
International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

45

A Dynamic Hybrid Cache Coherency Protocol for
Shared-Memory MPSoC Architectures

H. Chtioui
CES laboratory

University of Sfax,
Tunisia

S. Niar
Lamih,

University of
Valenciennes,

France

R. Ben-
Atitallah

University
Lille Nord de

France

M.Zahran
ECE Department,

Polytechnic
Institute, New

York University,
USA

JL. Dekeyser
INRIA LILLE-

Europe, France

M. Abid
CES laboratory

University of Sfax,
Tunisia

ABSTRACT

Nowadays, Multi-Processor System-on-Chip (MPSoC) have

become an essential solution for embedded applications. In

this paper we focus on MPSoCs using shared-memory

programming model, which facilitates the programmer task.

Moreover, one of the main factors affecting the performance

of such systems is the management of cache coherency

problem. In this context, we propose a new cache-coherency

protocol. The proposed protocol is able to dynamically adapt

its functioning mode according to variations in application

memory access patterns. Experimental results show that with

four cores, the new protocol reduces the number of cache

misses by 77%, which results in 20% reduction in execution

time and 34% decrease in the total energy consumption.

General Terms

Multi-Processor System-on-Chip (MPSoC), Shared-memory,

cache coherence.

Keywords

Shared-memory, MPSoC, cache coherence, performance

evaluation, energy consumption.

1. INTRODUCTION
Embedded and mobile applications are becoming more and

more complex. These applications require powerful and

flexible architectures with short time-to-market. The use of

Multi-Processor System-on-Chip (MPSoC) architectures is

the best solution for this compromise. This approach allows

reaching high performances while limiting power and energy

consumption. Nevertheless to be attractive, MPSoC utilization

must be achieved through simple and user-friendly parallel

programming models. For this reason, in this paper, we have

chosen the shared memory programming model. This model

simplifies porting an application from single-core to multicore

platform.

The main goal of this paper is to propose a high-performance

NoC-based-MPSoC that is scalable in terms of performance

and power (NoC for Network-on-Chip). NoC utilization in a

cache-based shared memory MPSoC architecture is affected

by the cache-coherence protocol. When a processor modifies a

cached data element that is also located in different caches, an

action must be taken to prevent using non-up-dated data

copies. In the literature, a significant amount of work has been

proposed. Most of these protocols are variants of either the

invalidation protocol or the update protocol. In the

invalidation protocol, when a processor needs to modify a

cache block, copies of that block at other caches must be

invalidated. In the update protocol, the update is sent to all

replicate blocks in other caches. These two protocols are

mostly dedicated to high performance general purpose multi-

processor architectures and thus do not take specific resources

and energy constraints that exist in embedded systems into

account. Adding that they assume that the concurrent tasks

include identical and static access patterns to the shared data

and identical communications patterns. As embedded systems

are becoming more and more pervasive and widely used,

different applications can be loaded and executed. These

applications can exhibit different memory access and inter-

task communication patterns. It is therefore more efficient to

use protocols that are able to adapt to the application

behaviors and their evolutions at run-time. The main objective

of this paper is to improve the performance and the energy

consumption of shared memory NoC-based MPSoC. This

improvement is obtained through the utilization of an efficient

dynamic hybrid update/invalidate cache coherence protocol.

The proposed protocol is able to capture changes of the data

access patterns at run-time and to adapt to enhance

performance and reduce power consumption.

The rest of the paper is organized as follows: In the second

section, we summarize the main existing works in the design

of dynamic hybrid cache coherence protocol. In the third

section, we present a detailed description of the proposed

hybrid protocol. Finally, section four presents experimental

results.

2. BACKGROUND AND PREVIOUS

WORK
Existing hybrid protocols for coherency management in multi-

processor architectures [1] [2], can be classified into two

families:

2.1 On-line hybrid protocol
In on-line hybrid protocols the selection between invalidation

and update protocols is done dynamically. The write-once

protocol [3] is an example of this group. In this protocol, the

first write to the cache block results in an update to the main

memory and invalidations of the block in the other caches.

The next write by the same processor to the same block

results in a modification of the block only in the local cache

and the memory is no longer updated. The Archibald scheme

[4] extends the write-once protocol by allowing a greater

number of updates. The competitive scheme [5] is another

example of such protocols. With this scheme, a counter is

associated with each cache block is preset to a value called the

Competitive threshold. On an update transaction, the counter

in the writer's cache is decremented. Once, the counter

reaches zero the protocol switch to the invalidation mode. The

International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

46

competitive scheme is still suboptimal for shared migratory

data. Shared migratory data are characterized by exclusive

read and write access by each processor in turn, for this type

of shared data the invalidation protocol gives better results.

In a recent work, [1] propose an adaptive directory based

protocol that detects access pattern to shared migratory data.

Although there is a variety of adaptive hybrid protocols, these

protocols have some limitations. These solutions require in

general gathering an important quantity of information from

all the processors. Consequently, an important traffic

overhead in the interconnection network is generated.

2.2 Off-line hybrid protocol
In these protocols an off-line profiling of the application is

realized prior to application execution. The decision to use

update or invalidation mode is realized by taking into account

not only previous accesses to the block, but also information

from the source code during compilation. This option offers

the possibility to predict future data access patterns. In [2] a

combined hardware-software strategy is presented. It uses the

predictive capability of the compiler to select updating or

invalidating for each write reference to a block. The adaptive

sequential prefetching scheme proposed in [6] reduces the

number of read misses by fetching speculatively several

consecutive blocks into the cache in anticipation of future

misses. The number of prefetched blocks is adapted according

to the spatial locality level of the referenced block.

In [7] the authors aims at reducing the penalties associated

with memory accesses by extending a hardware prefetching

scheme. The idea here is to implement a memory system that

combines prefetching and competitive coherency protocol

while taking into account migratory sharing data.

The hybrid protocol that we present in this paper was

basically proposed in [8] where some preliminary simulation

results are presented. However, this paper presents a detailed

description of the proposed protocol and an extension of the

architecture from a centralized one-bank memory to a more

realistic multi-banked shared memory. A new experimental

results for different applications are presented. These

applications have been selected because they depict different

memory reference patterns.

3. DYNAMIC HYBRID CACHE

COHERENCE PROTOCOL

3.1 System Architecture
As the number of cores sharing the memory increases, the

pressure on that shared memory also increases. Increasing the

number of memory banks is a clever way to decrease the

access time. This is because each bank has less ports than the

alternative scheme of having few but multi-ported banks. For

this reason, in this paper we present a cache-coherency

protocol for multi-banked MPSoC architecture.

Our protocol is based on a full bit-vector directory [9]. We

also use the write-through technique where all write

operations in the cache are also applied simultaneously to the

corresponding block in the shared memory banks (figure 1).

This method is chosen because in the context of MPSoC the

write-back technique requires a relatively complex

mechanism to maintain coherency.

Fig 1: Architecture of our multi-banked shared memory MPSoC

International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

47

We use write-no-allocate technique when miss with a write

operation occurs. Since the shared memory is updated after

each write cache operation, we implement a directory within

the shared memory unit. A directory update operation is

triggered after each write operation. Consequently, this

mechanism simplifies coherency, since it does not require

dedicated communications to update the directory.

To update or invalidate shared blocks in different caches,

most of the existing architectures uses the shared memory

controller to send an update or invalidate packet to the

different caches through the NoC. However this solution

tremendously increases NoC traffic. Our solution is to use a

dedicated low-cost network for coherency handling. This

network has the form of a unidirectional bus, that transfers

update/invalidate packets from shared memory to the different

caches (figure 1). This architecture is simple and reduces the

overhead on the NoC.

Each entry of the directory represents the state of the

corresponding block in the different caches and can have four

different values (or states):

 E (Exclusive): The current value of the block is

valid only in this cache and in the shared memory.

 S (Shared) : The current value of the block is valid

in this cache, in other caches and in the shared

memory.

 I (Invalid): The block is not valid in the

corresponding cache. Either because it has not been

yet loaded or it has been loaded but it was replaced

by another block.

 O (invalidated by others): The block is not valid in

this cache because it has been invalidated by

another processor.

The states E, S, and I have the same meaning to states E, S

and I in the MSI and MESI protocols [11]. In this work, we

add the state called invalidated by others and noted "O" which

is a special case of the Invalid state. This state plays an

important role in the proposed hybrid protocol. It

distinguishes blocks that have not been yet loaded and blocks

that have been ejected in one side from blocks that have been

loaded but invalidated by another processor in the other side.

As explained in the following section, this state helps in

choosing the appropriate protocol for a given block at run-

time.

3.2 Hybrid protocol algorithm
The selection of the protocol is performed when a write

operation is triggered by a processor and captured by the

directory controller within the memory bank. To each

memory block in this bank a bit, called "P", is associated to

represent the protocol in use. If "P" bit is set to "INV" (0 in

the implementation) then the protocol is the invalidation

otherwise it is the update "U" (1 in the implementation)

(figure 2). Initially, the "P" is set to "INV". When a processor

executes a write operation of a memory block, if this memory

block is in "E" or "S" states for the other processors, then an

invalidation message will be sent to those processors. The

corresponding entries of the directory become in "O" state to

indicate that this block has been invalidated by another

processor. So, the protocol must be switched from

invalidation to update. The "P" bit goes from "INV" to "U".

To return to the invalidation protocol our algorithm must

detect unnecessary update operations for the considered block.

The new solution that we propose, estimates at run-time and

Fig 2: The algorithm of the proposed hybrid protocol

International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

48

for each memory block the suitable threshold value. Indeed,

this threshold increases and decreases according to data access

patterns. To determine dynamically the threshold value we

associate with each memory block two counters. The first one,

noted "UC" for Update Counter, represents the update

threshold value. "UC" is initially set to zero. The second

counter, noted "W" has 2 functions :

1. In the invalidation mode, "W" counts the number of

successive write operations. When a miss occurs for

a read operation of the corresponding block with

"O" state (i.e. the block is invalidate), "W" is tested

and two situations are possible (figure 2 left part):

 "W" is relatively small (less than ∆): In this case,

cache-read misses caused by the invalidation

protocol are very close to each other. To avoid

memory latencies, the memory block must to be

updated and the protocol must switch from

invalidation to update ("P" is set to "U"). The

counter "UC" is incremented to indicate that during

the corresponding execution phase the update

protocol is the protocol to use. The counter "W" is

decremented after each update operation until it

reaches 0. At this moment, the protocol switches

from update to invalidation ("P" is set to "INV").

 "W" is relatively important (exceeds ∆): Cache-read

misses caused by invalidation operation are distant

from each other. Consequently, during this period of

execution, the invalidation protocol will give better

performances than the update protocol. The "P" bit

associated with the corresponding block is set to 1

and the "UC" counter is decremented. By this way,

the period in which the update protocol will be used

is reduced and consequently after a read miss the

system switch quickly to invalidation. When "UC"

reaches 0 then "P" is set to "INV".

2. In the update mode, the "W" register is used to

count the number of allowed write operation before

switching from update to invalidation. As

mentioned before, after a cache-read miss, the "P"

and "W" (resp.) are set to "U" and "W" (resp.). "W"

is decremented after each write operation (figure 2

right part). When "W" reaches 0, the protocol

switch from "U" to "INV".

Consequently, with the ESIO, the "UC" counter, that

represents the update threshold, varies according to the

number and distance in cycle read operations. This allows to

choose dynamically which protocol (either update or

invalidate) to use. In the rest of the paper, we set

experimentally (∆) at 1000. Figure 2 summarizes the proposed

hybrid coherency protocol.

4. EXPERIMENTAL RESULTS
In this section we evaluate the efficiency of our proposed

protocol. We performed the experiments using SoCLib

platform [10]. As mentioned in the previous sections,

coherency messages are taken in charge by an additional bus,

called here coherency protocol bus. The experimental results

that we present here have been obtained with the matrix

multiplication application (MM), the Fast Fourier Transform

(FFT) application and the JPEG. These results have been

obtained with 4 processors MPSoC architecture and 4

memory banks. The experimental results for the matrix

multiplication are shown in Figure 3. Figure 3(a) shows that

the proposed hybrid protocol reduces significantly the total

number of cache misses. Compared to the invalidation

protocol a reduction factor of 77 % for 32 KB D-cache size is

obtained. This cache-miss reduction gives a reduction in the

execution time by a factor of 20% (figure 3(b)). When

compared to the update protocol, we notice that the hybrid

protocol does not give any reduction in cache-misses or

execution time. Indeed, when using update protocol there is

no cache coherency misses. By consequence, the NoC traffic

is less significant. Adding to this, the unnecessary update

operations are done by the additional bus for the coherency.

Figure 3(c) presents the energy consumption for the 5 main

architectural components of our MPSoC : processors, caches,

NoC, additional bus for coherency and the shared multi-

banked memory. Concerning the additional bus, the energy is

greatly reduced with the hybrid protocol compared to the

update protocol. Since this protocol eliminates unnecessary

updates (the reduction is up to 70%). With the invalidation

protocol, the bus consumes less energy than with the two

other protocols since unnecessary updates operations are

avoided with this protocol. The caches energy consumption is

also reduced with the hybrid protocol compared to the update

protocol by a factor of 4% for 32 KB. This is due to

elimination of write operations of the unnecessary updates in

caches. This value may appear not being significant and the

reason is the presence of misses on store instructions when the

hybrid protocol is used. Compared to the invalidation

protocol, the reduction of energy consumption in the caches is

quite significant up to 39% for large d-caches. When the

cache size is important, data blocks stay for a longer time in

the cache so the risk to be invalidated is more important.

The NoC energy consumption is significant with the

invalidation protocol due to the traffic of cache coherency

misses. This value is reduced with the hybrid protocol. The

energy reduction is up to 60% for 32 KB D-cache. For the

NoC power consumption, the update protocol is the less

consuming since there cache coherency misses are eliminated.

For energy consumption at the memory-bank level, the energy

consumption is also reduced by the hybrid protocol compared

to the invalidation. This reduction varies from 4,5% for 4 KB

d-cache to 40% for 32 KB d-cache. Finally, the energy

consumption at the processor level is also reduced by the

proposed hybrid protocol compared to the invalidation up to

17% for 32KB d-cache. In summary, thanks to the hybrid

protocol the total energy consumption has been reduced by a

factor up to 34% for a 32 KB d-cache when compared to the

invalidation protocol. Relative to the update protocol, the gain

of our protocol is less significant up to 5.5% for a 32 KB d-

cache. This difference is due to the fact that the unnecessary

updates operation performed in the update protocol are

handled by the shared bus. This bus consumes less energy

than the NoC.

To simplify the presentation of obtained results, we used a

table which includes these different results (table 1) for a 32

KB d-cache.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

49

(a) Total number of cache misses function of data cache size

(b) Execution time function of data cache size

(c) Energy consumption for the 5 main architectural components function of cache size

Fig 3: Performance comparison for the MM application on a 4 processor-MPSoC

International Journal of Computer Applications (0975 – 888)

Volume 47– No.3, June 2012

50

Table 1: Gain of hybrid protocol compared to Invalidation

and Update protocols

Application MM FFT JPEG

Protocol INV UPD INV UPD INV UPD

Cache

misses

reduction

77 % _ 36% _ 47% _

Execution

time

20 % _ 10% _ 2,5% _

Total energy

consumption

34% 5,5% 8% 1% 13% 2%

As shown in table (1) for the FFT and JPEG application the

hybrid protocol reduced the total miss number compared to

the invalidation protocol by a factor of 47% for the JPEG

application and 36 % for the FFT application. As consequence

of this reduction, the execution time is also reduced up to

2.5% for the JPEG application. This value is not very

significant due to the reduced total number of cache misses

compared to data traffic in the NoC. Concerning to the FFT

application the execution time is reduced up to 10%. Finally,

the total energy consumption reduction is significant with our

Proposed protocol compared to the invalidation protocol

reaches up to 8% for the FFT application and up to 13 % for

the JPEG application. Compared to the update protocol and

thanks to the additional bus for coherency messages, only a

maximum gain of 2% is obtained.

5. CONCLUSION
In this paper, we propose a new cache coherency protocol for

MPSoC architectures equipped with a non-shared-bus

network-on-chip (NoC). In order to avoid performance

limitations when the same fixed a-priory protocol is used to

maintain data coherency for this kind of MPSoC.

Experimental results show that our hybrid protocol can

significantly reduce both cache misses, compared to

invalidation protocol, and unnecessary updates, compared to

update protocol. The proposed protocol may reduce the

energy consumption by factors of 34% for the MM, 13% for

the JPEG and 8% for FFT. More importantly, our protocol

adapts dynamically with the data access patterns of the

application and does not generate unnecessary memory update

operations.

6. REFERENCES
[1] D. Jhalani, D. Palsetia, “Adaptive cache coherence

protocol using migratory shared data”, 2007.

[2] D. J. L. Farnaz Mounes-Toussi, “The potential of compile-

time analysis to adapt the cache coherence enforcement

strategy to the data sharing characteristics”, in: IEEE

Transactions on Parallel and Distributed Systems, May

1995, p. 6(5) :470.

[3] J. R. Goodman, “Using cache memory to reduce

processor-memory traffic”, in: Proceedings of the 10th

Annual International Symposium on Computer

Architecture, June 1983, pp. 124{131.

[4] J. K. Archibald, “A cache coherence approach for large

multiprocessor systems”, In Proceedings of the 2nd

International Conference on Supercomputing, France,

July 1988, pp. pages 337{345.

[5] H. Grahn, P. Stenstrom, M. Dubois, “Implementation and

evaluation of update-based cache protocols under relaxed

memory consistency models”, in: Future Generation

Computer Systems, June 1995, pp. 11(3) :247{ 271.

[6] F. Dahlgren, M. Dubois, P. Stenstrm, “Sequential

hardware prefetching in shared-memory

multiprocessors”, in :IEEE Trans. Parallel and

Distributed Systems, 733-746, July 1995, pp. vol. 6, no.

7.

[7] F. Dahlgren, “ Performance evaluation and cost analysis of

cache protocol extensions for shared-memory

multiprocessors”, in : IEEE Transactions on Computers,

october 1998, pp. I, vol. 47, no. 10.

[8] H. Chtioui, R. Ben Atitallah, S. Niar, J. L. Dekeyser, M.

Abid, “A dynamic hybrid cache coherency protocol for

shared-memory mpsoc”, in 12th Euromicro Conference

On Digital System Design Architectures, Methods and

Tools (DSD'09), Patras, Greece, 27-29 August, 2009.

[9] L. M. Censier, P. Feautrier, “A new solution to coherence

problems in multicache systems”, in: IEEE Transactions

on Computers, December 1978.

[10] SoCLib, “An integrated system-on-chip modeling and

simulation platform”, 2003.technical report, cnrs,.

[11] R. Sendag, A. Yilmazer, J. J. Yi, A. K. Uht, “Quantifying

and reducing the effects of wrong-path memory

references in cache-coherent multi-processor systems”,

in : Parallel and Distributed Processing Symposium,

April 2006

