can be classified [1]
as, web content mining, web structure mining and web usage
mining. Web content mining means automatic search of

information resources available online [2], in short, mining
the data on the Web. Web structure mining means mining
the web document's structure and links, in short, mining
the Web structure data. Web usage mining includes the
data from server access logs, user registration or profiles, user
sessions or transactions, in short, mining the Web log
data. Web mining subtasks are (a) resource finding and
retrieving, (b) information selection and pre-processing,
(c) patterns analysis and recognition, (d) validation and

interpretation, and (e) visualization [3].
The majority of the web logs include information regarding
fields: IP Address, User Name, Time Stamp, Access Request,
Result Status, Byte Transferred, Referrer URL and User
Agent. There are many efforts towards mining various
patterns from Web logs [4] [9] [11].
Mined information of Web logs can be used for various
purposes like: To improve the design of web sites used to

gather business intelligence to improve sales and
advertisement, analyzing system performance, building
adaptive Web sites [7] [6] [10].
The organization of the paper is as follows. Section 2, discuss
the related work. In section 3, proposed approach is discussed
in detail. Results on the experiments conducted are discussed
in section 4. Finally conclusion is discussed in section 5.

2. RELATED WORK
In Web usage mining several data mining techniques can be
used. Association rules are used in order to discover the pages
which are visited together even if they are not directly
connected, which can reveal associations between groups of
users with specific interest [12]. This information can be used
for example for restructuring Web sites by adding links

between those pages which are visited together. Association
rules in Web logs are discovered in [14] [15] [16] [17] [18].
Sequence mining can be used for discover the Web pages
which are accessed immediately after another. Using this
knowledge the trends of the activity of the users can be
determined and predictions to the next visited pages can be
calculated. Sequence mining is accomplished in [13], where a
so-called WAP-tree is used for storing the patterns efficiently.

Tree-like topology patterns and frequent path traversals are
searched by [14] [19] [20] [21].

3. PROPOSED METHODOLOGY

3.1 Preprocessing
During user visit to the web pages in a website, web log files
are created in the Web Server. The Preprocessing includes the
steps of Parsing, Cleaning and Session Identification. The
preprocessing step is executed for each web log file at a time.
Actually the web log files are flat text files that contain many

space or tab delimited fields. The important fields in any
web log file are Data, time, Client IP address, Server IP
address, Server Port, URL Visited and User Agent filed
that gives details of the browser and operating system
versions. In parsing step splits the text file is into specific
fields and extracts the required fields into a database table. In
this case, we need the fields, date, time, Client IP
address, URL Visited and User Agent.
Once these fields are split, extracted and stored in a database

table, the extracted records are then cleaned to remove
the images, icons and unwanted requests. So delete all
records that have .JPEG, .GIF and .CSS files in the URL
Visited field. As a result the cleaned database with relevant
records is obtained.
The next step in preprocessing is user session identification
[13]. The log entries in the web log files are chronologically
ordered based on the different user’s requests from their client

machine to the web server.

3.2 The K-Means Method
The data is clustered using the Standard K-means
algorithm [12] [13] which is a multi-pass technique. The k-
means algorithm takes the input parameter, k, and partitions a
set of n objects into K clusters so that the resulting intra
cluster similarity is high but the inter cluster similarity is low.
Cluster similarity is measured in regard to the mean value of

International Journal of Computer Applications (0975 – 8887)

 Volume 49– No.10, July 2012

16

the objects in a cluster, which can be viewed as the cluster’s
centroid or center of gravity. The algorithm iterates between
the following steps till convergence:

1. Initialize K centroids at random for K clusters and
assign each vector to the closest cluster centroid.

2. Compute the centroids of all current clusters.
3. Generate a new partition by assigning each item to

the closest cluster centroid.
4. If cluster memberships change compared to the last

iteration, go to step 2, else stop

3.3 Frequent Pattern Tree Basics
Let I = {I1, I2, I3…In} be a set of items, and a transaction
database T = {t1, t2, t3…tm} where ti (i ε [1: m]) is a
transaction which contains a set of items in I. The support
(absolute occurrence of frequency, not the relative one as in
some literature) of a pattern A, which is a set of items, is the
number of transactions containing A in T. A, is a frequent
pattern if A's support is no less than a predefined, minimum

support threshold, ξ.
Given a transaction database T and a minimum support
threshold, ξ, the problem of finding the complete set of
frequent patterns is called the frequent pattern mining
problem.
A frequent pattern tree (or FP-tree in short) is a tree structure
consists of one root labeled as "null', a set of item prefix sub-
trees as the children of the root, and a frequent-item header

table. Each node in the item prefix sub-tree consists of three
fields: item-name, count, and node-link, where item-name
registers which item this node represents, count registers the
number of transactions represented by the portion of the path
reaching this node, and node-link links to the next node in the
FP-tree carrying the same item-name, or null if there is none.
Each entry in the frequent-item header table consists of two
fields, (1) item-name and (2) head of node-link, which points
to the first node in the FP-tree carrying the item-name. Based

on this definition, we have the following FP-tree construction
algorithm.
Let’s first examine an example in [5] using the frequent-
pattern growth approach. Suppose we have transaction data
base shown in Figure 1 with minimum sup-port count be 2.
The first scan of the database derives the set of frequent items
(1-itemsets) and their support counts (frequencies). The set of
frequent items is sorted in the order of descending support

count. Thus, we get the set L= {{I2: 7}, {I1: 6}, {I3: 6}, {I4:
2}, {I5: 2}}. An FP-tree is then constructed using the
algorithm in [5]. First, create the root of the tree, labeled with
“null.” Scan database a second time. The items in each
transaction are processed in L order and a branch is created
for each transaction. For example, the scan of the first
transaction, “T1: I1, I2, I5,” which contains three items (I2,
I1, I5 in L order), leads to the construction of the first branch

of the tree with three nodes, {I2: 1}, {I1:1}, and {I5: 1},
where I2 is linked as a child of the root, I1 is linked to I2, and
I5 is linked to I1. The second transaction, T2, contains the
items I2 and I4 in L order, which would result in a branch
where I2 is linked to the root and I4 is linked to I2. However,
this branch would share a common prefix, I2, with the

existing path for T100. Therefore, we instead increment the
count of the I2 node by 1, and create a new node, {I4: 1},
which is linked as a child of {I2: 2}. In general, when
considering the branch to be added for a transaction, the count
of each node along a common prefix is incremented by 1, and

nodes for the items following the prefix are created and linked
accordingly.

TID List of Item_IDs

T1 I1,I2,I5

T2 I2,I4

T3 I2,I3

T4 I1,I2,I4

T5 I1,I3

T6 I2,I3

T7 I1,I3

T8 I1,I2,I3,I5

T9 I1I2,,I3

Figure 1: Database and corresponding FP-tree

To facilitate tree traversal, an item header table is built so that
each item points to its occurrences in the tree via a chain of
node-links. The tree obtained after scanning all of the
transactions is shown in Figure 1 with the associated node-
links. In this way, the problem of mining frequent patterns in
databases is transformed to that of mining the FP-tree.

3.4 Mining FP-tree
Start from each frequent length-1 pattern, construct its
conditional pattern base, then construct its (conditional) FP-
tree, and perform mining recursively on such a tree. The
pattern growth is achieved by the concatenation of the suffix

pattern with the frequent patterns generated from a conditional
FP-tree.
The FP-growth method transforms the problem of finding
long frequent patterns to searching for shorter ones
recursively and then concatenating the suffix. It uses the least
frequent items as a suffix, offering good selectivity. The
method substantially reduces the search costs. Mining the FP-
tree by creating conditional pattern bases is described in the

figure 2.

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated

I1 {{I2,I1:1},{I2,I1,I3:1}} {I2:2,I1:2} {I2,I5:2},{I1,I5:2},{I2,I1,I5:2}

I4 {{I2,I1:1},{I2:1}} {I2:2} {I2,I4:2}

I3 {{I2,I1:1},{I2:2},{I1:2}} {I2:4,I1:2},{I1:2} {I2,I3:4},{I1,I3:4},{I2,I1,I3:2}

I1 {{I2:4}} {I2:4} {I2,I1:4}

Figure 2: Mining the FP-tree by creating conditional (sub-) pattern bases

International Journal of Computer Applications (0975 – 8887)

 Volume 49– No.10, July 2012

17

3.5 KFP-tree algorithm
Input: Web log File

Output: Frequent Patterns

Steps

A. Preprocessing

B. Clustering
a) Arbitrarily choose k objects from D as the initial cluster

centers.
b) Repeat
c) (Re) assign each object to the cluster, to which the object is

the most similar, based on the mean value of the objects in the
cluster;

d) Update the cluster means (It mean calculate the mean value of
the objects for each cluster)

e) Until no change

C. Mining frequent patterns
1. FP-tree construction
Scan the transaction database D once. Collect F, the set of

frequent items, and their support counts and sort F in support
count descending order as L, the list of frequent items. Create
the root of an FP-tree, and label it as “null.” For each
transaction Trans in D do the following. Select and sort the
frequent items in Trans according to the order of L. Let the
sorted frequent item list in Trans be [p|P], where p is the first
element and P is the remaining list and call insert tree ([p|P],
T), which is performed as follows. If T has a child N such that

N.item-name=p.item-name, then increment N’s count by 1;
else create a new node N, and let its count be 1, its parent link
be linked to T, and its node-link to the nodes with the same
item-name via the node-link structure. If P is nonempty, call
insert tree (P, N) recursively.
2. Mining the FP-tree
The FP-tree is mined by calling FP-growth (FP-tree, α)
FP-growth (Tree, α)
a) if Tree contains a single path P

b) then for each combination (denoted as) of the nodes in

the path P do
c) generate pattern with support = minimum support

of nodes in β;
d) else for each a in the header of Tree do {
e) generate pattern β = ai α with support = ai .support;

f) construct β's conditional pattern base and then 's

conditional FP-tree Treeβ;
g) if Treeβ =6 0
h) then call FP-growth (Treeβ , β)
i) Clustering groups the similar web access records from the

weblogs. Using the similarity property of the records in
the clusters, KFP-tree algorithm generates the frequently
accessed web pages efficiently.

4. EXPERIMENTAL RESULT
The problem I have solved to mine frequent patterns in
weblogs. As web logs are often very large in size buts parse in
density, the efficiency of frequent pattern mining algorithm is

important. In this section, I present a performance comparison
of FP-growth with the recently proposed efficient method
KFP-tree.
All the experiments are performed on a 2.40-GHz Pentium PC
machine with 1 Gigabytes main memory, running on
Microsoft Windows XP. All the programs are written in java.
Please also note that run time used here means the total
execution time, i.e., the period between input and output,
instead of CPU time measured in the experiments in some

literature. The synthetic data sets which we used for our

experiments were generated using the procedure described in
[8].
The results in figure 3 proved that the proposed algorithm is
seen to perform better in aspect of computation time.

Figure 3: Comparing the Run Times of the FP-tree and

KFP-tree algorithms

Thus KFP-tree algorithm takes lesser run time and prunes
more rules than the traditional frequent pattern analysis,
FPA approach. Thus this is a hierarchical frequent pattern
mining approach that is found suitable for analyzing web
log data and to predict useful information from the analyzed

data.

5. CONCLUSION
I have proposed a novel approach, based on k-mean and
frequent pattern tree (FP-tree), for frequent pattern mining

from Weblog data. Weblog databases are homogenous
databases in binary format. Initially the binary data is
clustered using the multi-pass K-means algorithm. The similar
groups of data or clusters are used in FP-tree procedure for
frequent item-set generation. Experiments are performed
using real and synthetic data, and found KFP-tree algorithm is
more efficient compared to FP-tree algorithm. The future
work regarding this paper is to apply the same for different

web sites to confirm the results.

6. ACKNOWLEDGMENT
The author would like to thank the anonymous reviewers for
their thorough reviews, and constructive suggestions which

significantly enhance the presentation of the paper.

7. REFERENCES
[1] Raymond Kosala and Hendrik Blockeel. 2000, “Web

Mining Research: A Survey", ACM SIGKDD.

[2] Sanjay Kumar Madria, Sourav S Bhowmick, Ng
W.K. and Lim E.P. 1999, “Research Issues in Web
Data Mining", Springer.

[3] Qingyu Zhang and Richard S. Segall. 2008, "Web
Mining: A Survey Of Current Research, Techniques,
And Software", In International Journal of
Information Technology and Decision Making,
Volume: 07, Issue: 04, pp. 683-720.

[4] R. Cooley, B. Mobasher, and J. Sriv astava. Data

preparation for mining World Wide Web browsing
patterns. In Journal of Knowledge & Information
Systems, Vol. 1, No. 1, 1999.

International Journal of Computer Applications (0975 – 8887)

 Volume 49– No.10, July 2012

18

[5] Han,Kamber, “Data Mining Concepts & Techniques”,
M.Kaufman.

[6] B. Mobasher, R. Cooley, and J. Srivastava. Automatic
personalization based on Web usage mining. In
Communications of the ACM, (43) 8, August 2000.

[7] M. Perkowitz and O. Etzioni. Adaptive Sites:
Automatically learning from user access patterns. In
Proc. 6th Int’l World Wide Web Conf., Santa Clara,
California, April 1997.

[8] R. Agrawal and R. Srikant. Fast algorithms formining
association rules. In VLDB'94, pp. 487-499.

[9] M. Spiliopoulou and L. Faulstich. WUM: A tool for Web
utilization analysis. In Proc. 6th Int’l Conf. on Extending

Database Technology (EDBT’98), Valencia, Spain,
March 1998.

[10] L. Tauscher and S. Greeberg. How people revisit Web
pages: Empirical findings and implications for the de
sign of history systems. In Int’l Journal of Juman
Computer Studies, Special Issue on World Wide Web
Usability, 47:97-138, 1997.

[11] O. Zaiane, M. Xin, and J. Han. Discovering Web access

patterns and trends by applying OLAP and data mining
technology on Web logs. In Proc. Advances in Digital
Libraries Conf. (ADL’98), Melbourne, Australia, pages
1244-158, April 1998.

[12] M. Eirinaki and M. Vazirgiannis, “Web mining for web
personalization,” ACM Trans. Inter. Tech., Vol. 3, No. 1,
pp. 1-27, 2003.

[13] J. Pei, J. Han, B. Mortazavi-A sl, and H. Zhu, “Mining
access patterns efficiently from web logs,” in PADKK
’00: Proceedings of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Current Issues
and New Applications. London, UK: Springer-Verlag,

2000, pp. 396-407.

[14] M. S. Chen, J. S. Park, and P. S. Yu, “Data mining for
path traversal patterns in a web environment,” in
Sixteenth International Conference on Distributed
Computing Systems, 1996, pp. 385-392.

[15] J. Punin, M. Krishnamoorthy, and M. Zaki, “Web usage
mining: Languages and algorithms,” in Studies in
Classification, Data Analysis, and Knowledge

Organization. Springer-Verlag, 2001.

[16] P. Batista, M. ario, and J. Silva, “Mining web access logs
of an on-line newspaper,” 2002.

[17] O. R. Zaiane, M. Xin, and J. Han, “Discovering web
access patterns and trends by applying olap and data
mining technology on web logs,” in ADL ’98:
Proceedings of the Advances in Digital Libraries
Conference. Washington, DC, USA: IEEE Computer

Society, 1998, pp. 1-19.

[18] J. F. F. M. V. M. Li Shen, Ling Cheng and T. Steinberg,
“Mining the most interesting web access associations,” in
WebNet 2000-World Conference on the WWW and
Internet, 2000, pp. 489-494

