
International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

12

Comparative Analysis of Software Effort Estimation

Techniques

P.K. Suri, PhD

Dean, Research and
Development; Chairman,

CSE/IT/MCA, HCTM

Technical Campus, Kaithal,

Haryana, India

Pallavi Ranjan
HCTM Technical Campus

Kaithal,

Haryana, India

ABSTRACT
Project Failure is the major problem undergoing nowadays as

seen by software project managers. Imprecision of the

estimation is the reason for this problem. As software grew in

size and importance it also grew in complexity, making it very

difficult to accurately predict the cost of software

development. This was the dilemma in past years. The

greatest pitfall of software industry was the fast changing

nature of software development which has made it difficult to

develop parametric models that yield high accuracy for

software development in all domains. Development of useful

models that accurately predict the cost of developing a

software product. It is a very important objective of software

industry. In this paper, several existing methods for software

cost estimation are illustrated and their aspects will be

discussed. This paper summarizes several classes of software

cost estimation models and techniques. To achieve all these

goals we implement the simulators. No single technique is

best for all situations, and that a careful comparison of the

results of several approaches is most likely to produce

realistic estimates.

General Terms

Software Estimation Techniques, Simulation

Keywords

Simulation, Delphi, Effort Estimation, COCOMO

1. INTRODUCTION
Software engineering cost (and schedule) models and

estimation techniques are used for a number of purposes [1].

These include:

 Budgeting

 Tradeoff and risk analysis

 Project planning and control

 Software improvement investment analysis

1.1 Need of Software Effort Estimation
Small Projects are very easy to estimate and accuracy is not

very important. But as the size of project increases, required

accuracy is not very important. But as the size of project

increases, required accuracy is very important which is very

hard to estimate. A good estimate should have amount of

granularity so it can be explained. Since the effort invested in

a project is one of the most important and most analyzed

variables. So the prediction of this value while we start the

software projects, it helps to plan any forthcoming activities

adequately. Estimating the effort with a large value of

reliability is a problem which has not been solved yet.

Fig. 1 Accuracy of Estimating

1.2 Simulation
Simulation is defined as a process of designing model of a

real system and conducting experiments with this model for

the purpose either of understanding the behavior of the system

or evaluating various strategies within the limits imposed by a

criterion or a set of criteria for the operation of the system.

Once a simulation is in use, running it on new data or with

new parameters is usually just a matter of few keystrokes or

dragging and dropping a different life. Depending upon the

variables being deterministic or random, the simulation

models can be classified as

1. Deterministic Simulation

2. Stochastic Simulation

In a deterministic simulation, a system is simulated under well

determined conditions. This kind of simulation is useful to

observe the behavior of system in certain particular cases, to

discover errors in the design or in the implementations, to

build examples, etc. In this kind of simulations, only one run

is needed and there is no truly random variable involved.

In a stochastic simulation, system performance is measured.

This is useful to see if the system has good response time

under average conditions, to compare different

implementations of the same system, or totally different

systems that have the same output. It is useful to classify the

system being simulated into separate categories depending

upon the degree of randomness associated with behavior of

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

13

the system in its simulated environment. A system that relies

heavily upon random behavior is referred to as stochastic

system.

Problem Solving using Simulation

The application of Simulation involves specific steps in order

for the simulation study to be successful. Regardless of the

type of problem and objective of the study, the process by

which the simulation is performed remains constant. The

following steps describe the problem solving using

simulation:

1. Problem Definition: The initial step involves the

goals of the study and determining what needs to be

solved. The problem is further defined through

objective observations of the process to be studied.

Care should be taken to determine whether

simulation is the appropriate tool for the problem

under investigation.

2. Project Planning: The tasks for completing the

project are broken down into work packages with a

responsible party assigned to each package.

Milestones are indicated for tracking progress. This

schedule is necessary to determine if sufficient time

and resources are available for completion.

3. System Definitions: This step involves identifying

the system components to be modeled and the

performance measures to be analyzed. Often the

system is very complex, thus defining the system

requires an experienced simulator who can find the

appropriate level of detail and flexibility.

4. Modern Formulations: Understanding how the

actual system behaves and determining the basic

requirements of the model are necessary in

developing the right model. Creating a flowchart of

how the system operates facilities the understanding

of what variables are involved and how these

variables interact.

5. Input Data collection and analysis: After

formulating the model, the type of data to collect is

determined. New data is collected and/or existing

data is gathered. Data is fitted to theoretical

distributions. For example, the arrival rate of a

specific part to the manufacturing plant may follow

a normal distribution curve.

6. Model Translations: The model is translated into

programming language. Choices range from general

purpose languages to simulation programs.

7. Verification and Validation: Verification is the

process of ensuring that the model behaves as

intended, usually by debugging or through

animation. Verification is necessary but not

sufficient for validation, i.e. a model may be

verified but not valid. Validation ensures that no

significant difference exists between the model and

the real system.

8. Experimentation and Analysis: Experimentation

involves developing the alternative model(s),

executing the simulation runs, and statistically

comparing the alternative(s) system performance

with that of the real system.

9. Documentation and Implementation:

Documentation consists of the written report the

required steps of a simulation study establishes the

likelihood of the study’s success. Although knowing

the basic steps in the simulation study is important,

it is equally important to realize that not very

problem should be solved using simulation.

1.3 Current Trends in Software

Development
 Prior 1970, estimation of effort was done manually

by using Thumb rules or some algorithms which

were based on Trial and error [10].

 1970 was an important period to predict the costs

and schedules for software development. Automated

Software cost estimating tools were built. Some

difficulties were experienced building large

software systems [17].

 During early 1970’s the first automated software

estimation tool had been built. The prototyping

composite model is COCOMO (Constructive Cost

Model) developed by Barry Boehm and is described

in book Software Engineering Economics [10].

 1975, Function Point Analysis for estimating the

size and development effort. This metric was based

on five different attributes [2]

 Inputs

 Outputs

 Inquires

 Logical Files

 Interfaces

 1977, PRICE-S Software estimation model was

designed by Frank Freiman. It was the commercial

tool to be marketed in United States.

 1979, SLIM (Software Life Cycle Model) was

introduced to US-Market by Lawrence H. Putnam

based on Norden Rayleigh Curve [28].

 1980, The U.S. Department of Defense (DoD)

introduced Ada programming language in 1983 and

it reduced the cost of developing large systems.

That model was named as Ada-COCOMO [29].

 1981, Dr. Barry Boehm released his book “Software

Engineering Economics” in which he highlighted

the essential algorithms of Constructive Cost Model

(COCOMO). Allan Albrecht published an article to

the FPA method. This article sharpened the rules for

rating the complexity of software [10].

 1982, Tom deMarco imparted a book “controlling

software projects” in which he introduced a

functional metric that inherited some of the features

of Albrecht’s function point, but was developed

independently.

 1983, Charles Symons, a British software estimating

researcher, he introduced Mark II function point

metric [13].

 1984, IBM done a major revision of his function

point metric which is basis of today’s function

points [10].

 1985, Caper Jones extended the concept of Function

Point to include the effect of computationally

complex algorithms [3].

 1986, IFPUG (International Function Point Users

Group) was founded in Toronto, Canada due to

rapidly growing usage of Function Point Metrics.

 1990, Barry Boehm, at university of Southern

California began to revise and extend the concept of

original COCOMO model.

 1991, Michel van Genuchten and Hans Koolen, they

developed a number of methods and tools which

were developed over number of years to meet the

increasing need to control software development

[11].

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

14

 1992, Betteridge, R. worked on software costing.

There was a method called Mark II Function Point

which predicted cost of number of projects [9].

 1993, the new version of COCOMO was introduced

called COCOMO 2.0 which emerged in 1994 [8].

 1994, Rajiv D Banker and Hsihui Chang and Chris

F Kemerer, they found it useful for cost estimation

and productivity evaluation purposes’ to think of

software development as an economic production

process [4].

 1996, Sophie Cockroft, obtained accurate size

estimations from the early system specifications

[15].

 1997, Existing models were reviewed and more

focus was on accuracy.

 1998, Chatzoglou constructed a new model called

MARCS to give predictions of the resources (time,

effort, cost, people) [14].

 1999, J. J. Dolado, He made a research about the

estimation using the technique of Genetic

Programming (GP) for exploring possible cost

functions [16].

 2001, A new approach was proposed based on

reasoning by analogy and linguistic quantifiers were

used to estimate the effort [1].

 2002, M.Jorgensen, expert estimation was the most

frequently applied estimation strategy for software

projects [20].

 2003, Yunsik Ahn, Jungseok Suh, Seungryeol Kim

and Hyunsoo Kim, they discussed software

maintenance and proposed SMPEEM (Software

Maintenance Project Effort Estimation) [34].

 2004, There were surveys that potentially lead to

low data quality. The idea of EBSE (Evidence based

Software Engineering) was proposed by Barbara

[5].

 2005, There was sequence which was decided and

needed to be carried out for software estimation

Sizing Project deliverables, Estimating quality and

defect Removal efficiency, Selecting Project

activities, Estimating staffing levels, Estimating

Effort, Estimating Costs, Estimating Schedules,

Estimating requirements growth during

development [12].

 2006, Stein Grimstad, effort estimate was frequently

used without sufficient clarification of its meaning,

and that estimation accuracy is often evaluated

without ensuring that the estimated and actual effort

were comparable [32].

 2007, Different methods were introduced for

estimating the effort. The average accuracy of

expert judgment based effort estimates were higher

than the average accuracy of models [21].

 2008, Parvinder S. Sandhu, He focused on

predicting the accuracy of models. As Neuro-Fuzzy

system was able to approximate the non-linear

function with more precision. So, neuro-fuzzy

system was used as a soft computing approach to

generate the model [26].

 2009, During this year, some theoretical problems

were identified that compared estimation models. It

was invalid to select one or two datasets to prove

validity of a new technique [6].

 2010, Different estimation techniques were

combined to reduce the error and keep control over

the deviation of estimates away from actual [33,24].

 2011, Many estimation techniques were proposed

and used extensively by practitioners for use in

Function Oriented Software development [31].

 2012, There were many software size and effort

measurement methods proposed in literature, they

were not widely adopted in practice. A lot of

commercial software costs estimating tools have

been released till today [18].

2. SOFTWARE ESTIMATION
Project Manager must know the effort, schedule and

functionality in advance. Project factors change in the

duration of a project, and they may change a lot. The main

thing is to predict the factor by which they change [10]. So the

process of estimation needs to be carried out. Estimating is the

process of forecasting or approximating the time and cost of

completing project deliverables or The task of balancing the

expectations of stakeholders and the need for control while

the project is implemented.

Significant Research was carried out by Boehm in software

cost modeling which began with the extensive 1965 study of

the 105 attributes of 169 software project. This led to some

useful partial models in the late 1960s and early 1970s.

Although much work was carried on developing models of

cost estimation, all of them were in same dilemma: “It was

very difficult to predict the accurate cost of software

development as software grew in size and importance it also

grew in complexity.” The fast changing nature of software

development has made it very difficult to develop parametric

models that yield high accuracy for software development in

all domains. Software development costs continue to increase

and practitioners continually express their concerns over their

ability to predict accurately the costs involved. This was a

major pitfall experienced. Development of useful models that

constructively explain the development life-cycle and

accurately predict the cost of developing a software product

was a major objective. Hence, many software estimation

models have been evolved.

Figure 2 lists a number of examples of estimation techniques.

These are classified into the following categories.

2.1 Estimation by Analogy
It means creating estimates for new projects by comparing the

new projects to similar projects from the past. As the

algorithmic techniques have a disadvantage of the need to

calibrate the model. So, the alternative approach is “analogy

by estimation”. But it requires considerable amount of

computation. This process is much simple. But not all

organizations have historical data to satisfactorily use analogy

as means of estimation. ISBSG (International Software

benchmarking Standards Group) maintains and exploits a

repository of International Software Project Metrics to help

software and IT business customers with project estimation;

risk analysis, productivity, and benchmarking [22].

2.2 Expert Opinion
When quantified or empirical data is absent, then expertise

based techniques are needed. The opinion of experts is taken,

but the drawback with this technique is that the estimate is as

good as the expert’s opinion only. For example, Delphi

technique or work break down structure.

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

15

Fig. 2 Software Estimation Techniques

2.2.1 Delphi
Delphi is a place in Greece, which was supposed to confer

predictive powers to person. A temple was built there and

virgin girls were appointed there to answer questions about

the future, they were called oracles. Oracle’s prophecies were

considered prophetic or at least wise counsel [23]. So, Delphi

technique was derived from them. Under this method, project

specifications are given to a few experts and their opinion

taken. Steps:

1. Selection of Experts.

2. Briefing to the Experts

3. Collation of estimates from experts

4. Convergence of estimates and finalization

Selection of Experts: Experts are selected who have software

development experience, who have worked and possess

knowledge in application domain at hand, they may be from

within or without the organization.

Briefing the Experts: The experts need to be briefed about the

project. They need to know the objectives of estimation,

explanation of project scope, completion and its nature in

project bidding. Collation of estimates received from experts:

The experts are expected to give one figure for the

development effort and optionally software size.. Each oracle

gives the opinion.

Name of Expert Size Effort

Expert 1 A X

Expert 2 B Y

Expert 3 C Z

…. …. ….

Expert n K L

Convergence of estimates and finalization: Now the estimates

are converged using either the statistical mode from opinions

offered by experts or extreme estimates are interchanged i.e.

higher estimate is given to expert who gave lowest figure

estimate, lower estimate is given to expert who gave highest

figure estimate, average estimate can be derived using

arithmetical average.

 T(e)={t(o)+4t(m)+t(p)}/6

 Var2={t(p)-t(o)}2/36

Fig.3 Delphi Estimation

2.3 Putnam’s Software Life-cycle Model

(SLIM)
The Putnam Model is an empirical software effort estimation

model [36, 27]. Lawrence H. Putnam in 1978 [28] is seen as

pioneering work in field of Software Process Modeling. This

model describes the time and effort required for a project of

specified size. SLIM (Software Lifecycle Management) is

name given by Putnam. Closely related software parametric

models are COCOMO (Constructive Cost Model), PRICE-S

(Parametric review of Information for Costing and Evaluation

Software) and (SEER-SEM) Software Evaluation and

Estimation of Resources- Software estimating model.

Fig. 4 Rayleigh’s Distribution (Poor Progress

Development c=4000)

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

16

Fig. 5 Rayleigh’s Distribution (Good Progress

Development c=4000)

Nordon studied the staffing patterns of several R & D

projects. He noted that the staffing pattern can be

approximated by a Rayleigh distribution curve. Putnam

studied the work of Nordon and determined that Rayleigh

curve can be used to relate the number of lines of code to

estimate time and effort required by project.

4/3

d

1/3

k tK C L
where L is the product size. C

k is the state of technology

constant which shows the progress of programmer. K is the

total effort. Td is the time required for system to complete the

software. C
k =2 which means poor progress environment- no

methodology, poor document, poor review etc. C
k =8 implies

good software development. C
k=11 means excellent

development- automated tools and techniques are used. The

value of C
k can be computed using historical data of an

organization.

Fig. 6 Putnam’s SLIM (Poor Progress Development

c=7000)

Fig. 7 Putnam’s SLIM (Good Progress Development

c=25000)

Fig. 8 Putnam’s SLIM (Excellent Progress Development

c=40000)

2.4 COCOMO
The Constructive Cost Model (COCOMO) was launched in

1981 by Barry Boehm. It is also called COCOMO 81. The

model assumes that the size of a project can be estimated in

thousands of delivered source instruction and then uses a non-

linear equation to determine the effort for the project.

COCOMO II is the successor of COCOMO 81 and is better

suited for estimating modern software development projects

and updated project database. The need for the new model

came as software development technology moved from

mainframe and overnight batch processing to desktop

development, code reusability and the use of off-the-shelf

software components.

COCOMO consists of a hierarchy of three increasingly

detailed and accurate forms. The first level, Basic COCOMO

is good for quick, early, rough order of magnitude estimates

of software costs, but its accuracy is limited due to its lack of

factors to account for difference in project attributes (Cost

Drivers). Intermediate COCOMO takes these Cost Drivers

into account and Detailed COCOMO additionally accounts

for the influence of individual project phases.

2.4.1 Basic COCOMO

Basic COCOMO computes software development effort (and

cost) as a function of program size. Program size is expressed

in estimated thousands of source lines of code (SLOC).

COCOMO applies to three classes of software projects:

 Organic projects - "small" teams with "good"

experience working with "less than rigid"

requirements

 Semi-detached projects - "medium" teams with

mixed experience working with a mix of rigid and

less than rigid requirements

 Embedded projects - developed within a set of

"tight" constraints. It is also combination of organic

and semi-detached projects.(hardware, software,

operational, ...)

The basic COCOMO equations take the form

E/D P

 d * c D

b * a E

bb

bb

http://en.wikipedia.org/wiki/Source_lines_of_code

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

17

Effort Applied (E) = (KLOC) *[man-months]

Development Time = (Effort Applied) * [months]

People required (P) = Effort Applied / Development

Time [count]

where, KLOC is the estimated number of delivered lines

(expressed in thousands) of code for project. The coefficients

ab, bb, cb and db are given in the following table:

Software project ab bb cb db

Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Fig. 9 Organic Project(C Multiplication Factor= 128

LOC/FP)

Fig. 10 Semidetached Project (C Multiplication Factor=

128 LOC/FP)

Fig. 11 Embedded Project (C Multiplication Factor= 128

LOC/FP)

2.4.2 Intermediate COCOMOs

Intermediate COCOMO computes software development

effort as function of program size and a set of "cost drivers"

that include subjective assessment of product, hardware,

personnel and project attributes. This extension considers a set

of four "cost drivers", each with a number of subsidiary
attributes:-

 Hardware attributes

 Personnel attributes

 Project attributes

 Product attributes

Fig. 12 Organic Project (C Multiplication Factor= 128

LOC/FP)

http://en.wikipedia.org/wiki/Man-month

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

18

Fig. 13 Semidetached Project (C Multiplication Factor=

128 LOC/FP)

Fig. 14 Embedded Project (C Multiplication Factor= 128

LOC/FP)

3. CONCLUSION and FUTURE WORK
If the estimation is done accurately, it results in error

decrease. Estimation process reflects the reality of project’s

progress. It avoids cost/budget or schedule overruns. This

process is quite simple which takes a few inputs. This

assessment framework helps inexperienced team improve

project tracking and estimation. Much work can be carried on

it. Various COCOMO parameters can be adjusted. Further

work can be carried on learning based methods which apply

weights to calculation of each software module based on

priorities and criticalities. Tool development is currently in

progress. A good estimate should have amount of granularity

so it can be explained. Since the effort invested in a project is

one of the most important and most analyzed variables.

4. ACKNOWLEDGMENTS
Sincere Thanks to HCTM Technical Campus Management

Kaithal- 136027, Haryana, India for their constant
encouragement.

5. REFERENCES
[1] Ali Idri, Alain Abran, Taghi M. Khosgoftaar. 2001.

Fuzzy Analogy- A New Approach for Software Cost

Estimation. International Workshop on Software

Measurement (IWSM’01).

[2] Allan J. Alberecht and John E. Gaffhey, November 1983,

Software Function, Source Lines of Code and

Development Effort Prediction : A software Science

Validation . IEEE transactions on Software Engineering.

[3] Allan J. Alberecht, May 1984. AD/M Productivity

Measurement and Estimation Validation, IBM Corporate

Information Systems. IBM Corp.

[4] Banker, R. D., H. Chang, et al. (1994). "Evidence on

economies of scale in software development."

Information and Software Technology 36(5): 275-282.

[5] Barbara A. Kitchenham, Tore Dybå, Magne Jørgensen.

2004. IEEE Proceedings of the 26th International

Conference on Software Engineering (ICSE’04)

[6] Barbara Kitchenham, Emilia Mendes. 2009. Why

Comparative Effort Prediction Studies may be Invalid ©

ACM 2009 ISBN: 978-1-60558-634-2.

[7] Barry Boehm, Chris Abts and Sunita Chulani. 2000

Software development cost estimation approaches. A

survey. Annals of Software Engineering.

[8] Barry W. Boehm, Bradford dark, Ellis Horowitz, Chris

Westland, Ray Madachy and Richard Selby. Cost

Models for Future Software Lifecycle Processes:

COCOMO 2.0 Annals of Software Engineering. Volume

1,pp,57-94,1995. An earlier description was presented in

the tutorial “COCOMO, Ada COCOMO and COCOMO

2.0” by Barry Boehm in the Proceedings of Ninth

International COCOMO Estimation Meeting. Los

Angeles, CA, 6-7 October 1994.

[9] Bergeron, F. and J. Y. St-Arnaud (1992). "Estimation of

information systems development efforts: a pilot study."

Information and Management 22(4): 239-254.

[10] Boehm, 1981 “Software Engineering Economics”,

Prentice Hall.

[11] Boehm, B. W. and P. N. Papaccio (1988). Understanding

and controlling software costs. IEEE Transactions on

Software Engineering 14(10): 1462-1477.

[12] Capers Jones, Chief Scientist Emeritus Software

Productivity Research LLC. Version 5 – February 27,

2005. How Software Estimation Tools Work.

[13] Charles Symons 1991. Software Sizing and Estimation

Mark II function Points (Function Point Analysis), Wiley

1991.

[14] Chatzoglou, P. D. and L. A. Macaulay (1998). "A rule-

based approach to developing software development

International Journal of Computer Applications (0975 – 8887)

Volume 48– No.21, June 2012

19

prediction models." Automated Software Engineering

5(2): 211-243.

[15] Cockcroft, S. (1996). "Estimating CASE development

size from outline specifications." Information and

Software Technology 38(6): 391-399.

[16] Dolado, J. J. (2000). "A validation of the component-

based method for software size estimation." IEEE

Transactions on Software Engineering 26(10): 1006-

1021

[17] F.Brooks, The Mythical Man-Month; Essays on Software

Engineering, 1975. Addison-Wesley, Reading,

Massachusetts.

[18] Jovan Popović1 and Dragan Bojić1. 2012. A

Comparative Evaluation of Effort Estimation Methods in

the Software Life Cycle. ComSIS Vol. 9, No. 1, January

2012

[19] Lawrence H. Putnam 1978. A General Empirical

Solution to the Macro Software Sizing and Estimation

problem. IEEE transactions on Software Engineering.

[20] Magne Jørgensen, A Review of Studies on Expert

Estimation of Software Development Effort, March

2002.

[21] Magne Jørgensen. May 2007 Forecasting of Software

Development Work Effort: Evidence on Expert

Judgment and Formal Model.

[22] Martin Shepperd and Chris Schofield, Barbara

Kitchenham, 1996.Effort Estimation Using Analogy.

IEEE Proceedings of ICSE-18

[23] Murali Chemuturi, Delphi Technique for software

estimation

[24] M. V. Deshpande, S. G. Bhirud. August 2010. Analysis

of Combining Software Estimation Techniques.

International Journal of Computer Applications (0975 –

8887)

[25] Narsingh Deo, System Simulation with Digital

Computer. Prentice Hall of India Private Limited.

[26] Parvinder S. Sandhu, Porush Bassi, and Amanpreet

Singh Brar. 2008. Software Effort Estimation Using Soft

Computing Techniques. World Academy of Science,

Engineering and Technology 46 2008.

[27] Putnam, Lawrence H.; Ware Myers (2003). Five core

metrics : the intelligence behind successful software

management. Dorset House Publishing. ISBN 0-932633-

55-2.

[28] Putnam, Lawrence H. (1978). "A General Empirical

Solution to the Macro Software Sizing and Estimating

Problem".IEEE transactions on Software Engineering,

VOL. SE-4, NO. 4, pp 345-361.

[29] Robert C. Tausworthe, 1981. Deep Space Network

Estimation Model, Jet Propulsion Report.

[30] Rolf Hintermann 2002/2003 Seminar on Software Cost

Estimation. Introduction on Software Cost Estimation.

Institut für Informatik der Universität Zürich.

[31] Samaresh Mishra1, Kabita Hazra2, and Rajib Mall3.

October 2011. A Survey of Metrics for Software

Development Effort Estimation. International Journal of

Research and Reviews in Computer Science (IJRRCS)

[32] Stein Grimstad*, Magne Jørgensen, Kjetil Moløkken-

Østvold. 13 June 2005. Software effort estimation

terminology: The tower of Babel. Information and

Software Technology 48 (2006) 302–310

[33] Vahid Khatibi, Dayang N. A. Jawawi. 2010. Software

Cost Estimation Methods: A Review. Journal of

Emerging Trends in Computing and Information

Science.

[34] Yunsik Ahn, Jungseok Suh, Seungryeol Kim and

Hyunsoo Kim. July 2002. Journal of Software

Maintainence and Evolution : Research and Practice.

6. AUTHORS PROFILE
Prof. P.K.Suri, Dean (R & D), Chairman & Professor

(CSE/IT/MCA) of HCTM Technical Campus, Kaithal, since

Nov. 01, 2012 . He obtained his Ph.D degree from Faculty of

Engineering, Kurukshetra University, Kurukshetra and

Master’s degree from IIT Roorkee (formerly . He started his

research carrier from CSIR Research Scholars, AIIMS. He

worked former as a dean Faculty of Engineering &

Technology, Kurukshetra University, Kurukshetra, Dean

Faculty of Science, KUK, Professor & Chairman of

Department of Computer Sc. & Applications, KUK. He has

approx 40 yrs experience in different universities like KUK,

Bharakhtala University Bhopal & Haryana Agricultural

university , Hissar. He has supervised 18 Ph.D. students in

Computer Science and 06 students are working under his

supervision. Their students are working as session judge,

director & chairpersons of different institute. He has around

150 publications in International/National Journals and

Conferences. He is recipient of 'THE GEORGE OOMAN

MEMORIAL PRIZE' for the year 1991-92 and a RESEARCH

AWARD –“The Certificate of Merit – 2000”for the paper

entitled ESMD – An Expert System for Medical Diagnosis

from INSTITUTION OF ENGINEERS, INDIA. The Board

of Directors, governing Board Of editors & publication board

of American Biographical institute recognized him with an

honorary appointment to Research board of Advisors in 1999.

M.P. Council of Science and Technology identified him as

one of the expert to act as Judge to evaluate the quality of

papers in the fields of Mathematics/Computer Science/

Statistics and their presentations for M. P. Young Scientist

award in Nov. 1999 and March 2003. His teaching and

research activities include Simulation and Modeling, Software

Risk Management, Software Reliability, Software testing &

Software Engineering processes, Temporal Databases, Ad hoc

Networks, Grid Computing, and Biomechanics.

Pallavi Ranjan, has done her B.Tech in Computer Science

with 82% from HCTM Technical Campus, and currently

pursuing M.Tech with 83 % from the same institution. Her

research interest includes Software engineering, and

Simulation.

http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-932633-55-2
http://en.wikipedia.org/wiki/Special:BookSources/0-932633-55-2

