
International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

20

 Reference Scan Algorithm for Path Traversal Patterns

 Chintandeep Kaur Rinkle Rani Aggarwal
Department of Computer Science & Engineering,

Thapar University, Patiala –147004 (India)
Department of Computer Science & Engineering,

Thapar University, Patiala –147004 (India)

ABSTRACT
The paper focuses the path of exploring an algorithm which
involves mining frequently used user traversals pattern while
using the World Wide Web by the user. As the web’s becoming

more and more popular, web servers gather the large amount of
data from the web in the form of web server logs. The web server
log provides important information aiding to analysing the user
surfing behavior and thus extract important information. Web
Usage Mining analyses the Web access logs to find how the
users surf a website so as to bring out interesting patterns which
can be used for improving user profile, web site design, business
and marketing decision support and web server system. Firstly,

the server log is scanned and the maximal forward references are
obtained for which effect of backward references is not
considered and secondly, the maximal forward references
obtained in the first step are used to finally obtain the large
references which are frequently accessed patterns by the user.

General Terms

Maximal forward reference, Algorithms, Large reference, user-
Traversal patterns

Keywords

Reference scan, Server log.

1. INTRODUCTION
As the popularity and vastness of World Wide Web is increasing
with each day so is the importance of web mining. With the
increasing number of websites and web users, web data is being
collected and stored by the server as web server data constituted

with different fields. It is considered that the analysis of this web
server data can provide us various information’s like user surfing
behavior which can help in user profiling, web site designs and
making better business and marketing decision making our
website more popular and user friendly [1]. For performing this
task it is necessary to collect a good amount of data for analysis
before coming to any productive conclusions. As the web server
data tends to be too large there is a need devise an efficient
algorithm to first extract useful data and then mine it to get

patterns which are helpful for the website. This paper has
considered a new data mining capability which constitutes of
mining the access patterns where the objects are linked with each
other giving an interactive access in a distributed information
providing environment say World Wide Web (WWW) [2] where
the users access the websites by travelling from one page to the
other with the help of connecting facility provided say
hyperlinks. The fact that mining of user traversal patterns will

not only help in improving our web-site’s design (say, more user
friendly for most used pages, better designs of pages) but also
help in making business decisions (say placing of advertisement
at appropriate page). The user access patterns or mining traversal
patterns provides with frequently used pages which are done by
analyzing the user behavior from the web server log. Various
algorithms have been proposed for mining the user traversal
pattern but in this paper algorithmic aspects proposed are in such
a manner that it makes traversal pattern mining much better [3].

As these information giving services are expanding with each
day with fierce competition to face with analysis of user access
patterns is a necessity so as to come to qualitative conclusions
with meaningful patterns to end with and thus providing services
which help in achieving user satisfaction. The user can traverse
the web-site in different ways say for instance it may reach web-
page because of its location rather than its content or it does not

follow the hierarchy and randomly traverses the web site and
reaches that web page. The differences between traversal patterns
increase the complexity of obtaining useful and important
information from the traversed data. Thus came the need for
drawing various algorithms for mining the traversal pattern of the
user and incurring useful patterns. Various algorithms have been
proposed for mining traversal patterns. In this paper a new
approach has been proposed for mining the large references. The

traversal patterns are achieved first by mining the maximal
forward references from the web server log and after this the
maximal forward reference are used to obtain the large
references which are the most frequently used paths by the user
for a particular website. Eventually the aim is to obtain the large
reference.

This paper basically contains a proposal of a new algorithm for
getting the large reference sequence by first obtaining the
maximal forward reference using the algorithm MF for obtaining
traversal subsequences from the log data and later on applying a
new algorithm being proposed called as reference scan to obtain

the frequently occurring traversal patterns. Every traversal
subsequence makes up a maximal forward reference representing
the initial point from where the user starts accessing the website.
The sequence obtained from the log data is raw and it is finally
converted to maximal forward references which is the maximum
path travelled leaving out the backward references. The
backward reference is the path from where user goes to a link
already visited which is only meant for the user to traverse the

website easily and thus to obtain user accessed pattern. After this
step an algorithm is devised to get the final set of large reference
sequence which is derived from the maximal forward reference
obtained in the former algorithm. The large references are those
sequences which is the path most frequently visited by many
users in the database. These large references are the final
sequence which can be used for further analysis and
improvement of website and web-data. Also these sequence need

to be consecutive in maximal forward reference itself. Now for
fetching large reference sequence or frequently used sequence
an algorithm has been proposed namely Reference-Scan or RS
which basically works around minimum support required

reducing the database scans and finally giving us the result.

 Problem formulation is given in section 2; section 3 contains the
algorithm for user access pattern where algorithm MF to identify
maximal forward references is described. Section 4 contains

finding large reference with section 4.1 explaining our proposed
algorithm and finally section 5 contains summary of our work.

1.1 Related work
Mobasher [4] gave a new web mining technique WEBMINER
which offered transaction models to extract useful information

International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

21

from the server logs. Spiliopoulou and Faulstich [5] collected the
individual routing paths into an aggregated tree and pruned the
uninteresting patterns considering only those patterns which had
desired characteristics. Chen [6] gave two algorithms for
determining web traversal patterns: FS (full-scan) and

SS(selective scan).H. Yao [7] proposed a foundational approach
to mining item set utilities from databases. This approach allows
user preferences of item set as subjective values. The objective
value of an item is defined according to the information stored in
a transaction i.e. the quantity of the item sold in the transaction.
From very large logs, Z. Chen [8] proposed two effective
algorithms for finding maximal forward references longest
sequences of Web pages visited by a user without revisiting some

previously visited page in the sequence, and their performance is
relatively analyzed. An efficient web traversal pattern mining
algorithm based on suffix array is given by T. Jing [9]. In [10]
Yen presented the modified incremental data mining algorithm
for discovering web traversal patterns when the user sequences
are inserted into and deleted from original database. This
algorithm uses lattice structure to keep the previous mining
results such that just new candidate sequences need to be

computed. Hence, the web traversal pattern can be obtained
rapidly when the traversal sequence database is updated. But it is
unsuccessful when web site structure is changed. Zhou [11]
proposed high utility path traversal pattern mining, which
introduces the concept of utility into path traversal pattern
mining model. A utility-based algorithm for web path traversal
was improved by C. F. Ahmed et al. [12]. They used a pattern
growth sequential mining to prune a huge number of candidates.

It effectively divides the search space by small projected
databases recursively using the divide and conquers technique.
Therefore, it saves several scanning of the whole database which
is required by the exiting algorithm.

2. PROBLEM DESCRIPTION

As it has been told before that World Wide Web is made up of
incredible amount of information which is in a hierarchical

structure where the pages are considered as nodes and they are
linked with each other via hyperlinks represented using arrows
and the users can move forward and backward with the help of
hyperlinks and icons rendered to them. Some pages may be visited
again by the user because of the location of the web page than its
content, say for example to visit a sibling node the user usually
uses the backward icon and then forward icon instead of going
straight to the URL. So finally to get useful traversal patterns of

the user from the server data the need is to prune the effect of
these backward visits and extract the useful patterns of
importance. In this paper it is being assumed that the backward
traversals are just for the ease of moving to the previous page and
the main concentration is on the discovery of meaningful forward
user access patterns. A backward reference is basically for
accessing the previously visited page by the same user. When a
previous access is made by the user the path user was moving on

terminates. This gives us a forward reference path which we term
as maximal forward reference. After obtaining the maximal
forward reference it starts again from the starting point from
where we started to obtain the forward reference path and then
resume in obtaining a new user traversed path. Also if a null
source node appears termination should be made and a new path
should be found again.

Now, moving on to the explanation of the algorithm (MF) used to
obtain the maximal forward references described in the next
section with help of an example explained below. As said that the
web pages also known as the nodes and here are denoted with
alphabets which are used to represent the user accessed path.

Suppose the log contains various user traversed path say :
{A,B,C,D,E,F,G,H,I,J} as in Figure 1. Now, after applying the
algorithm MF the following maximal forward references are
obtained as output that have been accessed by the user {ABCD,
ABEFG, ABEH, AIJK}.After obtaining the maximum traversed

patterns the frequently occurring substrings from the maximal
forward references are obtained. The frequently occurring
substring is known as large reference. A large reference sequence
is a traversal pattern which appears number of times.

The overall procedure is as follows:
Step 1: Determination of the maximal forward reference using
algorithm MF is done.
Step 2: After this extraction of the large reference sequence using
the algorithm RS is done.
After performing the above two steps the large references are
obtained which are frequently occurring sequences.

3. ALGORITHM FOR USER ACCESS

PATTERN
In this section the maximal forward reference are obtained using
the algorithm MF with explanation of the procedure followed for
the same. Maximal forward references are those strings which
tell the maximum length till which the user has accessed a

particular website before it traversed back to a previously
accessed webpage. For this an already proposed algorithm MF
has been taken under consideration. A server log consist of
various fields as Host, rfc931 username, date-time, request,
status-code, bytes, referrer, user-agent.. Now a pair of source and
destination field is obtained from the server log and this pair can
help in getting the maximal forward references. First, the server
log database is sorted on the account of user id’s for each user

where the (source, destination) pair is ordered by time. The
output obtained from MF is stored in a database DF as this output
will act as input to the algorithm for reference scan giving us
large reference sequence.

3.1 Finding maximal forward references
Algorithm MF:
Step 1: Set i = 1 and string Y to null for initialization,

where string Y is used to store the current

forward reference path. Also, set the flag F = 1
to indicate a forward traversal.

Step 2: Let A = si and B = di.
If A is equal to null then
/* this is the beginning of a new traversal */
Begin

Write out the current string Y (if not null)
to the database DF;

Set string Y = B;

Go to Step 5.
end

Step 3: If B is equal to some reference (say the j-th
reference) in string Y then
/* this is a cross-referencing back to a previous
reference */
begin

If F is equal to 1 then write out string Y to

 database DF;
Discard all the references after the j-th one
in string Y

F =0 ;
Go to Step 5.
end

Step 4: Otherwise, append B to the end of string Y.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

22

/* we are continuing a forward traversal */
If F is equal to 0, set F = 1.

Step 5: Set i = i+l. If the sequence is not completed scanned
then go to Step 2.

Table 1: An example execution of MF

Now, analyzing the above given table as per the traversal pattern in

figure 1, it can be seen that while moving a backward traversal is
obtained in sequence 5 resulting in ABCD as the first maximal
forward reference written to database (as in step 3). The scanning
of the pattern is done till the reverse sequence is encountered and
then the final sequences are obtained which are written to string Y
and ultimately fed and stored to the database DF. The final
sequences from the figure 1 are {ABCD, ABEFG, ABEH, AIJK}.

4. FINDING LARGE REFERENCE
For obtaining the large references various algorithms have been
proposed which work on the technique of hashing and pruning. For
this paper firstly two algorithms were analysed which were Full
Scan and selective Scan. Both these algorithm work on the concept
of data hashing and pruning which basically involves scanning of
the database with trimming of the database in each step. During the
analyses it was observed that the database scan in these algorithms
occur at each step. So as to reduce the database scan occurring at
each step idea of this new algorithm has been proposed.

In full scan the database is scanned in each pass so as to get the
candidate references whereas in selective scan the large references

can be determined in batch so as to reduce the number of database
scan that are made. After obtaining the maximal forward references
in the database DF, now the large references are derived which are
the most frequently occurring patterns that are traversed by the user
many a times. The large references are the frequently occurring
subsequences of maximal forward reference. For a sequence to
qualify as large reference sequence it needs to have a minimum
support which is a variable and can change with the size of the
database fed as input by the user.

4.1 Algorithm on selective scan (SS)
To describe algorithm FS, we shall first get the basic ideas of the
DHP algorithm. DHP [13] utilizes a hashing technique and so is
very efficient in the generation of candidate itemset (Ck). Also
DHP assists with pruning techniques which reduces the database
size considerably. Lk denotes the set of all large k-references and
ck is a set of candidate k-references, ck is usually a superset of Lk.

By scanning through the database DF, FS gets L1 and makes a hash
table (i.e., H2) to count the number of occurrences of each 2-

reference. Similarly to DHP, starting with k = 2, FS as in figure 2
generates ck based on the hash table count obtained in the previous
pass, determines the set of large k-references, reduces the size of
database for the next pass, and makes a hash table to determine the

candidate (k + 1)-references. Database size can decrease

significantly with each pass. While devising the algorithm it was
found that it is better to obtain the Ck from Lk-1*Lk-1 rather than
using hash able to generate Lk. To count the occurrences of each
A-reference in ck to determine Lkj we need to scan through a
trimmed version of database DF.

From the set of maximal forward references, among k-references
in Ck large k-references are obtained. After the scan of the entire

database, those k-references in ck with count exceeding the
threshold become Lk. If Lk is non-empty, the iteration continues
for the next pass, i.e., pass k + 1. Same as in DHP, every time
when the database is scanned, the database is trimmed by FS to
improve the efficiency of future scans.

4.2 Algorithm on selective scan (SS)

Algorithm SS is similar to algorithm FS in that it also employs
hashing and pruning techniques to reduce both CPU and 1/0 costs,
but is different from the latter in that algorithm SS, by properly
utilizing the information in candidate references in prior passes, is
able to avoid database scans in some passes, thus further reducing
the disk 1/0 cost.. Recall that algorithm FS generates a small
number of candidate 2-references by using a hashing technique. In
fact, this small C2 can be used to generate the candidate 3-

references.

5. PROPOSED ALGORITHM
As in the above section an overview about the full and selective

scan algorithms has been given which basically rely on data
hashing and pruning where it scans the database at each step so as
to create a candidate table (C1,C2,C3…Cn) and after that by
trimming the value with minimum support it obtains the large
reference table (L1,L2,L3…Lk). Now the second candidate table is
obtained by the cross product of large reference table obtained in
step 1 and the occurrence of the two item set in main table is
considered. After this removal of the items having the least
minimum support is done so as to obtain the trimmed database.

The further procedure involves generation of next item set and so
on. This algorithm uses hash table to store the values. In full scan
the database is scanned in each step so as to generate both
candidate and large reference table but in full scan the database
scans are reduced so as to produce the large references in batches.

As it is known to us that the website is built in a hierarchical
structure starting with the initial webpage and then the rest of the
webpage’s are connected via the hyperlink. The information
mostly lies on the last level of the tree structure with the previous
levels containing the folders and the sub folders. Keeping this fact
in mind an algorithm has been devised known as reference scan in
which the last level is from where we start and move towards the

upper levels so as to get our large reference sequences. The
algorithm is reducing the database scan and is making our search
more efficient and fast. The proposed algorithm is presented
below and it is illustrated with an example in the coming section.

5.1 Algorithm Reference Scan (RS)
Input – Array of structure of TID, seq, min supp
Output -- Large reference

1. Find max i.e. maximum length of seq from inputs.
2. Repeat for flength from max to 1
3. Find number_of_sequences from flength

Sequence String Y Database DF

1 A -

2 AB -

3 ABC -

4 ABCD -

5 ABC ABCD

5 AB -

6 ABE -

7 ABEF -

8 ABEFG -

9 ABEF ABEFG

10 ABEH -

11 A ABEH

12 AI -

13 AIJ -

14 AIJK -

15 AIJ AIJK

International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

23

4. if(number_of_sequences<minimumsupport)
5. continue;
6. else
7. Create subsets of all web-pages in forward direction of

length equal to flength.

8. Compare all subsets with all input to find occurrence of
subsets

9. Get subset with maximum occurrence and
occurrence>minimum support

10. End if-else
11. End loop

Figure 1: User traversal graph

Figure 2: Example execution of full scan

Itemset Supp.

{A} 2

{B} 3

{C} 3

{D} 4

{E} 3

TID Database

100 ABD

200 BCDE

300 ABCDE

400 CDE

Itemset Supp.

{B} 3

{C} 3

{D} 4

{E} 3

Itemset

{BC}

{BD}

{BE}

{CD}

{CE}

{DE}

Itemset Supp.

{BD} 3

{CD} 3

{CE} 3

{DE} 3

Itemset Supp.

{BC} 2

{BD} 3

{BE} 2

{CD} 3

{CE} 3

{DE} 3

Itemset Supp.

{BDE} 2

{CDE} 3

Itemset

{BDE}

{CDE}

Itemset Supp.

{CDE} 3

Scan D

Scan D

C3 C3 L3

Scan D

C1
L1

B

A

I

C

D

E

F

G

J

H

K

Scan D

C2

L2

International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

24

5.2 ILLUSTRATIVE EXAMPLE
The algorithm proposed in this section consists of various
steps which will be explained one by one. Now known that
web has a tree like structure with pages being represented as
nodes denoted by alphabets and the hyperlinks represented by
arrows. The algorithm starts by taking an example consisting
of two fields, transaction id (tid) and the nodes that have been

accessed by user during that transaction.

Table 2: Example execution of RS

The above table is the database output consisting of maximal

forward reference obtained from algorithm MF which acts as
input as an example execution explanation for the algorithm.
This table contains the user accessed path as :{ A, B, C, D, E,
F, G, H, I, J, K}

 Step 1

 Table 3: flength count

In the first step of the algorithm the number of nodes denoted
by alphabets here that are accessed during each transaction by
the user are counted say for instance in the first transaction

with Tid 100 there are 4 nodes that are being accessed, in next
transaction with Tid 200 there are 5 nodes again, so on and
forth. After recording the Flength of each transaction next step
is executed

Step 2

Table 4: occurrence of flength

After step 1 where flength value is obtained for each
transaction the next involves obtaining the number of
occurrences of each flength implying we will count how many

times the string with flength value 1 occurs as it can be seen
that there is no transaction containing only 1 node so its value
is 0. Now, check the occurrence of flength value 2 and as it
can be seen in table 4 there is only 1 such transaction with tid
400 that contains 2 nodes. After doing this count the
occurrences of flength value 3 which as can be seen in table 4

is two transactions containing 3 nodes till the value of flength
reaches 11. As in all there are 11 nodes that can be accessed
by the user.
Step 3
As the occurrence of different values of flength has been

obtained in the above step, now the flength value count will
be compared with minimum support value. A minimum
support value is the one for which the count of flength has to
be greater so as to qualify to be analysed further. The
minimum support value keeps on increasing and is user
defined. First of all the maximum flength value is taken and
its occurrence is also considered and compared with minimum
support value. Now starting with 11 its occurrence is 0 and is

compared with minimum support value 1 (assumed). After
this the count for occurrence of flength value keeps on
reducing and each statement is false until we reach count for
flength value 5 which is 1,after comparing this value with
minimum support the value is still false. Now reduce the
count, occurrence of value 4 is 3 which is higher than the
minimum support.

Step 4

After obtaining the flength value which has more occurrences
than the minimum support, create the subsets for the same
order say in this case subset of the order 3 will be created in
forward direction of the traversal: {A, B, C, D, E ,F, G, H, I,
J,K}.The subsets will be as follows:{ABC, ABD, ABE, ABG,
ABH,ABI,ABJ,ABK,ACD,ACE,ADE,AEG,AGH,AHI,AIJ,A
JK,ABF,AEF,AFG,ACF,ADF,AFH,AFI,AFJ,AFK,BCD,BCE
,BCG,BCH,BCI,BCJ,BCK,BDE,BEG,BGH,BHI,BIJ,BJK,BD

E,BDG.BDH,BDI,BDK,BDJ,BEH,BEI,BEJ,BEK,BGH,BGI,
BGJ,BGK,BHJ,BHK,BCF,BFG,BEF,BDF,CDE,CDG,CDH,C
DI,CDJ,CDK,CEG,CGH,CHI,CIJ,CJK,CDF,CEF,CFG,CFH,
CFI,CFJ,CFK,DEG,DEH,DEI,DEJ,DEK,DGH,DHI,DIJ,DEF,
DFG,DFH,DFI,DFJ,DHK,DJK,EHI,EIJ,EJK,GIJ,GJK,EGH,E
GI,EGJ,EGK,EFG,EFH,EFH,EFI,EFJ,EFK,GHI,GHJ,GHK,H
IJ,HJK,CEG,CEH,CEI,CEJ,CEK,CGI,CGJ,CGK,IJK}.

Step 5
Each of the traversal patterns subset created above will be

taken and matched to the database one by one. Also the
occurrence of each and every subset will be counted in the
database and the subset with a value greater than minimum
support qualifies to be the final useful pattern for the website
user and the owner. Now after comparing the above given
subsets with our database in table the pattern ABE occurs
twice and is the final pattern and the result.

6. CONCLUSION
Finally, after implementing the proposed algorithm and the

existing algorithms the results have been shown in tabular

form as depicted in table 5.

7. SUMMARY
As World Wide Web is becoming popular each day, mining
the data from web is becoming tough. So as the mined data
are useful patterns certain algorithm needs to be devised. In
this paper useful user traversed pattern are first extracted from

the server log and from that we obtain the maximal forward
references using the algorithm MF which is the maximum
path accessed by the user of a website ignoring the affect of
backward traversal. After this the large references using the
algorithm RS are obtained which are the most frequently
occurring user traversal pattern. Both the algorithm have been
explained with examples and as the comparison of our
algorithm is made with the existing algorithm it is found that

Tid Database

100 ABCD

200 ABEFG

300 ABEH

400 AIJK

Tid Database Flength

 100 ABCD 4

 200 ABEFG 5

 300 ABEH 4

400 AIJK 4

Count(Flength) Value

Count(1) 0

Count(2) 0

Count(3) 0

Count(4) 3

Count(5) 1

Count(6) 0

Count(7) 0

Count(8) 0

Count(9) 0

Count(10) 0

Count(11) 0

International Journal of Computer Applications (0975 – 888)

Volume 48– No.7, June 2012

25

the proposed algorithm is computationally more efficient and
less database scans need to be made.

 Table 5: Comparison of Proposed and Existing Algorithm

8. REFERENCES
[1] Behzad. M.A. 2001. Discovering and mining user web-

page traversal patterns. Master’s Thesis, Simon Fraser
University

[2] J. December and N. Randall, 1994 “The World Wide
Web Unleashed”. SAMS Publishing.

[3] Park, J.S., Chen, M.S. and P. S. Yu, P.S. 1998. Efficient
Data Mining for Path Traversal Patterns. In IEEE
transactions on Knowledge and Data Engineering, 10(2),
209-221.

[4] Mobasher, B.,Jain, N. and Han, E.H. and Srivastava, J.
1996. “Web mining: pattern discovery from World Wide

Web transactions, Technical Report: TR96-050,
University of Minnesota

[5] Spiliopoulou, M., and Faulstich, L. C. 1999. Wum: A
web utilization miner. In the proceedings of EDBT
Workshop on the Web and Data Bases (WebDB’98),
Springer Verlag, 109-115.

[6] Park, J.S., Chen, M.S. and Yu, P.S., 1996. Data Mining

for Path Traversal Patterns in a Web Environment. In
proceedings of 16th international conference on
Distributed Computing Systems, 385-392.

[7] Yao, H. , Hamilton, H. J., and Butz, C. J. 2004. A

Foundational Approach to Mining Itemset Utilities from
Databases. In the Proceedings of the 4th SIAM

International Conference on Data Mining, 482-486

[8] Zhixiang, C., Fowler, R.H. and Fu, A.W.-C.2003. Linear

Time Algorithms for Finding Maximal Forward
References. In the proceedings of Information
Technology: Coding and Computing, 160-164

[9] Jing, T., Zou, W.L. , and Zhang, B.Z. , 2004 An

Efficient Web Traversal Pattern Mining algorithm Based
On Suffix Array. In the Proceedings of the 3rd
International Conference on Machine Learning and
Cybernetics,1535-1539

[10] Yen,S.J., Lee,Y.S., and Hsieh, M.C. 2005. An efficient

incremental algorithm for mining Web traversal patterns.
In the Proceedings of the 2005 IEEE International
Conference on e-Business Engineering (ICEBE’05), 274-
281.

[11] Zhou, L., Liu, Y., Wang J., and Shi, Y. 2007.Utility-

based Web Path Traversal Pattern Mining. In the
Proceedings of Seventh IEEE International Conference

on Data Mining Workshops, 373-378.

[12] Ahmed, C. F., Tanbeer, S. K., Jeong B.S. and Lee, Y.K.
2009.Efficient mining of utility-based web path traversal

patterns. In the proceedings of 11th International
Conference on Advanced Communication Technology
(ICACT’09), 2215-2218.

[13] Park, J.S., Chen, M.-S. and Yu, P.S. 1995. An Effective

Hash Based Algorithm for Mining Association Rules. In
Proceedings of the 1995 ACM SIGMOD international
conference on Management of data SIGMOD '95, 175-
186.

FACTORS Full/Selective scan Reference scan

Consecutive Patterns This algorithm only works on consecutive
patterns

This algorithm also considers links which
are not consecutive.

Database Scan With each pass database scan need to be

done

Database scan needs to be performed at

step 4 where the subsets are compared
with the database.

Database size It works well only on small size database;
with large size of database it is not that

efficient.

It works well both on small and large
databases but its performance reduces

with large size databases

I/O Overhead This algorithm incurs us high I/O costs This algorithm does not bring us high I/O
overheads as there are less database scans.

Database As this algorithm uses DHP technique
with each pass the size of the database

reduces

There is no reduction in the size of
database.

