
International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

1

An Enhanced Automatic Surface and Structural Flaw

Inspection and Categorization using Image Processing

Both for Flat and Textured Ceramic Tiles

Md. Maidul Islam
World University of Bangladesh
(WUB), Dhaka, Bangladesh

Md. Rowshan Sahriar
Gononet Online Solutions

Dhaka, Bangladesh

Md. Belal Hossain
Atish Dipankar University of
Science and Technology

(ADUST), Dhaka, Bangladesh

ABSTRACT
As the price of ceramic tiles depend on its limpidness and

precision of surface texture, color and shape, it’s in fact a

great challenge to control surface eminence and uphold

production rate in the field of industrial fabrication of ceramic

tiles. Under consideration these criteria, in this research paper,

we have proposed an enhanced automatic surface flaw

detection and categorization procedure that is able to

guarantee the quality of ceramic tiles as well as production

rate in industrial fabrication. Our proposed model plays an

important role for automatic revealing of surface flaw during

production and packaging. This proposed model includes an

automatic categorization technique using computer vision that

helps us to make sense about the pattern of surface defect

within a very short time and also helps to make quick decision

about the recovery process. Moreover, it also ensures the

quality of tiles automatically during packaging procedure so

that the defected tiles may not be mixed up with the fresh

tiles.

Keywords
Quality Control, Surface and Structural Flaw, Pattern of

Defect, Flat and Textured Tiles.

1. INTRODUCTION
As technology advances, image processing is one of the ever-

increasing areas in computer science. From space science to

our daily life, everyday huge amount of images are to be

captured. However, it is quite difficult to process or handle

those images manually within a short period of time. So the

concept of digital image processing with computer vision is

growing rapidly which is used to extract various features

automatically from images. After extraction of features from

image, knowledge based technique is to apply for taking

recovery scheme from those extracted features with the help

of computer and without or with a little human intervention as

well.

One of the most significant research areas of digital image

processing is to identify and classify various kinds of defects

from 2D or 3D images captured by real time sensor or camera.

Therefore, to identify the defect and its pattern from any

image, there are several techniques are sited and deployed at

three levels. Lowest levels of this technique are deal with the

raw, perhaps noisy pixel values, with de-noising and edge

detection procedure being good examples. Middle level

deploys with algorithms which utilize low level results, for

instance, segmentation and edge-linking. At the highest level

of this technique cope with those methods which attempt to

extract semantic meaning from the information provided by

the lower level.

Nowadays, ceramic tile manufacturing industry is a prominent

and up growing sector. All phases of the production cycle are

maintained and controlled technically awaiting the final phase

of the manufacturing process come into view, i.e. packaging.

Before packing, it is important to make sure of defect less for

maintaining quality of ceramic tiles (i.e. whether checking

broken tiles, spotted tiles). So it is a vital task to classify the

ceramic tiles after production based on surface defects. Defect

inspection through manual procedure is labor intensive, time-

consuming and subjective as well.

Although automated defect detection method have been

deployed in ceramic tiles industries since few years but there

still have complex procedure to classify defects using human

vision i.e. automated classification and grading mechanism of

packing have not been implemented yet. Again human

judgment may be inclined by anticipation and aforementioned

to awareness. In fact, most inexperienced observers have the

same opinion that the flaw may have still there, when they

cannot classify the structure of tiles properly. Such a

monitoring task is naturally wearisome, prejudiced and costly

in terms of production environment.

Objective of this research paper is to propose an efficient

surface flaw inspection and categorization procedure which

will be able to uncover the surface defects of ceramic tiles at a

high rate within a dumpy time.

Organization of this study is as follows. Section 2 describes

briefly about previous study. Section 3 illustrates our

projected method. Section 4 represents the tentative results

and evaluation. At last, a noteworthy conclusion is presented

in Section 5.

2. EXISTING METHODS FOR DEFECT

DETECTION
Since last decade, some defect inspection mechanisms have

been proposed to identify the surface flaw of industrial

products (i.e. ceramic tiles, steel bar and wooden surface) by

capturing their real time surface image. Their proposal can be

described briefly as follows:

H. Elbehiery et.al. [3], proposed a method to identify the

surface flaw of ceramic tiles. Their proposed method is

divided into two distinct portions. First portion of this method

consist with the captured image of tiles as input and output of

this portion is histogram equalized image with intensity

adjustment. After that, they use the output of first portion as

input for the second portion. Furthermore, second portion also

comprises with different complementary image processing

operations so as to identify and to classify a variety of surface

and structural defects. Their proposed system is not automated

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

2

rather it emphasizes on the human visual inspection of defect

classification in industrial environment. Moreover, this

system is suffered by redundant operation since they apply the

second portion on every test image to identify and classify

various types of defects. Thus this system is time consuming

as well.

C. Boukouvalas et al. [4], they applied separable line filters

for flat tiles to identify crack and pinhole defects. Again, they

applied winger distribution for crack detector and a novel

conjoint spatial-spatial frequency representation for textured

tiles. In terms of color textured tiles, this type of detection

algorithm which looks for abnormalities both in chromatic

and structural properties. However, use of separate filtering

technique for identifying distinct defect is not a good practice.

Consequently, high computational time is taken while we are

to handle a large number of operations during production

time. It also proceeds with visual defect classification with

human intervention.

Se Ho Choi et al. [5] applied a real time mechanism for

surface flaw detection of steel coil and bar in high speed

production environment. They used a scheme named “edge

preservation” for noise cutback and performance

improvement. In addition, they used “second derivative

laplacian” filter to differentiate gray scale images from each

other. Finally, they applied “double thresholding” technique

to formulate binary images. Still, this type of technique is

unable to find the orientation of the edge of surface, because

they use “second derivative laplacian” filter which

malfunctions for corner and curves flaw detection as well

[10]. In contrast, they hadn’t developed any automatic

classification mechanism rather it was also a human vision

process to classify the surface flaw.

After thoroughly revision of previous research paper, there

may exists eight types of defects which may occur during

production time and/ or packaging time. The category of

surface and structural defects are shown in Table 1.

Table 1. Types of surface and structural defect

Name of the

Surface and

Structural

Flaw

General

Description

A real-life scenario of

how this type of defect

may occur

Crack/Split

Defect

Break down or

split down of

tiles

Due to extreme

pressure and heat

during production, this

type of defect may

occur.

Pinhole

Defect

Isolate dotted

black-white

pinpoint spot

Improper mixing of

raw materials of tiles

and improper surface

painting.

Blob Defect

Water drop spot

on tiles surface

Due to technical fault

or improper

maintenance, water

drop may fall on the

surface of tiles and thus

blob defect may occur.

Spot/

Blemish

Defect

Discontinuity of

paint or shade

on surface [7].

This type of defect may

occur by falling water

drop or by color

discontinuity on the

surface.

Corner/ Bend

Damage

Split or crack

down of corner

of tiles

Due to extreme

pressure and heat

during production, this

type of defect may

occur. Edge/ Border

Damage

Break down of

edge of tiles

Scratch

Effect

Generally graze

on surface of

tiles

Due to fiction between

surface and mechanical

equipment during

production time.

Glaze Effect

Hazy and

unclear surface

of tiles

Cause of this defect is

improper color mixing

and painting on surface

or having scratch on

surface.

3. PROPOSED APPROACH OF DEFECT

DETECTION AND CLASSIFICATION

3.1 Introduction
A new surface defect detection and classification method has

been proposed by this section. Our proposed method consists

of two major portions. One includes some pre-processing

image operations to contrast features. And another portion

includes some prominent feature extraction operations to

identify defects and to classify those defects as well.

Our proposed model also introduces several algorithms by

which we can boost up the system performance at a higher

rate than existing one during production time. Thus it also can

reduce the computational time all together. Here, we applied

our mechanisms step-by-step on ceramic tiles image which is

captured before by a digital camera. Table 2 entails operations

that we performed on captured image of ceramic tiles.

Table 2. Proposed three layer approaches for surface flaw

detection and classification

PROPOSED SURFACE FLAW DETECTION AND

CATEGORIZATION PROCESS

Levels of

Application

Process Description

First Step First step focuses on performing

several image preprocessing operations

on captured tiles image.

Second Step

In second step, we applied our

proposed flaw detection technique on

tiles image to verify whether the tiles

is faulty or not.

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

3

Third Step Finally, we applied our defect

classification algorithm on captured

image to categorize all defects.

The absolute flowchart of our proposed flaw inspection and

categorization method has been rendered in the following

Figure 1.

Fig 1: Flow chart of our proposed surface flaw detection

and classification

3.2 First Step: Performing Some Image

Pre-processing Operations
Earlier than applying our proposed defect detection method,

initially, we must make use of several image pre-processing

operations on the input images. Pre-processing operations

include RGB to Binary conversion, image enhancement, noise

reduction etc. Pre-processing operations are imperative for

renovating the captured RGB image [7].

3.2.1 Image Acquisition
The procedure of getting a digital image from a real world

source is called “Image Acquisition”. After capturing a

ceramic tile image, it is to store into the computer for further

processing. Image capturing may be achieved by taking live

photo using real time sensor during ceramic tiles production.

In our method, we have used KODAK EASYSHARE P850

digital camera for image acquisition. To make all the captured

images in identical dimension, images are being trimmed with

m×n (width and height) dimension.

3.2.2 Image Enhancement
Image enhancement is a specific type of operation that is used

to improve interpretability or perception of information in

image for understanding and evaluating using human vision.

For example, medical imaging, satellite imaging etc.

Another aspect of image enhancement is to make available

better input for other automatic image processing operations

[8]. The main goal of image enhancement is to alter one or

more characteristic of captured image to make it more

appropriate and reliable for a specific feature extraction.

However, contrast stretching (often called normalization) is

one of the straightforward image enhancement techniques that

focus to improve the contrast in an image by stretching

intensity value of the captured image. Basic idea behind

contrast stretching is to increase the dynamic range of

intensity value of the processed image. To do so, at first, the

captured image is to convert into a gray level image. The

general practice of the contrast stretching operation [1] on

grayscale image is to stretch the intensity value of each pixel

using the following equation to form a contrasted image.

i
n

yxIyxO i +
−

−=)
minmax

min)(),((),(
 (1)

Where, O(x,y) represents the output image, I(x,y) represents

the pixel position in input image. In this equation, ni

correspond to the number of intensity levels, i stand for the

initial intensity level, "min" and "max" represent the

minimum intensity value and the maximum intensity value in

the current image respectively. Here "no. of intensity levels"

refers the total number of intensity values that can be assigned

to a pixel. For example, normally in the gray-level images, the

lowest possible intensity is 0, and the highest intensity value

is 255. Thus "no. of intensity levels" is equal to 256. The

contrast stretching operation is applied on the grayscale

images in two passes. In the first pass the algorithm calculates

the minimum and the maximum intensity values in the image,

and in the second pass through the image, the above formula

is applied on the pixels. In the proposed method, we enhance

the gray level image to improve its visual quality and machine

recognition accuracy using the following formula, described

in [1]:

()EMhstretcFINTRANSG ,,, ′′=
 (2)

Here, performs the intensity or gray level transformations and

G computes a contrast stretching transformation using the

following MATLAB expression:

()()()EepsFMContrast .^/.1/.1 ++=
 (3)

Where, parameter M must be in range [0,1]. The default value

for M is and the default value for E is 4. Here, F is gray-level

image and M is such result which is found by applying image

double and median filtering operation on F. eps returns the

distance from 1.0 to the next largest double-precision number,

i.e.

()52^2 −=eps
 (4)

3.2.3 Noise Reduction
The term “noise” may appear in every steps of image

acquisition process due to improper lighting or by using faulty

camera or electronic sensor while capturing image. However,

“noise” refers to inconsistent variation of pixel intensity in

image which may produce unwanted additional information

and complexity. As a result the actual feature of captured

image may be changed which is unexpected and undesirable.

However, it is not possible to get noise free image, rather

noise can be reduced. Basically, Noise reduction is a process

of removing noise from a captured image. To remove noise

some filtering techniques [1] have been proposed as follows:

One method to remove noise is by convolving the original

image with a mask that represent a low-pass filter or

smoothing operation. For example, the Gaussian mask

comprises elements determined by a Gaussian function. This

convolution brings the value of each pixel into closer

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

4

harmony with the values of its neighbors. In general, a

smoothing filter sets each pixel to the average value, or a

weighted average, of itself and its nearby neighbors; the

Gaussian filter is just one possible set of weights. But

smoothing filters tend to blur an image, because pixel

intensity values that are significantly higher or lower than the

surrounding neighborhood would "smear" across the area.

Because of this blurring, linear filters are seldom used in

practice for noise reduction.

For the above reason, we proposed to use a non-linear filter

which is called median filter. It is very good at preserving

image detail if it is designed properly. To run a median filter:

 1. Consider each pixel in the image.

 2. Sort neighboring pixels into order based upon their

 intensities.

 3. Replace the original value of the pixel with the

 median value from the list.

A median filter is a rank-selection (RS) filter, a particularly

harsh member of the family of rank-conditioned rank-

selection (RCRS) filters [2]; a much milder member of that

family, for example one that selects the closest of the

neighboring values when a pixel's value is extremely in its

neighborhood, and leaves it unchanged otherwise, is

sometimes preferred, especially in photographic applications.

Median filter technique is good at removing salt and pepper

noise from an image, and also causes relatively little blurring

of edges, and hence is often used in computer vision

applications [9].

3.2.4 Edge Detection
An edge may be regarded as a boundary between two

dissimilar regions in an image. These may be different

surfaces of the object, or perhaps a boundary between light

and shadow falling on a single surface. In principle, an edge is

easy to find since differences in pixel values between regions

are relatively easy to calculate by considering gradients.

Every edge extraction techniques [3] are consists of two

distinct phases:

1. Finding pixels in the image where edges are likely

to occur by looking for discontinuities in gradients.

2. Linking these edge points in some way to produce

descriptions of edges in terms of lines and curves.

For the proposed method, we detect edge using sobel edge

detection method [6] upon the resulting image. Actually there

are many kinds of edge detectors. We use first derivative edge

detector (sobel) to detect edges of the image. Because, it’s

calculation is very simple and fast to detect edges. On the

other hand, if we use second derivative edge detector operator

such as laplacian of gaussian operator then we will not be able

to find the orientation of the edge because of using the

laplacian filter. Again, if we use other kinds of gaussian edge

detectors such as canny, shen castan, boie-cox operators then

the operation is more complex [9].

3.3 Applying the Proposed Defect

Detection Process
All preprocessing operations are applied to the reference

image, stored in the computer database to compare with the

test image. Let, the resulting image is I2. Now we consider I1

as the resulting image found from the test image after

applying all preprocessing operations. We propose here a new

technique. We store I1 and I2 as matrix form to a file. Let,

these two matrices are named as m1 and m2. Then we count

the total number of black pixels (in binary, it is represented as

1) in m1 and that in m2. These two are then compared. If the

number of black pixels in m1 is greater than the number of

black pixels in m2 then we can make decision that defect is

found in the test image, otherwise we can say that no defect is

present to the test image. To understand this concept clearly,

consider the following example:

Let, we have a test image and a reference image of equal size.

Now applying preprocessing steps on the test image we find

matrix m1 whose value is:























01000

10100

00000

00100

01001

Again, applying the preprocessing operations on the reference

image another matrix m2 is found:























00000

00000

00000

00100

00001

Here, the number of black pixels for the reference image is 2

and for the test image this number is 6. So, here obviously

6>2 and we can make decision that defect is found on the test

image. The detailed block diagram of the proposed defect

detection step is shown in the following Figure 2.

Fig 2: Flow chart of our proposed surface flaw detection

(Second step)

3.4 Defect Classification Using Our

Proposed Algorithms
Here, we have described our proposed algorithmic procedures

in details with flow chart for classification of pinhole, crack,

blob, spot, edge and corner defects. Before starting of

classification procedure, two distinct set of operations are

needed as primary procedure. One set of operations are

needed for flat tile’s where as second one is applicable for

textured tile’s defect classification. Figure 3 indicates the

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

5

basic building blocks of initial operations for flat tiles defect

inspection.

STEP: 1. After finding the binary image, apply

morphological operation on it.

STEP: 2. Now check each pixel elements of resulting

image from left to right.

STEP: 3. If any pixel element has value ‘1’ then change its

value to ‘2’.

STEP: 4. Change such co-ordinates of binary image as ‘2’

which of the resulting image have value ‘2’.

STEP: 5. Finally, save this resulting matrix into a text file.

Fig 3: Flow chart of initial operations for flat tiles

3.4.1.2 For Textured Tiles
STEP: 1. Save these coordinates of reference image after

checking and if any of its coordinates has value ‘1’.

STEP: 2. Convert the test image into binary, after that apply

morphological operation on it.

STEP: 3. Now check each pixels of resulting image from

left to right.

STEP: 4. If any pixel has value of ‘1’ then change its value

to ‘2’.

STEP: 5. Change such co-ordinates of binary image as ‘2’

which of the resulting image have value ‘2’.

STEP: 6. Convert the previous saved coordinate values of

binary test image as ‘0’.
STEP: 7. Finally, save this resulting matrix into a text file.

Flow chart of initial operations that must be applied before

going to start of surface and structural flaw detection and

classification for textured tiles indicates in Figure 4.

Fig 4: Flow chart of initial operations for textured tiles

3.4.2 Algorithm to Determine Pinhole Defects
Let, p_count as a variable for pinhole count, c_range as the

range of corner, e_range as the range of edge and row as the

maximum number of image pixels along any row and col as

the maximum number of image pixels along any column.

Figure 5 indicates the basic flow chart for pinhole detection.

STEP: 1. Set, temp_a =c_range, and temp_b=e_range.

STEP: 2. Divide the total searching area for pinhole into

three regions i.e. left, right and middle.

STEP: 3. For left side region,

For row consider the range from temp_a+1 to row-c_range-1

For column consider the range from temp_b+1 to c_range

(a) Check each pixel values whether it is ‘0’ or not.

(b) If it is true then (i) for each coordinate (i, j) check all of

its eight neighbors. (ii) If (i, j-1), (i, j+1), (i-1, j), (i+1, j)

position values are ‘1’ and the rest are ‘0’, then p_count will

be incremented by 1.

STEP: 4. For right side region, range for row is from

temp_a+1 to row-c_range-1 and range for column is from

col-temp_a+1 to col-e_range. The rests are same as STEP 3.

STEP: 5. For middle side elements, range for row is from

temp_b+1 to row-e_range and range for column is from col-

temp_a+1 to col-c_range. The rests are same as STEP 3.

STEP: 6. Finally, check value of p_count. If p_count>0, then

pinhole is found, otherwise not found.

Fig 5: Flow chart for detection of pinhole

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

6

3.4.3 Algorithm to Determine Crack Defects
Let c_length as the range of crack. Figure 6 shows the

operation performed for crack detection.

STEP: 1. Check every pixel coordinate (i, j) from left to

right up to the last pixel element.

STEP: 2. If any (i, j) has value ‘1’ then

(a) Consider its adjacent eight pixels and find which are ‘1’.

(b) If any adjacent pixel has value ‘1’ then Current pixel

coordinate will be updated to it.

(c) Apply the backtracking process to find out all connected

pixels and count the length.

STEP: 3. Apply STEP 2 to all pixels and find out the length

of connected pixels.

STEP: 4. Counting length of all adjacent pixels from STEP

2 and STEP 3, find out the maximum number and set it to

c_count.

STEP: 5. Finally, apply STEP 2 to specify the crack

defected pixel coordinates so that other types of defects are

not affected to it.

STEP: 6. If c_count > c_length, then make decision that

crack is found, otherwise crack is not found.

Fig 6: Flow chart for crack flaw detection

3.4.4 Algorithm to Determine Blob Defects
Let, matx as size of blob, row as the maximum number of

image pixels along any row and col as the maximum number

of image pixels along any column. Here (matx×matx) is the

predetermined mask size of blob. Operation performed to blob

detection indicates in Figure 7.

STEP: 1. Let, start= (matx/2) +1; Here start with the

middle element of (matx×matx).

STEP: 2. Check every pixel coordinate (i, j) from left to

right up to the last pixel element.

For row consider the range from start to row-start+1

For column consider the range from start to col-start+1

(a) If any pixel value at coordinate (i, j) is ‘2’, then

 (i) Considering it as the middle element and check the total

(matx×matx) elements around it to find out how many ‘2’

exists into these region.

(ii) Let, the total number of ‘2’ is equal to b_length.

(iii) If b_length = (matx×matx), then make decision that

blob defect is found and exit from loop.

(b) Otherwise, switch to next pixel coordinate at STEP 2.

STEP: 3. After searching every pixel coordinate, if there is

no b_length matches to (matx×matx), then make decision

that blob defect is not found.

Fig 7: Flow chart for blob flaw detection

3.4.5 Algorithm to Determine Spot Defects
Let, matx as size of spot, row as the maximum number of

image pixels along any row and col as the maximum number

of image pixels along any column. Here (matx×matx) is the

predetermined mask size of spot. Operation performed for

spot detection indicates in Figure 8.

STEP: 1. Let, start= (matx/2) +1; Here start with the

middle element of (matx×matx).

STEP: 2. Check every pixel coordinate (i, j) from left to

right up to the last pixel element.

For row consider the range from start to row-start+1

For column consider the range from start to col-start+1

(a) If any pixel value at coordinate (i, j) is ‘2’, then

 (i) Considering it as the middle element and check the total

(matx×matx) elements around it to find out how many ‘2’

exists into these region.

(ii) Let, the total number of ‘2’ is equal to b_length.

(iii) If b_length = (matx×matx), then make decision that

blob defect is found and exit from loop.

(b) Otherwise, switch to next pixel coordinate at STEP 2.

STEP: 3. After searching every pixel coordinate, if there is

no b_length matches to (matx×matx), then make decision

that blob defect is not found.

Fig 8: Flow chart for spot defect detection

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

7

3.4.6 Algorithm to Determine Edge Defects
Let, c_range as the range of corner, row as the maximum

number of image pixels along any row and col as the

maximum number of image pixels along any column. Figure 9

indicates the flow of operation for identifying edge defect.

STEP 1. Initially, take a variable e_count and set its value

to 0.

STEP 2. Consider four regions of binary image matrix

(m×n) as up, down, left and right side.

STEP 3. For upper edge, row has fixed value ‘1’.

For column consider the range from c_range + 1 to col-

c_range + 1. Consider each pixel coordinate (i,j).

(i) If (i,j) coordinate has value ‘1’ or ‘2’, then increment

the value of e_count by 1 and go to STEP 7.

 (ii) Otherwise, continue.

STEP 4. For lower edge, row has the value as row = row

and range for column is from c_range + 1 to col-c_range

+ 1. The rests are same as STEP 3.

STEP 5. For left edge, column has value ‘1’ and range for

row is from c_range + 1 to row-c_range + 1. The rests are

same as STEP 3.

STEP 6. For right edge, column has value col and range

for row is from c_range + 1 to row-c_range + 1. The rests

are same as STEP 3.

STEP 7. If e_count > 0, then make decision that edge

defect is found. Otherwise, edge defect is not found.

Fig 9: Flow chart for edge defect detection

3.4.7 Algorithm to Determine Corner Defects
Let, row as the maximum number of image pixels along any

row and col as the maximum number of image pixels along

any column. Figure 10 shows the flow chart of corner defect

detection.

STEP 1. Take a variable c_count and set its value to 0.

STEP 2. Check every pixel coordinates (i,j) along the range

for four corner elements. If any coordinate has value ‘2’,

then increment the value of c_count by 1.

STEP 3. If c_count is equal to the total corner area, then

make decision that corner defect is found. Otherwise, corner

defect is not found.

Fig 10: Flow chart for corner defect detection

4. EXPERIMENTAL RESULTS AND

DISCUSSION

4.1 Defect Detection
The proposed system detects surface flaw both for plain and

textured tiles successfully. In this section, represents the

experimental result of our proposed defect inspection

technique. The defect detection rate and time efficiency are

compared with the existing method [3]. We also classify here

different types of defects found through defect detection

process. Here it is needed to mention that during the

production, many numbers of tiles are produced in industries

at the same time of same colors, shape and pattern.

So, all the tiles of one shape are compared with that particular

type of standard tile while processing through the computers.

To get practical realization of our proposed surface flaw

detection process, we have applied the proposed procedures

on a sample RGB image of flat tiles. After that we check

whether there is any kind of defect exists in this test image or

not by applying our proposed preprocessing operations on this

sample RGB image (i.e. image enhancement, noise reduction

and edge detection). This is shown in the following Figure 11.

In this Figure 11, we also show the reference RGB image for

that test image and the output after applying preprocessing

operations on it.

(a) Test Image (Flat tiles) (b) Gray Level (Flat tiles)

 (c) After Contrast Stretching (d) After Edge Detection

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

8

(e) Reference Image (Flat tiles) (f) Image after applying

 Preprocessing

Fig 11: (a) Test RGB image for flat tiles (b) Image after

gray level conversion (c) Image after contrast stretching

(d) Image after edge detection (e) Reference RGB image of

flat tiles (f) Image after applying preprocessing for

reference image

Now consider the Figure 11(d) and Figure 11(f). The image of

Figure 11(d) is found from the test RGB image after applying

all the proposed preprocessing operations onto it. Then the

total number of defected pixels is count in this image. Here

the total number of defected pixels is 348. Again, the image of

Figure 11(f) is found from the reference RGB image after

applying all previous operations onto it. In this image the total

number of defected pixels is 105. According to our proposed

defect detection method we can say, n1=348 and n2=105. As

n1 > n2, so we can make decision that defect is found in the

test image.

Again, we apply the proposed detection method on a sample

test RGB image for textured tiles. Like before, we have

checked whether there any kinds of flaw exists in this test

image or not. Then we apply our proposed preprocessing

operations on this image. This is shown in the following

Figure 12. In this figure, we also show the reference RGB

image for that test image and the output after applying

preprocessing operations on it.

(a) Test Image (Structured) (b) Image after applying

 Preprocessing

(c) Reference Image (Structured) (d) Image after applying

 Preprocessing

Fig 12: (a) Reference RGB image, (b) Final image after

preprocessing for reference image, (c) Test RGB image,

(d) Final image after preprocessing for test image

Consider the Figure 12(b) and Figure 12(d). The image of

Figure 12(b) is found from the test RGB image after applying

all the proposed preprocessing operations onto it. Then the

total number of defected pixels is count in this image. Here

the total number of defected pixels is 982. Again, the image of

Figure 12(d) is found from the reference RGB image after

applying all previous operations onto it. In this image the total

number of defected pixels is 714. According to our proposed

flaw detection method we can say, n1=982 and n2=714. As n1

> n2, so we can make decision that defect is found in the test

image. We have tested in total 50 ceramic tiles images for

defect detection using our proposed procedures. In this case,

the proposed defect detection efficiency is compared to the

existing method [3]. We see that the detection rate for the

proposed method is better than that of the existing method.

Following Table 3 shows the efficiency comparison between

the existing work and the proposed work and Figure 13

represents the detection efficiency through a chart.

Table 3. Efficiency comparison of existing work and our

work

Number of Tiles Detection Efficiency

Existing Work Our Work

10 90% 100%

20 85% 90%

30 86.67% 90%

40 87.5% 92.5%

50 88% 92%

Average 87.4% 93%

Fig 13: Efficiency comparison chart between existing work

and our work

We also compute the required time for the proposed method

and the existing method [3]. The proposed method needs less

time than the existing one. Table 4 shows the time comparison

between the existing work and proposed work. Figure 14

represents time comparison through a chart.

Table 4: Time comparison between existing work and our

work

Number

of Tiles

Required Time (in sec.)

For Existing Method For Our Method

10 6.357379 3.538866

20 12.405698 7.558376

30 18.536334 11.145318

40 24.778622 15.150612

50 30.847008 19.242661

4.2 Defect Classification
We need to classify the various kinds of defects after defect

detection. For this purpose we store the output of the above

resulting image into a file as matrix form. Then previously

mentioned algorithms are applied on that matrix. In the

following Table 5, we show our result after applying the

80

90

100

110

0 20 40 60E
ff

ic
ie

n
cy

 (
%

)

Amount of Tiles

Efficiency Comparison

Existing

Work

Our

Work

proposed classification algorithms for both flat and textured

tiles mentioned above.

Fig 14: Time comparison between existing

work

Table 5: Classification result for flat and textured tiles

Types of

Defect

Result (for Flat

Tiles)

Result (for

Textured Tiles)

Pinhole Found Not Found

Crack Not Found

Blob Found

Spot Not Found Not Found

Edge Not Found Not Found

Corner Not Found Not Found

Table 6 represents the classification efficiency of the proposed

method for both flat and textured tiles and

represents this efficiency through a chart.

Table 6: Classification efficiency for proposed m

Category of

Defects

Total Number

of Tiles

Classification Rate

for Both Flat and

Textured Tiles (%)

Pinhole

50

Crack

Blob

Spot

Edge

Corner

In this section, we have shown the result of the proposed

defect detection method applied on a particular RGB image.

We also have show the comparison between the existing

method [3] and the proposed method in the case of detection

efficiency and time efficiency. As a result, we find that our

proposed method is better than the existing one. The detection

rate of the proposed method is average 93% for a number of

tiles, where for the existing method this rate is 87.4%.

the proposed method requires total 19.242661 seconds to

process 50 tiles, where the existing method requires

30.847008 seconds.

10 20 30 40 50

T
im

e

Number of Tiles

Time Comparison

International Journal of Computer Applications (0975

proposed classification algorithms for both flat and textured

xisting work and our

for flat and textured tiles

Result (for

Textured Tiles)

Not Found

Found

Found

Not Found

Not Found

Not Found

represents the classification efficiency of the proposed

method for both flat and textured tiles and Figure 15

Classification efficiency for proposed method

Classification Rate

for Both Flat and

Textured Tiles (%)

93.48

86.49

87.50

90.00

96.77

93.55

In this section, we have shown the result of the proposed

defect detection method applied on a particular RGB image.

We also have show the comparison between the existing

method [3] and the proposed method in the case of detection

As a result, we find that our

proposed method is better than the existing one. The detection

rate of the proposed method is average 93% for a number of

tiles, where for the existing method this rate is 87.4%. Again,

l 19.242661 seconds to

process 50 tiles, where the existing method requires

Fig 15: Classification efficiency chart for proposed m

5. CONCLUSION AND FUTURE WORK
We have proposed a defect detection method for ceramic tiles

and compared our technique with the existing defect detection

method. We also have shown a comparison for defect

detection and processing time between the proposed method

and the existing method [3]. Detection rate of the proposed

method is better than that of the existing method and we need

less time to detect defects than the existing one. We also have

established defect classification algorithms for different types

of defects. Finally, we have calculated the performance of

efficiency for defect classificatio

The proposed method fails to detect the glaze and scratch

faults. However, it may be future work to detect and classify

the glaze and scratch faults. We haven’t measure yet the

computational time of the proposed categorization technique.

In this case, future work may be calculation of the

computational time and provide an efficient method of

reducing computational time for defect classification.

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, “
Processing”, Pearson Education (Singapore), Pte.

Indian Branch, 482 F.I.E. Patparganj, 2005

[2] Puyin Liu and Hongxing Li, “
Theory and Application”. World Scientific

[3] H. Elbehiery, A. Hefnawy, and M. Elewa, “
Defects Detection for Ceramic Tiles Using Image

Processing and Morphological Techniques

Proceedings of World Academy of Science, Engineering

and Technology, vol 5, pp 158

1307-6884.

[4] C. Boukouvalas, J. Kittler, R. Marik, M. Mirmehdiand,
and M. Petrou, “Ceramic Tile Inspection for

Structural Defects”, under BRITE

BE5638, pp 6, University of Surrey, 2006.

[5] Se Ho Choi, Jong Pil Yun, Boyeul Seo, Young Su Park
and Sang Woo Kim, “Real

Algorithm for High-Speed Steel Bar in Coil

Proceedings of World Academy of Science, Engineering

and Technology, Volume 21, January 2007, ISSN 1307

6884.

[6] Mohamed Roushdi, “Comparative Study of Edge

Detection Algorithms Applying on the Grayscale Noisy

Image Using Morphological Filter”,

Volume 6, Issue 4, December, 2006

[7] Z. Hocenski, T. Keser and A. Baumgartner
and efficient method for ceramic tile surface defect

Existing Work
Our Work 20

40

60

80

100

Types of Defect

Efficiency (%)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

9

Classification efficiency chart for proposed method

5. CONCLUSION AND FUTURE WORK
We have proposed a defect detection method for ceramic tiles

compared our technique with the existing defect detection

method. We also have shown a comparison for defect

detection and processing time between the proposed method

Detection rate of the proposed

the existing method and we need

less time to detect defects than the existing one. We also have

established defect classification algorithms for different types

of defects. Finally, we have calculated the performance of

efficiency for defect classification.

The proposed method fails to detect the glaze and scratch

faults. However, it may be future work to detect and classify

the glaze and scratch faults. We haven’t measure yet the

computational time of the proposed categorization technique.

future work may be calculation of the

computational time and provide an efficient method of

reducing computational time for defect classification.

R. E. Woods, “Digital Image

”, Pearson Education (Singapore), Pte. Ltd.,

Indian Branch, 482 F.I.E. Patparganj, 2005-2006.

Hongxing Li, “Fuzzy Neural Network

. World Scientific, 2004.

H. Elbehiery, A. Hefnawy, and M. Elewa, “Surface

Defects Detection for Ceramic Tiles Using Image

Processing and Morphological Techniques”,

Proceedings of World Academy of Science, Engineering

and Technology, vol 5, pp 158-160, April 2005, ISSN

C. Boukouvalas, J. Kittler, R. Marik, M. Mirmehdiand,

Ceramic Tile Inspection for Colour and

”, under BRITE-EURAM, project no.

BE5638, pp 6, University of Surrey, 2006.

Se Ho Choi, Jong Pil Yun, Boyeul Seo, Young Su Park

Real-Time Defects Detection

Speed Steel Bar in Coil”,

dings of World Academy of Science, Engineering

and Technology, Volume 21, January 2007, ISSN 1307-

“Comparative Study of Edge

Detection Algorithms Applying on the Grayscale Noisy

Image Using Morphological Filter”, GVIP Journal,

6, Issue 4, December, 2006.

Z. Hocenski, T. Keser and A. Baumgartner, “A simple

and efficient method for ceramic tile surface defect

Types of Defect

Efficiency (%)

Efficiency (%)

International Journal of Computer Applications (0975 – 888)

Volume 48– No.3, June 2012

10

detection”, IEEE International Symposium on Industrial

Electronics (ISIE2007), Pp. 1606-1611, 4-7 June 2007.

[8] G. S. Desoli, S. Fiornvanti, R. Fioravanti and D. Corso,
“A System for Automated Visual Inspection of Ceramic

Tiles”, Dept. of Biophysical and Electronic Engineering,

Via Opera Pia 11/A 16145 Genova, University of Genoa,

Italy.

[9] F. S. Najafabadi, H. Pourghassem, “Corner Defect
Detection Based on Dot Product in Ceramic Tile

Images”, IEEE 7th International Colloquium on Signal

Processing and its Applications, 2011.

[10] [10] Digital Signal and Image Processing at
http://www.byclb.com/TR/Tutorials/image_processing/

