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ABSTRACT 

Graphic rendering is expensive in terms of computation. We 
investigate distributing it by applying the powerful computing 
technique called grid computing, and showing how this 
technology has a great effectiveness and high performance.  

The paper shows how to develop a java drawing framework 
for drawing in the distributed environment by dividing the 
work upon nodes in grid computing and selecting the best 

nodes for job assignments to have the jobs executed in the 
least amount of time. Schedulers are limited in individual 
capability, but when deployed in large numbers can represent 
a strong force similar to a colony of ants or swarm of bees. 

The paper also presents a mechanism for load balancing based 
on swarm intelligence such as Ant colony optimization and 
Particle swarm Optimization.   
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Keywords 
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1. INTRODUCTION 
This section reviews the basic concepts such as graphic 
rendering, grid computing and load balancing. 

1.1 Grid distributing environment 
We enjoy increasing network bandwidth, powerful computers, 
software, and user acceptance. These elements are currently 
converging and enabling a new global infrastructure called 
"The Grid", originally derived from the electrical "Power 

Grid" which provides electricity to every wall socket. A 
computational or data grid is hardware and software 
infrastructure that provides dependable, consistent, pervasive, 
and inexpensive access to computational capabilities, as 
described in Foster and Kesselman [1]. It connects distributed 
computers, storage devices, mobile devices, instruments, 
sensors, data bases, and software applications.  

Grids provide many more benefits such as: 

 Access: Seamless, transparent, remote, secure, wireless 

access to computing, data, experiments, sensors, etc. 

 Virtualization: Access to compute and data services 

without caring about the infrastructure. 

 On Demand: Get the resources you need, when you need 

them, at the quality you need. 

 Sharing: Enable collaboration of teams over the Internet, 

to work on one complex task. 

 Failover: In case of system failure, migrate and restart 

applications automatically, on another machine. 

 Heterogeneity: In large and complex grids, resources are 

heterogeneous. 

 Utilization: Grids can increase average utilization from 

some 20% towards 80% and more. For example, our own 
Sun Enterprise Grid to design Sun’s next-generation 
processors is utilized at over 95%, on average. 

Several of these benefits are present already in small compute 
cluster environments, often called Mini-Grids, or Cluster 

Grids, or Department Grids, or simply “managed clusters”. In 
many of our early grid projects, since about 1998, our partners 
and customers started building mini-grids, see for example 
some 20 customer reports at [2]. In fact, today (January 2003), 
over 7,000 cluster grids are in production, running the 
distributed resource management software Sun Grid Engine 
[3], or its open source version Grid Engine [4]. A few hundred 
of those early adopters already implemented the next level, 

so-called Campus or Enterprise Grids, connecting resources 
distributed over the university campus or the global 
enterprise, using the Sun Grid Engine Enterprise Edition [3]. 
And a few dozen of them are currently transitioning towards 
Global Grids, connecting resources distributed beyond 
university or enterprise firewalls, and using global grid 
technology like Globus [5] and Avaki [6], integrated with Sun 
Grid Engine. 

Many research papers are done to investigate the design of the 

grid environment and to characterize the underlying 
requirements from the network and the operating systems ([7], 
[8],[9], [10]). 

1.2 Graphic rendering 
There are two types of computer graphics: Vector graphics 

such as Flash and Bitmap graphics  such as Photoshop. 
Whether the image is a bitmap graphic or vector graphic both 
are displayed on a modern monitor by going through a process 
known as rendering. Monitors are made of a number of small 
dots called pixels. To display an image on the monitor the 
program must set each pixel to appropriate color or shade of 
grey.  The computer keeps a memory based model of the 
image that will be displayed on the screen. In this model it 

keeps the information about the picture to be displayed. Then 
it lightens the needed pixels from this model and this process 
is called rendering, i.e. The process of generating a pattern of 
pixels from a model is called rendering.[11] 

Model-based rendering generally fall into two categories, 
active and passive methods.  Active methods often require 
laser technology and structured lights or video, which might 
result in very expensive equipments. However, new 
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technologies have extended the range of possible applications, 
( [12], [13], [14]), and new algorithms have improved the 
ability to cope with problems inherent to laser scanning, ([15], 
[16], [17], [18]). Passive methods usually concern the task of 
generating a 3D model given multiple 2D photographs of a 

scene. In general they do not require a very expensive 
equipment, but quite often a specialized set-up, ( [19], [20], 
[21]). Passive methods are commonly employed by Model-
Based Rendering techniques. 

1.3 Load balancing using swarms 
One of the main components of a distributed system is the 
distributed process scheduler that manages the resources. A 
distributed process scheduler manages the resources of the 
whole system efficiently by distributing the load among the 
processors to maximize the overall system performance [22]. 
The distributed scheduler must perform the load distributing 
operations transparently, which means the whole system is 
viewed as a single computer by the users of it [23]. 

Swarms provide the possibility of enhanced task performance, 
high reliability (fault tolerance), low unit complexity and 
decreased cost over traditional robotic systems. They can 
accomplish some tasks that would be impossible for a single 
robot to achieve.  Swarms  can dynamically change their 
structure to match environmental variations[24]. Ants , bees 
and termites are beautifully engineered examples of this kind 
of software in use. These insects do not use centralized 

communication; there is no strict hierarchy, and no one in 
charge. However, developing swarm software from the “top 
down”, i.e., by starting with the group application and trying 
to determine the individual behaviors that it arises from, is 
very difficult. Instead a “group behavior building blocks” that 
can be combined to form larger, more complex applications 
are being developed. [25] 

 

Figure 1: Leaf Cutter Ants [26] 

 

2. METHODOLOGY 
Our task is to draw a curve formed by rolling a smaller circle 
of radius r inside a larger circle or radius R. If the pen offset 
of the pen point in the moving circle is a, then the equation of 

the resulting curve at time t is 

x = (R+r)*cos(t) - (r+a)*cos(((R+r)/r)*t) 

y = (R+r)*sin(t) - (r+a)*sin(((R+r)/r)*t) 

The serial task implementation is [27] : 

public class Spirograph { 

    public static void main(String[] args) { 

        double R = 180; //Double.parseDouble(args[0]); 

        double r = 40; //Double.parseDouble(args[1]); 

        double a = 15; //Double.parseDouble(args[2]); 

        StdDraw.setXscale(-300, +300); 

        StdDraw.setYscale(-300, +300); 

        StdDraw.clear(StdDraw.BLACK); 

        for (double t = 0.0; t < 100; t += 0.01) { 

            double x = (R+r) * Math.cos(t) - (r+a) * 
Math.cos(((R+r)/r)*t); 

            double y = (R+r) * Math.sin(t) - (r+a) * 

Math.sin(((R+r)/r)*t); 

            double degrees = -Math.toDegrees((R+r)/r)*t; 

            StdDraw.picture(x, y, "earth.gif", degrees); 

            // StdDraw.rotate(+Math.toDegrees((R+r)/r)*t); 

            StdDraw.show(20); 

        } 

    } 

} 

 

Figure 2: running of the task 

 

To distribute it we will use java Grid [28]. The Project 
Implementation is put forth into real world using Image 

rendering concepts and the toolkit used for rendering. 

In a Java Grid there is only one Server that receives work 
requests from clients and forwards the requests to the workers.  

It collects work results from the workers and sends back the 
results to the clients. The Server receives any file required for 
completing the work request from the client and stores it.  

The server handles all communication between nodes and any 
administrative/management task of the grid. 
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There can be as many workers.  The worker fulfils work 
request received by the server and send back the work results.  
In a Java Grid there can be as many clients as needed. The 
clients split the work in several work requests and collects 
work results. The technical architecture is shown in figure 3: 

Figure 3:  technical Architecture 

 

Next we give a summary of the methodology needed. Main 

techniques are Ant colony optimization (ACO) and Particle 
swarm Optimization (PSO). 

ACO is a Meta heuristic optimization algorithm that can be 
used to find approximate solutions to difficult combinatorial 
optimization problems. In ACO artificial ants build solutions 
by moving on the problem graph and they, mimicking real 
ants, deposit artificial pheromone on the graph in such a way 
that future artificial ants can build better solutions. ACO has 

been successfully applied to an impressive number of 
optimization problems [29]. 

PSO is a global optimization algorithm for dealing with 
problems in which a best solution can be represented as a 
point or surface in an n-dimensional space. Hypotheses are 
plotted in this space and seeded with an initial velocity, as 
well as a communication channel between the particles. 
Particles then move through the solution space, and are 

evaluated according to some fitness criterion after each time 
step. Over time, particles are accelerated towards those 
particles within their communication grouping which have 
better fitness values. The main advantage of such an approach 
over other global minimization strategies such as simulated 
annealing is that the large numbers of members that make up 
the particle swarm make the technique impressively resilient 
to the problem of local minima [30]. 

ACO is the most used so we will focus on it, by discussing the 

concept of Pheromone Control ([31] – [38]). 

Pheromone control adopts several approaches to reduce the 
influences from past experience and encourages the 
exploration of new paths or paths that were previously non-
optimal. The approaches as follows: 

1. Evaporation 

2. Aging 

3. Limiting and Smoothing Pheromone 

4. Pheromone-Heuristic Control 

Now let us discuss them in depth.  

2.1 Evaporation 
To reduce the effect of past experience, an approach called 

evaporation is typically used in conjunction with ACO. 
Evaporation prevents pheromone concentration in optimal 
paths from being excessively high and preventing ants from 
exploring other (new or better) alternatives. In each iteration, 
the pheromone values Tij in all edges are discounted by a 
factor such that     Tij     Tij (1 - p)  

Suppose that at some iteration ti, all ants converge to a path 
Ri, and deposit a very high concentration of pheromone 

(represented with larger triangles). In the next iteration t i+1, 
the pheromone concentration along Ri is reduced by some 
factor (represented by smaller triangle), and at t i+2, the 
pheromone concentration is further reduced. 

Implementation of Evaporation 

For i = 0 To ptop - 1 

     pstrength(i) = pstrength(i) * 0.9 

Next 

2.2 Aging 
Additionally, past experience can also be reduced by 
controlling the amount of pheromone deposited for each ant 
according to its age. This approach is known as aging . In 
aging, an ant deposits lesser and lesser pheromone as it moves 

from node to node.  

Aging is based on the rationale that “old” ants are less 
successful in locating optimal paths since they may have 
taken longer time to reach their destinations. Both aging and 
evaporation include recency as a factor of routing preference, 
hence, if a favorable path is not chosen recently, its preference 
will be gradually eliminated. By making existing pheromone 
trail less significant than the recent pheromone updates, both 

aging and evaporation encourage discoveries of new paths 
that were previously non-optimal. 

Implementation of Aging 

agefactor = 0.9 

updted = 0 

For I = 0 To ptop - 1 

If ppath(I) = path Then 

    updted = 1 

    pstregth(I) = pstrength(I) + agefactor ^ hops 

End If 

Next 

If updted = 0 Then 

    ppath(ptop) = path 

    pstrength(ptop) = agefactor ^ hops 

    ptop = ptop + 1 

End If 

2.3 Limiting and Smoothing Pheromone 
  Stagnation is done by limiting the amount of pheromone in 
every path. By placing an upper bound Tmax on the amount of 
pheromone for every edge (i , j) , the preference of an ant for 
optimal paths over non-optimal paths is reduced. This 
approach prevents the situation of generating a dominant path. 
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A variant of such an approach is pheromone smoothing. Using 
pheromone smoothing, the amount of pheromone along an 
edge is reinforced as follows: 

Tij (new)      =    Tij (old) + δ * ( Tmax - Tij (old)) 

where δ is a constant between 0 and 1.  

It can be seen that as   Tij (old)      Tmax   a smaller amount of 
pheromone is reinforced along an edge (i , j). Although not 
totally identical, pheromone smoothing also bears some 
resemblance to evaporation. While evaporation adopts a 
uniform discount rate for every path, pheromone smoothing 
places a relatively greater reduction in the reinforcement of 
pheromone concentration on the optimal path(s). 
Consequently, pheromone smoothing seems to be more 

effective in preventing the generation of dominant paths. 

Implementation of Limiting and Smoothing Pheromone 

tmax = 100 

smoothing = 0.33 

Private Sub updperval(path As String) 

updted = 0 

For i = 0 To ptop - 1 

If ppath(i) = path Then 

    updted = 1 

    pstrength(i) = pstrength(i) + smoothing * (tmax - 
pstrength(i)) 

End If 

Next 

If updted = 0 Then 

    ppath(ptop) = path 

    pstrength(ptop) = smoothing * (tmax) 

List4.AddItem pstrength(ptop) 

    ptop = ptop + 1 

End If 

2.4 Pheromone-Heuristic Control 
To configure ants so that they do not solely rely on sensing 
pheromone for their routing preferences, this can be 

accomplished by configuring the probability function P ij for 
an ant to choose an edge (i , j) using a combination of both 
pheromone concentration Tij and heuristic function ηij. As 
noted , an ant selects an edge probabilistically using T ij and ηij 
as a functional composition for  Pij. In network routing, ηij is a 
function of the cost of edge (i , j). 

α and β represent the respective adjustable weights of Tij and 
ηij. Consequently, the routing preferences of ants can be 

altered by selecting different values of α and β. If  α > β ants 
favor paths with higher pheromone concentrations, and a 
higher value of β directs ants to paths with more optimistic 
heuristic values. In general, different values of α and β are 
suitable to be applied at different states of a network. A lower 
value of α is generally preferred when pheromone 
concentration along paths may not necessarily reflect their 
optimality. Examples of such situations include the initial 

stage after a network reboots, and when there are frequent and 
abrupt changes in network status due to either link (or node) 
failure or introduction of new paths (nodes). However, as a 

network stabilizes, a higher value of α is preferred. 
Furthermore, recent research demonstrated that dynamically 
altering the values of α and β in response to changes in 
network status may increase the performance of ants. 

Implementation of Pheromone-Heuristic Control 

For i = 0 To List2.ListCount - 1 

    If Left$(List2.List (i), 13) = stringparse (b, "DEST=") Then 

    commaparse1 (List2.List (i)) 

reddo1: 

    l = Int (Rnd * iptop1 + 1) 

    If l = 0 Then GoTo reddo1 

    tosys = ips1 (l) 

    End If 

Next 

i = Int (Rnd * iptop1) 

i = i + 1 

pher: 

small = Len (ppath(0)) 

locn = 0 

For i = 0 To ptop - 1 

If Len (ppath (i)) < small Then 

    small = Len (ppath(i)) 

    locn = i 

End If 

Next 

pstrength (locn) = pstrength (locn) + 1 

3. RESULTS 
By running the algorithm, we get the following results 

Between the magnitude of average velocity (|v|) and the 
ordering factor (Δ) . Where V=  ∑ vi /N 

And vi  is the velocity of ant number i and N is the total 
number of ants. The ordering factor (Δ) can be measured by 
dividing the number of ants matching the desired topology 
over the total number of ants. 

Table 1: relation between ordering factor (Δ) and 

magnitude of average velocity (|v|) 

ordering factor (Δ) magnitude of average velocity (|v|) 

0.05 0.9 

0.10 0.86 

0.15 0.81 

0.20 0.73 

0.30 0.62 

0.35 0.41 

0.40 0.001 

> 0.40 0 
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4. DISCUSSION 
Figure 6 shows the relation between ordering factor (Δ) and 

magnitude of average velocity (|v|). 

 

Figure 6: relation between ordering factor (Δ) and 

magnitude of average velocity (|v|) 

We recommend avoiding increasing the desired ordering 
factor over 40% of the desired architecture, as the scheduler 
will suddenly stop. 

5. CONCLUSION 
In this paper, we investigate image rendering by applying the 
powerful computing technique called grid computing, and 
showing how this technology has a great effectiveness and 
high performance.  

We also are developing a java drawing framework for 

drawing in the distributed environment by dividing the work 
upon nodes in grid computing and selecting the best nodes for 
job assignments to have the jobs executed in the least amount 
of time.  

Schedulers are limited in individual capability, but when 
deployed in large numbers can represent a strong force similar 
to a colony of ants or swarm of bees. 

We present a mechanism for load balancing based on swarm 

intelligence such as Ant colony optimization and Particle 
swarm Optimization 
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