
International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

1

An Agent-Oriented Information System: A Model Driven

Approach

Abdelaziz EL Fazziki
Computer System engineering

laboratory
Cadi Ayyad University,

Morroco

Sana Nouzri
Computer System engineering

laboratory
Cadi Ayyad University,

Morroco

Mohamed Sadgal
Computer System engineering

laboratory
Cadi Ayyad University,

Morroco

ABSTRACT

To face the challenges of rapid enterprises environment
change, enterprises need agile information systems that are
flexible, reactive and adaptive. The process of mapping
business requirements to the system functionalities involves
several constraints that make the whole development process
again very susceptible to errors. In this paper, we present a

model-driven approach combined with software agent to
develop an agile information system. In this work, we focus
on the development of multi-agent systems (MAS) and a set
of model transformation rules. Different ways of transforming
a model into another exist. The choice of a target model
differs according to quality criteria and is determined on the
basis of specific requirements. The development process
proposed is based separate aspects of systems, a BPMN meta-

model, AML agent meta-model and a JADEX meta-model
and the automated transformation rules with ATL language.
The approach leading elements are: the meta-modeling, and
mapping rules. Finally, we illustrate our proposals with a case
study.

General Terms

Information system development, Model Driven Architecture,
multiagent systems, business process modeling

Keywords

Multi-agent systems, business process, model driven

architecture, BPMN language, transformation rules, AML
language, JADEX platform.

1. INTRODUCTION
Improving of information systems engineering needs to
integrate the organizational constraints and the constraints of
flexibility and adaptability of systems.

The concept of business process has a major role in
controlling the evolution of information systems and
associated computer systems. Indeed, due to the diversity and
evolution of information technology, the agility of the systems
depends on the coherence between enterprise strategy,
business process management and information systems [1]
[2]. Therefore information system modelling requires an agile
methodology for the enterprise domains structuring into a set

of business processes. Generally a business process is a
procedure which has an important role for the economic
added value of an enterprise. More precisely a business
process is a set of activities that are specific for the enterprise.
The activities are target oriented and have a logical and
temporal context. A better understanding of processes can be

accomplished if they are represented by appropriate models.
A model also contains further processes characteristics,

involved actors, events, and documentations.

As almost organizations are reinventing themselves to meet
the challenges of global competition and e-business, there is
growing demands to develop and deploy new technologies
that are adaptive, robust and reactive to rapid and unexpected
change.

Agent Oriented methodologies [3] are emerging as a powerful
new approach in software engineering. Concepts and

techniques from the agent paradigm could well be the basis
for the next generation of typical information systems. Agent
concepts hold a great promise for responding to the new
realities of new information systems generation. They offer
higher abstractions level and mechanisms that address issues
such as knowledge representation and reasoning,
communication, coordination, collaboration among
heterogeneous and autonomous parties, perception,

commitments, goals, beliefs, intentions etc.

In model-driven architecture (MDA) [4] [5], IS developers
must face the challenge of building IS solutions that are
aligned with business processes in order to satisfy business
requirements. To this endeavor, they must understand those
business processes, which require extensive collaboration
with domain experts and analysts. Because business processes
are typically expressed using dedicated modeling notation

language (BPMN) [6]. Thus, IS developers are required to
master these particularities. In order to support these
requirements in performing the business information system
alignment, we define a mapping from domain model to
BPMN models and from BPMN models to agent models and
from agent models to a specific platform model. This
approach allows the re-expressing business processes in a
language that is closer to the IS developers.

The objective of this chapter is to describe an agent oriented

Model-Driven approach. This approach is therefore put
forward and based on a set of business models under
continuous maintenance of business actors to reveal the
current business needs, models being associated with adaptive
agents that interpret the captured requirements to behave
dynamically, always fulfilling current requirements.
Consequently, the maintenance of the models is the
maintenance of the actual software system. This provides a

means of model-based adaptation rather than code-based
adaptation.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

2

In this paper, we define a mapping from domain model to
BPMN model, from BPMN model to Agent model (AML)
and from agent model to a specific platform model (JADEX).

The reminder of this paper is organized as follows: Section 2
presents the MDA concepts; section 3 describes an overview

of the BPMN language. The subject of the section 4 is the
development environment description. Section5 presents the
description of the proposed approach. Section presents the
proposed approach. Sections 6 and 7 define the main mapping
rules. Section 8 describes the implementation of the
transformation rules. Section 9 illustrates the proposed
approach with a case study. Section10 presents an
argumentation of the proposed approach. Finally, the section 8

concludes and presents the perspectives of this paper.

2. THE MODEL-DRIVEN

ARCHITECTURE
Model Driven Architecture (MDA) [4], is software
development approach, proposed and supported by the OMG.
This is a particular variant of the model driven engineering
(MDE). Its principle is to describe firstly the functionality of a
system in a set of platform independent models (PIM:
Platform Independent Models). Secondly to take into account
implementation details of these features in a specific platform

(PSM: platform specific Model).

According to the MDA approach, the process of software
development is driven by hierarchical models in four levels
according to a set of meta-models. The key feature of the
MDA is the concept of model mapping [4]. A model
transformation is a set of transformation rules and techniques
of exploitation on a source model to attain a target model. In
general, the transformation rules concern the mapping from a

source model to a target model.

OMG defines three kinds of models that are at different
abstraction levels. According to OMG, there are three types of
model: the CIM (Computational Independent Model), the PIM
(Platform Independent Model) and PSM (Platform Specific
Model).

3. BUSINESS PROCESS MODELLING

AND NOTATION

3.1. Description
The BPMN (Business Process Modelling Notation) [6] is a
graphical notation for modeling business processes.
Developed by the OMG (Object Management Group) its main
purpose is to provide a unique notation and understandable by
all stakeholders of the organization, and facilitates interactions
between analysts, designers, and business developers to the
technical managers who will implement and automate these

processes.

The BPMN can be used to model the whole process or part of
the process. Processes can be modeled at different fidelity
levels. It is also suitable for internal business processes and
for the public ones (in collaboration) [6]. Internal business
processes are focused on one enterprise, and define the
activities of its own activities and can define the interactions
with external partners. Collaborative Public processes show

the interactions between all organizations involved. These
process models must be described from a general point of
view, and should show the interactions between the various
participants.

3.2. BPMN Meta-model
BPMN is a standard for business processes modeling; it

provides a graphical notation for specifying processes in a
business process diagram (BPD) [6] based on a flowcharting
technique very similar to the UML activity diagram (UML)
[6].

A process is divided into one or more (pools) corresponding
to the participants. A pool can be divided into several lanes,
representing the involved actors and organizational roles.
Each lane contains a part of the process in the form of atomic

or composite activities associated with actor in the same
control domain and are connected by Sequence Flows and
Message Flows. Sequence Flows describes the sequence in
which activities must be completed while Message Flows
describes the message exchange between pools. . The figure 1
presents the BPMN meta-model.

Figure 1. AML definition levels

4. THE DEDEVELOPMENT

ENVIRONMENT
The environment development is composed with AML
language modeling and Jadex platform.

4.1 AML language
The Agent Modeling Language (AML) [7] is a semi-formal
language for modeling. It is an agent-specific extension to the
generally used UML 2.0. It is designed to support business
modeling, requirements specification analysis, and design of

software systems based on software agent concepts and
principles. The primary application context of AML is in
systems explicitly designed to use agent concepts. However, it
could also be applied to other domains such as business
systems, social systems, robotics etc. In this section we will
give an overview of AML packages and its elements as
presented in figures below.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

3

Figure 2. The structure of mental package

Mental States package defines fundamental meta-classes, that
are used to specify meta-classes in other sub-packages.

Beliefs, Goals, Plans sub-packages as their name denotes,
define elements for capturing corresponding terms, as it can
be seen in the agent structure. The Mental Relationship sub-
package defines relations between mental elements to support
reasoning processes.

Figure 3. The structure of architecture package

The Architecture package defines the meta-classes used to
model architectural aspects of multi-agent systems. These

aspects are captured in more sub-packages like Agents,
resources, environments, etc.

Figure 4. The structure of behaviours package

The Behaviors package defines the AML meta-classes used to
model behavioral aspects, as behavior decomposition,
mobility, and communicative interactions.

4.2 JADEX platform
Jadex is an Agent oriented reasoning engine based on BDI
architecture. It can be used with different kinds of agent
middleware that provides basic agent services, such as
communication infrastructure or management facilities.
Rational agents in Jadex have an explicit representation of
their environment and objectives that they are trying to

achieve. In this case rationality means that agent always
performs the most promising step to achieve its objectives. In
Jadex belief, goals and plans are first class objects that can be
accessed inside an Agent [8]. The Development of agents
consists of creating two types of files: plan implementations
in Java programming language, and an XML file called the
Agent Definition File (ADF) [8].

Figure 5. The structure of Agent Definition Files

5. MODELLING APPROACH
The main objective of this work is to propose a hybrid
approach for information system development. This approach
must take into account the agent technology concepts, the
meta-modeling concepts, the principle of model driven
architectures (MDA: Model Driven Architecture) and the

dynamics of business processes. The aim of relying on such
architecture is to separate the different system views and have
a consistency with the proposed multi-faceted view. It is
specifically based on the principle of the MDA to express how
to transform, or match the concepts of the various models in
order to have a global representation of the system. The MDA
paradigm also covers the different phases of the development
cycle by using transformation rules between the different
modeling levels. The modeling approach proposed is based on

the following steps:

 Definition of the modeling framework formed by

the meta-models and transformation rules;

 Using the modeling framework by creating models
based on meta-models defined and applying

transformation rules between these models;

This approach allows the integration of various aspects of a
multi-agent system and facilitates the modeling work through
its process. It recommends following the order of meta-
models using all their hierarchy starting with the domain
modeling until the specific platform modeling.

5.1. An overview of the approach
The main objective of this approach is to allow the developer
to create a framework that is specific to its application. This
framework will contain:

 Domain modeling technique;

 BPMN modeling technique;

 Multi-agent classification technique;

 Multi-agent structuring technique;

 Transformation rules from the CIM models until a
specific platform model;

Architecture Package

Agent Type EntityRoleType

Behaviors Package

CommunicationMessagePayload

Mental package

Beliefs Goals Plans Mental Relationship

Beliefs

Plans Agent

Imports

Capabilities

Goals

Events

Expressions

Properties

Configurations

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

4

5.2. The development process
The phases of the modeling approach to define business
processes oriented agent are presented in the figure below.
There are five phases, the first three define the different
models of the system (phase modeling), while the last two
(verification and optimization) to verify and optimize these

models. The development process is an iterative process
allowing incremental development and provides the rollback
possibility to a previous phase due to the use of the MDA.
This development framework is based on the following
criteria:

 Concepts and specific properties of the domain,

 Concepts and specific properties of MAS;

 The transformation rules between domain concepts and

agent concepts;

 Concepts and properties which are based on the specific

platform;

 The transformation rules between the domain concepts, the

business process concepts, and agent concepts to the target
platform concepts. Figure 4 shows the different phases of
the process.

Figure 6. Development approach

In our approach, we propose several meta-models. We start by
the analysis meta-model described by use cases and the BEC

class diagram [7], the business meta-model based on the
BPMN concepts to graphically represent business processes,
the agent meta- model based on the AML [6] concepts and
finally the JADEX meta-model JADEX [9] concepts.

5.3. The domain analysis.
Before starting the BPMN modeling, firstly, it is necessary to
define the requirements for the review of each domain. To do
this, we must:

 Identify enterprise domains,

 Identify the actors of each domain,

 Identify the functions associated with each actor,

 Define the corresponding use cases of each domain,

 Structure the domain use cases to define the corresponding

business process.

 Associate to each process a multi-agent system.

Figure 7 defines the interpretation of the use cases by a
classification of classes as follows:

Figure 7. Relationship between use cases and analysis

classes

5.4. Business Process Agent Modeling
We chose to represent a BP by a MAS, where the concept of
actor is represented by an agent (on the basis of autonomy),
the activities are modeled only in terms of goals and plans and
are under the responsibility of an agent whose internal
behavior is transparent. If multiple agents are in charge of an
activity, protocols like social convention represent a standard

framework of their collaboration. The BP agent modeling
offers an agent classification into two categories: Intelligent
Agents and reactive gents. The proposed approach is
performed in two steps:

The first one, concerns the collect of requirements and domain
analysis performed using UML2 which consists of defining
the functional requirements, nonfunctional requirements and
identifying the main artifacts that will constitute the solution.

On these artifacts, it is a first estimate of the classes that
realize the system. They are divided into three categories:
class interface (or Boundary), the Controller classes and
Entity classes (BEC Class Diagram). Every application must
be made by the collaboration of these three kinds of classes.

 Interface classes: they represent the interface between an

actor and the invoked use cases and the system.

 The control classes: They represent the process activities,

that is means the management of interactions identified
during the formulation of the requirements collect and
analysis. These classes perform activities between
interface classes and business classes.

 The business (entity) classes: These are the classes

described in use cases that represent the data manipulated
in the process. Often these classes correspond to persistent
information: they are stored on permanent media such as

databases.
After the formalization of requirements, all use cases, their
relationships, involved actors, scenarios of each use case,
interaction diagrams and the class diagram BEC (Boundary,
Entity, Control) are developed.

The second step is the analysis stage, it consists of defining
the activities, sequences, control flow and complete the class
diagram BEC. This will be done using the modeling language

BPMN.

For the multi-agent model development, it will be done in two
stages. The first one by using a mapping of class diagram
BEC and interaction diagram to the agent concepts. The
second one will be done by using a second mapping from
BPMN description of the concepts of agent’s behaviors. The
figure below illustrates this approach.

CIMM

Analysis MM BPMN MM

PIMM
AML MM

PSMM
JADEX MM

Meta-model Transformation

s

Use

case
DB

Interaction Use

Interface

Class

Control

Class

Entity

class

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

5

6. MAPPING BPMN TO AML
Generally the business process modeling defines a system

global view. It can be used as a basis for the development of
agents' behavior. This, by identifying for each agent: its plans,
goals, interactions, statements and resources.

Normally, the derivation of the agents’ behavior from a BPN
diagram is highly dependent on the type of agents and how
their behaviors are implemented in a specific platform. This
derivation is essentially deduced from a set of rules based on
the concepts of the agent meta- model and BPMN meta-

model. It can be performed automatically or manually.
Generally there are two types of pools: simple and structured
(composed with lanes). Each agent behavior is derived from a
simple pool or from a lane of a structured pool. These
behaviors cover all the agent activities. In addition, use cases,
interaction diagrams and BEC diagrams are used to identify
agents with their types and their interactions. The mapping
that we adopt is specified by a set of transformation rules,

ensuring the gap from BPMN concepts to agent concepts.
These rules are not exhaustive and are not detailed. This
mapping is realized in two phases:

 The first use a mapping from the BEC class diagram

and interactions diagram to the agent concepts. This
mapping allows defining the system different agents.
Figure 8 illustrates the different mapping levels.

Figure 8. Different level of mapping

 The second use a second mapping from the BPMN
description to the agent behaviors. The main

transformation rules are presented in the following table:

Table 1.Mapping from BPMN concepts to AML

concepts

BPMN concepts

AML concepts

Process SMA

Pool Group of agentType

Lane AgentType

Sub process Plan

Task Action (Extention)

Intermediate event CommunicationMessagePayload

End event DecidableGoal

Data object belief

 The third step, define the interactions among the different

agents. These interactions are deduced from the sequence

diagram, collaborative diagram and inter-pool
communications.

7. MAPPING FROM AML TO JADEX
In this section we define the transformation rules between the
AML packages elements and JADEX elements defined in the
ADF file.

Table 2: Mapping from BPMN to AML

AML Concepts JADEX Concepts

AgentType Name of the ADF file

Belief of AgentType Belief

DecidableGoal of AgentTypeAchievegoal

Plan of AgentType Plan

CommunicationMessagePayloadAction (stereotype) of AgentType

StartEventMessage MessageEvent

First plan of AgentType InitialPlan sub-element of the configuration

Action of AgentType Function implemented in the plan Java class

8. IMPLEMENTING

TRANSFORMATION RULES
The specifications of transformation rules differ from one
approach to another. Three approaches exist:

Approach by Programming: Consists in using object-
oriented programming languages.

Approach by template: Consists in defining template of the
desired target models.

Approach by Modeling: Consists in applying the MDA
principles.

In this work we adopt the approach by modeling. The
transformation rules are processed by the use of the Atlas
Transformation Language (ATL) [10].

Before proceeding to the implementation of transformation
rules, we must first, get an exploitable file of the BPMN
model. To do this, we use the Intalio Designer [11] which

allows generating an XML definition from the BPMN
diagram.

To transform a BPMN diagram into an AML model, and an
AML model into JADEX model, we have to insert this last
one into the BPMN Meta-model, to allow it to become an
instance of the MOF or ECORE based BPMN Meta-model
[20]. This mapping includes several phases as follows:

8.1 BPMN injector
The BPMN injector is used to insert a BPMN notation into
BPMN Meta-model, which produces an XMI or ECORE
representation conforming to the BPMN Meta-model. This
phase includes three steps: XML generator step, XML injector
step and ATL transformation XML2BPMN step. Figure 9

describes this mapping.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

6

Figure 9. Mapping between BPMN notation model to

BPMN model based Meta-model

8.2. ATL transformation BPMN2AML

The figure 10 illustrates the different steps of the mapping:

Figure 10. BPMN model to JADEX model

9. A CASE STUDY
In order to validate our work, we propose the modeling of the
following case study: management of credit request, this
example describes collaboration between a commercial, a
financial analyst and a service contract to accept or reject the
client request.

9.1. The use case diagram

Figure 11. Use case diagram of credit demand

9.2. The BEC class diagram
From the BEC diagram, we deduce three kinds of classes
(interface class, control class and entity class) that will allow
us eventually to identify the three types of agent (interface
agent, control agent and entity agent). Figure 12 presents the
BEC diagram and the interaction between its different classes.

Figure 12. The BEC class diagram of credit demand

9.3. The BPMN model
By using the BPMN language, we will describe the activities,
events, actors, and messages communicated between actors
for the credit request management process. Figure 13

illustrates this.

Figure 13. The BPMN model of credit request

9.4. The AML model
According to the BEC diagram, we can extract the different
agents that would compose the system and their interactions.

9.4.1. The system agentification

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

7

According to the transformation rules:

Each boundary class becomes an interface agent;
Each control class becomes a controller agent;
Each entity class becomes a business agent.

From The BEC class diagram (figure 14), we obtain the
system agents.

Figure 14. Agent in interaction

9.4.2. The agent structuring

In this section we just describe the Analyst agent structuring.

Figure 15 illustrates this.

Figure 15. AML diagram of Analyst agent

9.4.3. The agent collaborative diagram

We complete the AML diagram by the collaboration diagram
to describe the messages communicated between agents as

shown in figure 16.

Figure 16. Figure Communicative sequence diagram

9.4.4. The specific platform (JADEX) model

The figure17 shows an overview of the results generated after

applying the ATL transformation of the file
AML2JADEX.atl, generating an xml file witch describes the
concepts of the financial analyst agent according to the
JADEX logic. This file is opened in the UML editor of
Eclipse [8].

Figure 17. ADF file of financial analyst agent

10. THE APPROACH

ARGUMENTATION
 Why the approach is based on use cases, BEC diagrams,

BPMN language, MDA and agents technology?

While use cases are considered more appropriate for modeling
capabilities of information systems that will be used to control
human activity and process modeling. The principle of

communication and tasks within a process can be developed

International Journal of Computer Applications (0975 – 888)

Volume 47– No.4, June 2012

8

through a process modeling structure that does not take into
account these aspects of communication and collaboration
between stakeholders. This would then leave open the
possibility of using a process-driven UML use cases to
develop software support that will enable business process

management and improvements, but this would require some
relationship between process modeling and identification of
needs in defining the functionality of a system. The approach
taken here is to group the use cases corresponding to each
actor to allow a relationship between the structures of a
BPMN diagram and use cases diagram.

There is almost unanimous that Agent technology facilitates
the development of complex, distributed and adaptive

systems; however a number of major problems remain. One
problem is that the developer has only a partial view of the
system and the organization and not the whole context.

Currently, the Business Process Modeling Notation (BPMN)
is considered as a response to this situation, and then it is
suitable for modeling some aspects of multiagent systems. It
is well with the modeling of agents' behavior and interactions
especially at a high level of abstraction; the BPMN is still too

rigid to model every detail of a process and for modeling the
dynamic behavior. Therefore, we consider that the BPMN
must be integrated into an agent-oriented development
approach in order to exploit its strengths and overcome
weaknesses. In this work, we have considered only the
positive aspects of the BPMN, in particular the modeling of
agents' behavior and their interactions [12].

The model driven architectures are based on model

transformations to define reusable specific platform models.
However, business needs change and cannot be fully and
explicitly represented in such models for direct transformation
into models of implementation. Thus, the use of agent-
oriented MDA approach that uses a set of business process
models that are constantly evolving, reflecting the current
needs of the enterprise and are associated with adaptive agents
that interpret the knowledge captured dynamically [13]. The
main contributions of this approach may be:

 At the development level of agent-oriented information
systems: a methodology for agile information systems
development; 

 At level of model driven architectures: a tool for modeling
business processes of a high level of abstraction in order
to align the systems implemented with their dynamic
requirements;

 At level of distributed systems, interoperability of

disparate components and services [13].
This approach respects the key property to achieving the
agility of a system that has always been the clear separation of
the different aspects of a system: The interfaces allow systems
to communicate with users and with other systems, business
rules supporting business processes and data management.

11. CONCLUSION
This paper provides the first steps towards a mapping from
BPMN models to AML diagram. It presents an original
attempt to associate the agent oriented paradigm, MDA,
BPMN language and a part of UML language. The proposed
methodology can make the development of complex systems
better aligned with changing business needs easier and less

costly. In this paper, we presented a definition of agent
oriented approach which can be considered as a set of
components which product a respond to development
challenges that must solve the requirements of information
systems development

Our main objective is the code generation from a JADEX
platform model [9]. To this end, it seems to be necessary after
defining a set of the principal transformation rules for the
mapping between BPMN, AML language and JAdex
platform, to solve enough problems, to get an adequate result.

First of all, it is necessary to explore for the workflow and
data object. Therefore we will also identify any further
requirements that are needed on the agent technology in order
to capture the desired functionality and behaviors.

12. ACKNOWLEDGMENTS
The authors wish to acknowledge the contributions of other
members of the engineering laboratory of computer systems
for their helpful discussions and the availability of all
resources that have helped make this work in the best
conditions. They would also like to thank the anonymous
reviewers for their remarks and suggestions.

13. REFERENCES
[1] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia,

John Mylopoulos, and Anna Perini. Troops: An agent-
oriented software development methodology. Technical
Report DIT-02-0015, University of Trento, Department
of Information and Communication Technology, 2002.

[2] Miller, J. & Mukerji, J. (2003). MDA Guide Version
1.0.1, OMG, Retrieved from <http://www.omg.org/cgi-
bin/doc?omg/03-06-01>

[3] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia,
John Mylopoulos, and Anna Perini. Troops: An agent-
oriented software development methodology. Technical
Report DIT-02-0015, University of Trento, Department
of Information and Communication Technology, 2002.

[4] Miller, J. & Mukerji, J. (2003). MDA Guide Version
1.0.1, OMG, Retrieved from <http://www.omg.org/cgi-
bin/doc?omg/03-06-01>

[5] Selma AZAIEZ thèse d’université de Savoie, Approche
dirigée par les modèles pour le développement de
systèmes multi-agents, 2008 ;

[6] Muehlen, M., Indulska, M. (2010), "Modeling languages
processes and business rules: A representational
analysis", Journal of Information Systems, 35, 379–390.

[7] Paper by Whitestein Technologies. Agent Modeling
Language, language Specification Version 0.9(2004-12-
20).

[8] Eclipse Foundation, Eclipse - an open development
platform, www.eclipse.org.

[9] Michele Piunti, Alma Mater Studiorum,2008,
“Programming BDI agents in Jadex”, Università di
Bologna – DEIS

[10] K, Ravi and Sapkota, Brahmananda, "WSCDL to
WSBPEL: A Case Study of ATL-based Transformation".
In: 3rd International Workshop on Model Transformation
with ATL, MtATL-2011, 1 July 2011, Zürich,
Switzerland.

[11] Intalio designer www.intalio.com

[12] A. BRANDO, V. SILVA, and C. LUCENA. A model
driven approach to develop multi-agent systems.
Technical report, Departmento de Informtica - Pontifcia
Universidade Catlica do Rio de Janeiro - PUC-Rio, 2005.

[13] A. El Fazziki, S. Nouzri, M Najib and M. Sadgal, "Une
approche agents pour la modélisation des Processus
Métiers", in 6ème Conférence francophone sur les
architectures logicielles, May 30-31 2012, Montpelier
France.

