
International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

1

Distributing Graphic Rendering using Grid Computing

with Load Balancing

El-Sayed M. T. El-kenawy
Dep. of Comp. and Sys. Eng.,

Faculty of Engineering,
Mansoura University, Egypt

Ali Ibraheem El-Desoky
Dep. of Comp. and Sys. Eng.,

Faculty of Engineering,
Mansoura University, Egypt

 Mohamed F. Al-rahamawy
Dep. of Computer scienecs,

Faculty of Computer and Info.,
Mansoura University, Egypt

ABSTRACT

Graphic rendering is expensive in terms of computation. We
investigate distributing it by applying the powerful computing
technique called grid computing, and showing how this
technology has a great effectiveness and high performance.

The paper shows how to develop a java drawing framework
for drawing in the distributed environment by dividing the
work upon nodes in grid computing and selecting the best

nodes for job assignments to have the jobs executed in the
least amount of time. Schedulers are limited in individual
capability, but when deployed in large numbers can represent
a strong force similar to a colony of ants or swarm of bees.

The paper also presents a mechanism for load balancing based
on swarm intelligence such as Ant colony optimization and
Particle swarm Optimization.

General Terms

Graphic Rendering, Grid Computing, Load Balancing.

Keywords

Rendering, Grid computing, swarm intelligence, Ant colony
optimization, Particle swarm Optimization

1. INTRODUCTION
This section reviews the basic concepts such as graphic
rendering, grid computing and load balancing.

1.1 Grid distributing environment
We enjoy increasing network bandwidth, powerful computers,
software, and user acceptance. These elements are currently
converging and enabling a new global infrastructure called
"The Grid", originally derived from the electrical "Power

Grid" which provides electricity to every wall socket. A
computational or data grid is hardware and software
infrastructure that provides dependable, consistent, pervasive,
and inexpensive access to computational capabilities, as
described in Foster and Kesselman [1]. It connects distributed
computers, storage devices, mobile devices, instruments,
sensors, data bases, and software applications.

Grids provide many more benefits such as:

 Access: Seamless, transparent, remote, secure, wireless

access to computing, data, experiments, sensors, etc.

 Virtualization: Access to compute and data services

without caring about the infrastructure.

 On Demand: Get the resources you need, when you need

them, at the quality you need.

 Sharing: Enable collaboration of teams over the Internet,

to work on one complex task.

 Failover: In case of system failure, migrate and restart

applications automatically, on another machine.

 Heterogeneity: In large and complex grids, resources are

heterogeneous.

 Utilization: Grids can increase average utilization from

some 20% towards 80% and more. For example, our own
Sun Enterprise Grid to design Sun’s next-generation
processors is utilized at over 95%, on average.

Several of these benefits are present already in small compute
cluster environments, often called Mini-Grids, or Cluster

Grids, or Department Grids, or simply “managed clusters”. In
many of our early grid projects, since about 1998, our partners
and customers started building mini-grids, see for example
some 20 customer reports at [2]. In fact, today (January 2003),
over 7,000 cluster grids are in production, running the
distributed resource management software Sun Grid Engine
[3], or its open source version Grid Engine [4]. A few hundred
of those early adopters already implemented the next level,

so-called Campus or Enterprise Grids, connecting resources
distributed over the university campus or the global
enterprise, using the Sun Grid Engine Enterprise Edition [3].
And a few dozen of them are currently transitioning towards
Global Grids, connecting resources distributed beyond
university or enterprise firewalls, and using global grid
technology like Globus [5] and Avaki [6], integrated with Sun
Grid Engine.

Many research papers are done to investigate the design of the

grid environment and to characterize the underlying
requirements from the network and the operating systems ([7],
[8],[9], [10]).

1.2 Graphic rendering
There are two types of computer graphics: Vector graphics

such as Flash and Bitmap graphics such as Photoshop.
Whether the image is a bitmap graphic or vector graphic both
are displayed on a modern monitor by going through a process
known as rendering. Monitors are made of a number of small
dots called pixels. To display an image on the monitor the
program must set each pixel to appropriate color or shade of
grey. The computer keeps a memory based model of the
image that will be displayed on the screen. In this model it

keeps the information about the picture to be displayed. Then
it lightens the needed pixels from this model and this process
is called rendering, i.e. The process of generating a pattern of
pixels from a model is called rendering.[11]

Model-based rendering generally fall into two categories,
active and passive methods. Active methods often require
laser technology and structured lights or video, which might
result in very expensive equipments. However, new

International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

2

technologies have extended the range of possible applications,
([12], [13], [14]), and new algorithms have improved the
ability to cope with problems inherent to laser scanning, ([15],
[16], [17], [18]). Passive methods usually concern the task of
generating a 3D model given multiple 2D photographs of a

scene. In general they do not require a very expensive
equipment, but quite often a specialized set-up, ([19], [20],
[21]). Passive methods are commonly employed by Model-
Based Rendering techniques.

1.3 Load balancing using swarms
One of the main components of a distributed system is the
distributed process scheduler that manages the resources. A
distributed process scheduler manages the resources of the
whole system efficiently by distributing the load among the
processors to maximize the overall system performance [22].
The distributed scheduler must perform the load distributing
operations transparently, which means the whole system is
viewed as a single computer by the users of it [23].

Swarms provide the possibility of enhanced task performance,
high reliability (fault tolerance), low unit complexity and
decreased cost over traditional robotic systems. They can
accomplish some tasks that would be impossible for a single
robot to achieve. Swarms can dynamically change their
structure to match environmental variations[24]. Ants , bees
and termites are beautifully engineered examples of this kind
of software in use. These insects do not use centralized

communication; there is no strict hierarchy, and no one in
charge. However, developing swarm software from the “top
down”, i.e., by starting with the group application and trying
to determine the individual behaviors that it arises from, is
very difficult. Instead a “group behavior building blocks” that
can be combined to form larger, more complex applications
are being developed. [25]

Figure 1: Leaf Cutter Ants [26]

2. METHODOLOGY
Our task is to draw a curve formed by rolling a smaller circle
of radius r inside a larger circle or radius R. If the pen offset
of the pen point in the moving circle is a, then the equation of

the resulting curve at time t is

x = (R+r)*cos(t) - (r+a)*cos(((R+r)/r)*t)

y = (R+r)*sin(t) - (r+a)*sin(((R+r)/r)*t)

The serial task implementation is [27] :

public class Spirograph {

 public static void main(String[] args) {

 double R = 180; //Double.parseDouble(args[0]);

 double r = 40; //Double.parseDouble(args[1]);

 double a = 15; //Double.parseDouble(args[2]);

 StdDraw.setXscale(-300, +300);

 StdDraw.setYscale(-300, +300);

 StdDraw.clear(StdDraw.BLACK);

 for (double t = 0.0; t < 100; t += 0.01) {

 double x = (R+r) * Math.cos(t) - (r+a) *
Math.cos(((R+r)/r)*t);

 double y = (R+r) * Math.sin(t) - (r+a) *

Math.sin(((R+r)/r)*t);

 double degrees = -Math.toDegrees((R+r)/r)*t;

 StdDraw.picture(x, y, "earth.gif", degrees);

 // StdDraw.rotate(+Math.toDegrees((R+r)/r)*t);

 StdDraw.show(20);

 }

 }

}

Figure 2: running of the task

To distribute it we will use java Grid [28]. The Project
Implementation is put forth into real world using Image

rendering concepts and the toolkit used for rendering.

In a Java Grid there is only one Server that receives work
requests from clients and forwards the requests to the workers.

It collects work results from the workers and sends back the
results to the clients. The Server receives any file required for
completing the work request from the client and stores it.

The server handles all communication between nodes and any
administrative/management task of the grid.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

3

There can be as many workers. The worker fulfils work
request received by the server and send back the work results.
In a Java Grid there can be as many clients as needed. The
clients split the work in several work requests and collects
work results. The technical architecture is shown in figure 3:

Figure 3: technical Architecture

Next we give a summary of the methodology needed. Main

techniques are Ant colony optimization (ACO) and Particle
swarm Optimization (PSO).

ACO is a Meta heuristic optimization algorithm that can be
used to find approximate solutions to difficult combinatorial
optimization problems. In ACO artificial ants build solutions
by moving on the problem graph and they, mimicking real
ants, deposit artificial pheromone on the graph in such a way
that future artificial ants can build better solutions. ACO has

been successfully applied to an impressive number of
optimization problems [29].

PSO is a global optimization algorithm for dealing with
problems in which a best solution can be represented as a
point or surface in an n-dimensional space. Hypotheses are
plotted in this space and seeded with an initial velocity, as
well as a communication channel between the particles.
Particles then move through the solution space, and are

evaluated according to some fitness criterion after each time
step. Over time, particles are accelerated towards those
particles within their communication grouping which have
better fitness values. The main advantage of such an approach
over other global minimization strategies such as simulated
annealing is that the large numbers of members that make up
the particle swarm make the technique impressively resilient
to the problem of local minima [30].

ACO is the most used so we will focus on it, by discussing the

concept of Pheromone Control ([31] – [38]).

Pheromone control adopts several approaches to reduce the
influences from past experience and encourages the
exploration of new paths or paths that were previously non-
optimal. The approaches as follows:

1. Evaporation

2. Aging

3. Limiting and Smoothing Pheromone

4. Pheromone-Heuristic Control

Now let us discuss them in depth.

2.1 Evaporation
To reduce the effect of past experience, an approach called

evaporation is typically used in conjunction with ACO.
Evaporation prevents pheromone concentration in optimal
paths from being excessively high and preventing ants from
exploring other (new or better) alternatives. In each iteration,
the pheromone values Tij in all edges are discounted by a
factor such that Tij  Tij (1 - p)

Suppose that at some iteration ti, all ants converge to a path
Ri, and deposit a very high concentration of pheromone

(represented with larger triangles). In the next iteration t i+1,
the pheromone concentration along Ri is reduced by some
factor (represented by smaller triangle), and at t i+2, the
pheromone concentration is further reduced.

Implementation of Evaporation

For i = 0 To ptop - 1

 pstrength(i) = pstrength(i) * 0.9

Next

2.2 Aging
Additionally, past experience can also be reduced by
controlling the amount of pheromone deposited for each ant
according to its age. This approach is known as aging . In
aging, an ant deposits lesser and lesser pheromone as it moves

from node to node.

Aging is based on the rationale that “old” ants are less
successful in locating optimal paths since they may have
taken longer time to reach their destinations. Both aging and
evaporation include recency as a factor of routing preference,
hence, if a favorable path is not chosen recently, its preference
will be gradually eliminated. By making existing pheromone
trail less significant than the recent pheromone updates, both

aging and evaporation encourage discoveries of new paths
that were previously non-optimal.

Implementation of Aging

agefactor = 0.9

updted = 0

For I = 0 To ptop - 1

If ppath(I) = path Then

 updted = 1

 pstregth(I) = pstrength(I) + agefactor ^ hops

End If

Next

If updted = 0 Then

 ppath(ptop) = path

 pstrength(ptop) = agefactor ^ hops

 ptop = ptop + 1

End If

2.3 Limiting and Smoothing Pheromone
 Stagnation is done by limiting the amount of pheromone in
every path. By placing an upper bound Tmax on the amount of
pheromone for every edge (i , j) , the preference of an ant for
optimal paths over non-optimal paths is reduced. This
approach prevents the situation of generating a dominant path.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

4

A variant of such an approach is pheromone smoothing. Using
pheromone smoothing, the amount of pheromone along an
edge is reinforced as follows:

Tij (new) = Tij (old) + δ * (Tmax - Tij (old))

where δ is a constant between 0 and 1.

It can be seen that as Tij (old) Tmax a smaller amount of
pheromone is reinforced along an edge (i , j). Although not
totally identical, pheromone smoothing also bears some
resemblance to evaporation. While evaporation adopts a
uniform discount rate for every path, pheromone smoothing
places a relatively greater reduction in the reinforcement of
pheromone concentration on the optimal path(s).
Consequently, pheromone smoothing seems to be more

effective in preventing the generation of dominant paths.

Implementation of Limiting and Smoothing Pheromone

tmax = 100

smoothing = 0.33

Private Sub updperval(path As String)

updted = 0

For i = 0 To ptop - 1

If ppath(i) = path Then

 updted = 1

 pstrength(i) = pstrength(i) + smoothing * (tmax -
pstrength(i))

End If

Next

If updted = 0 Then

 ppath(ptop) = path

 pstrength(ptop) = smoothing * (tmax)

List4.AddItem pstrength(ptop)

 ptop = ptop + 1

End If

2.4 Pheromone-Heuristic Control
To configure ants so that they do not solely rely on sensing
pheromone for their routing preferences, this can be

accomplished by configuring the probability function P ij for
an ant to choose an edge (i , j) using a combination of both
pheromone concentration Tij and heuristic function ηij. As
noted , an ant selects an edge probabilistically using T ij and ηij
as a functional composition for Pij. In network routing, ηij is a
function of the cost of edge (i , j).

α and β represent the respective adjustable weights of Tij and
ηij. Consequently, the routing preferences of ants can be

altered by selecting different values of α and β. If α > β ants
favor paths with higher pheromone concentrations, and a
higher value of β directs ants to paths with more optimistic
heuristic values. In general, different values of α and β are
suitable to be applied at different states of a network. A lower
value of α is generally preferred when pheromone
concentration along paths may not necessarily reflect their
optimality. Examples of such situations include the initial

stage after a network reboots, and when there are frequent and
abrupt changes in network status due to either link (or node)
failure or introduction of new paths (nodes). However, as a

network stabilizes, a higher value of α is preferred.
Furthermore, recent research demonstrated that dynamically
altering the values of α and β in response to changes in
network status may increase the performance of ants.

Implementation of Pheromone-Heuristic Control

For i = 0 To List2.ListCount - 1

 If Left$(List2.List (i), 13) = stringparse (b, "DEST=") Then

 commaparse1 (List2.List (i))

reddo1:

 l = Int (Rnd * iptop1 + 1)

 If l = 0 Then GoTo reddo1

 tosys = ips1 (l)

 End If

Next

i = Int (Rnd * iptop1)

i = i + 1

pher:

small = Len (ppath(0))

locn = 0

For i = 0 To ptop - 1

If Len (ppath (i)) < small Then

 small = Len (ppath(i))

 locn = i

End If

Next

pstrength (locn) = pstrength (locn) + 1

3. RESULTS
By running the algorithm, we get the following results

Between the magnitude of average velocity (|v|) and the
ordering factor (Δ) . Where V= ∑ vi /N

And vi is the velocity of ant number i and N is the total
number of ants. The ordering factor (Δ) can be measured by
dividing the number of ants matching the desired topology
over the total number of ants.

Table 1: relation between ordering factor (Δ) and

magnitude of average velocity (|v|)

ordering factor (Δ) magnitude of average velocity (|v|)

0.05 0.9

0.10 0.86

0.15 0.81

0.20 0.73

0.30 0.62

0.35 0.41

0.40 0.001

> 0.40 0

International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

5

4. DISCUSSION
Figure 6 shows the relation between ordering factor (Δ) and

magnitude of average velocity (|v|).

Figure 6: relation between ordering factor (Δ) and

magnitude of average velocity (|v|)

We recommend avoiding increasing the desired ordering
factor over 40% of the desired architecture, as the scheduler
will suddenly stop.

5. CONCLUSION
In this paper, we investigate image rendering by applying the
powerful computing technique called grid computing, and
showing how this technology has a great effectiveness and
high performance.

We also are developing a java drawing framework for

drawing in the distributed environment by dividing the work
upon nodes in grid computing and selecting the best nodes for
job assignments to have the jobs executed in the least amount
of time.

Schedulers are limited in individual capability, but when
deployed in large numbers can represent a strong force similar
to a colony of ants or swarm of bees.

We present a mechanism for load balancing based on swarm

intelligence such as Ant colony optimization and Particle
swarm Optimization

REFERENCES
 [1] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke,

J. Volmer, V. Welch, 2000, A National-Scale

Authentication Infrastructure, IEEE Computer

 [2] B. M. Chapman, B. Sundaram, K. Thyagaraja, EZGrid
system: A Resource broker for Grids,
http://www.cs.uh.edu/~ezgrid

[3] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman,
2001, Grid Information Services for Distributed
Resource Sharing.

 [4] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S.
Martin, W. Smith, S. Tuecke, 1998, A Resource

Management Architecture for Metacomputing Systems,
Proc. IPPS/SPDP '98 Workshop on Job Scheduling
Strategies for Parallel Processing

 [5] I. Foster and C. Kesselman, 1997, Globus: A
metacomputing infrastructure toolkit," International
Journal of Supercomputer Applications, Summer

 [6] I. Foster and C. Kesselman, 1999, The GRID: Blueprint
for a new Computing Infrastructure, Morgan Kauffman
Publishers.

 [7] Browne, J.C.; 2004, Grid computing as applied
distributed computation: a graduate seminar on Internet

and Grid computing, Cluster Computing and the Grid,
2004. CCGrid 2004. IEEE International Symposium .

 [8] Darema, F.; 2005, Grid computing and beyond: the
context of dynamic data driven applications systems,
Proceedings of the IEEE, Volume 93, Issue 3, pp 692 -
697

[9] Wang, L.; Kunze, M.; 2006, On the Design of Virtual
Environment Based Workflow System for Grid

Computing, Grid and Cooperative Computing
Workshops, 2006. GCCW '06. Fifth International
Conference, pp 212 - 218

[10] Ali, A.; McClatchey, R.; Anjum, A.; Habib, I.; Soomro,
K.; Asif, M.; Adil, A.; Mohsin, A.; 2006, From Grid
Middleware to a Grid Operating System, Grid and
Cooperative Computing, 2006. GCC 2006. Fifth
International Conference, pp. 9 - 16

 [11] Frank Klawonn, 2008 , Introduction to Computer
Graphics: Using Java 2D and 3D (Undergraduate Topics
in Computer Science), Springer Publishing Company

 [12] Levoy M., 2002, The digital michelangelo project: 3d
scanning of large statues, Dept. Computer Science,
University of Standford.

 [13] Hogg D., 1999, The resolv project, Dept. Computer
Studies, University of Leeds., eu-project.

 [14] Fisher R.B. 2001, Div. Informatics, University of
Edinburgh. The camera project (cad modelling of built
environments from range analysis), eu tmr-project. .

 [15] U. Castellani, S. Livatino, and R.B. Fisher., 2002,
Improving environment modelling by edge occlusion
surface completion. In 1st International Symposium on
3D Data Processing Visualization and Transmission
(3DPVT), Padova, Italy.

 [16] U. Castellani and S. Livatino., 2001, Scene

reconstruction: Occlusion understanding and recovery.
In Robert B. Fisher, editor, CVonline: The Evolving,
Distributed, Non-Proprietary, On-Line Compendium of
Computer Vision. School of Informatics, University of
Edinburgh.

 [17] F. Stulp. , 2001, Completion of Occluded Surfaces. ,
PhD thesis, Rijksun Universiteit, Groningen, Holland.

 [18] J. Davis, S.M. Marschner, M. Garr, and M. Levoy. ,

2002, Filling holes in complex surfaces using volumetric
diffusion. In 1st International Symposium on 3D Data
Processing Visualization and Transmission (3DPVT),
Padova, Italy.

 [19] T. Kanade, P. Narayanan, and P. Rander. , 1995,
Virtualized reality: Concepts and early results. In IEEE
Workshop on Representation of Visual Scenes, pp 69-76.

 [20] H. Fuchs, G. Bishop, K. Arthur, L. McMillan, R. Bajcsy,

S. Lee, H. Farid, and T. Kanade., 1994, Virtual space
teleconferencing using a sea of cameras. In First
International Symposium on Medical Robotics and
Computer Assisted Surgery, pages 161-167.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.9, June 2012

6

 [21] B. Tseng and D. Anastassiou, 1994. Compatible video
coding of stereoscopic sequences using mpeg-2's
scalability and interlaced structure. In International
Workshop on HDTV'94, Torino, Italy.

 [22] Singhal M., Shivaratri N., 1994, Advanced Concepts In

Operating Systems, McGraw Hill

 [23] Tanenbaum, A., 1995, Distributed Operating Systems,
Prentice Hall

[24] Yang X. S., 2008, Nature-Inspired Metaheuristic
Algorithms. Frome: Luniver Press

 [25] Karaboga, Dervis, 2010, Artificial bee colony algorithm
Scholarpedia, , volume 5. Pages 6915

 [26] Driving Lessons from Leafcutter Ants at

http://www.autoevolution.com/news/driving-lessons-
from-leafcutter-ants-3950.html

[27]Spirograph
http://www.wordsmith.org/~anu/java/spirograph.html

 [28]
http://www.theserverside.com/news/thread.tss?thread_id
=48681

[29] Vladimir G. Ivancevic,Tijana T. Ivancevic2007 ,‏,

Computational mind: a complex dynamics perspective,
page 251

 [30] Parsopoulos, K. E.; Vrahatis, M. N. , 2002, Recent
Approaches to Global Optimization Problems Through
Particle Swarm Optimization. Natural Computing,
volume 1, pages 235–306.

[31] A. Colorni, M. Dorigo, V. Maniezzo, M. Trubian, 1994,
Ant system for job-shop scheduling, Belgian Journal of
Operations Research, volume 34, pp.39–53.

 [32] P.R. McMullen, 2001, An ant colony optimization
approach to addressing a JIT sequencing problem with
multiple objectives, Artificial Intelligence, in
Engineering, vol. 15, pp. 309–317.

 [33] V. T’kindt, N. Monmarche, F. Tercinet, D. Laugt, 2002,

An ant colony optimization algorithm to solve a 2-
machine bicriteria flowshop scheduling problem,
European Journal of Operational Research, volume 142 ,
pp 250–257.

 [34] M. Gravel, W.L. Price, C. Gagne, 2002, Scheduling
continuous casting of aluminum using a multiple
objective ant colony optimization metaheuristic,
European Journal of Operational Research, volume 143,

pp 218–229.

 [35] K.-C. Ying, C.-J. Liao, 2004, An ant colony system for
permutation flow-shop sequencing, Computers and
Operations Research, volume 31, pp 791–801.

 [36] T. Stützle, 1998, An ant approach to the flow shop
problem, in: Proceedings of the 6th European Congress
on Intelligent Techniques & Soft Computing, EUFIT’98,

Aachen, Germany, pp. 1560–1564.

 [37] S.J. Shyu, B.M.T. Lin, P.Y. Lin, 2004, Application of
ant colony optimization for no-wait flowshop scheduling
problem to minimize the total completion time,
Computers and Industrial Engineering, volume 47, pp
181–193.

 [38] C. Blum, 2005, Beam-AC: Hybridizing ant colony
optimization with beam search: An application to open

shop scheduling, Computers and Operations Research,
volume 32, pp 1565–1591.

