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ABSTRACT 
Neural networks have found many applications in the real 
world. One of the important issues while designing the neural 
network is the size of the architecture. Dynamic learning 
algorithms aim to determine appropriate size of the network 
during learning phase. The dynamic learning algorithm by 
pruning involves in removing networks elements such as 
nodes, weights or biases from the network to reduce its size 
and make network size appropriate to solve a problem. In this 

paper two dynamic learning by pruning methods have been 
integrated with multilayer feed-forward neural network. The 
Optimal Brain Damage method is the connections (weights or 
biases) pruning method and Bottom Up Freezing method 
involves in freezing and pruning of nodes. The experiments 
have been conducted on MNIST handwritten database. The 
learning behavior of the multilayer feed-forward neural 
network integrated with OBD and BUF method has been 

analyzed. 
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1. INTRODUCTION  
Despite many advances, for neural networks to find general 
applicability in real-world problems, several questions need to 
be answered. One such open question is determining the most 
appropriate network size for solving a given problem [1]. If 
the network is too small then network does not learn at all [2]. 

The network does not have the required parameters so that it 
can learn according to the patterns and their classification. On 
other hand, if the network is too big then excessive number of 
hidden neurons may cause a problem called over fitting. The 
network will have so much information processing capability 
that it will learn insignificant aspects of training set, that are 
irrelevant to the general population [3] and it cannot 
generalize well. For a network to be able to generalize, it 

should have fewer parameters than there are data points in 
training set [4-6]. Hence the network should have a topology 
that is large enough to learn the mapping and at the same time 
small enough to generalize well. Until now selecting a 
topology is an art, which involves trying different topologies 
and choosing one that best satisfies the requirements. 
However,to overcome this time consuming 
approach,researchers have investigated the alternative 

approaches to conventional trial-and-error scheme and have 

proposed dynamic learning algorithms to automate the 

process of neural network design. Dynamic learning 
algorithms are aimed at finding an adequate sized network for 
a given problem.The dynamic learning by pruning algorithms 
involve in the use of larger network architecture at the 
beginning and pruning it down to near optimum size as 
training progresses. Examples include Optimal Brain Damage 
(OBD) [7], optimal brain surgeon [8], interactive pruning 
[1,9], skeletonization [10] and Bottom Up Freezing (BUF) 

[11]. A good review on pruning algorithms has been covered 
in [2].Pruning of neural network has found several 
applications. In [12] the pruning is used for designing the 
neural network for hydrological prediction. It is shown in [12] 
that the quality of forecast is improved because of pruning of 
less influential parameters. The application of neural network 
pruning for sonar image recognition has been described in 
[13].  The synthesizing of desired filter using multilayer 

neural network along with pruning algorithm is presented in 
[14]. This research work focuses on integrating pruning 
algorithms with multilayer feed-forward neural network and 
apply it for handwritten numeral recognition. In section 2 
details about the dynamic learning by pruning methods has 
been given. In this paper two known pruning methods have 
been selected and they are OBD of [7] and BUF of [11]. The 
OBD involves in identifying least significant parameters from 
the network and prune them during the training period. The 

BUF algorithm has two phases: local freezing and node 
pruning. When contribution of a node falls below a certain 
threshold it is frozen and when a node is frozen more oftenly 
then it is pruned permanently from the network. Both these 
methods have been further elaborated in section 3 and 4 
respectively. The neural networks have been integrated with 
these dynamic learning methods separately and learning 
behavior has been analyzed.The details about database and 

feature extraction method used in this research areexplained in 
section 5. In section 6 experiments conducted and analysis of 
results are covered. Finally the conclusion is given in section 
7.   

2. DYNAMIC LEARNING BY PRUNING 

METHODS  
The neural network is a massively parallel architecture 
consisting of number of neuron in highly interconnected 

manner. The neurons are the computing units of the neural  
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Fig. 1: Neural network training process. 

Network. As shown Fig. 1 the network consists of a number 
of layers. A layer intern consists a number of nodes. In a 
typical multilayer feed-forward neural network, nodes of 

lower layer are connected to nodes of higher layer through 
weights.   

Let 
wij

 denotes the weight between connections 
node j

 to

nodei . On a particular input vector at time t let (t)X̂  is 

vector denoting the desired output of neural network. The 
actual output vector X(t) of the network which may differ 

from vector (t)X̂ . Forward calculation for 
nodei  is: 
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Where, f is transfer function, ix
is output of nodei .The 

difference between actual output X(t) produced by the neural 

network and output expected 
(t)X̂

is usually calculated as 

summation of square error E(t). 
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Where n number of nodes at output layer. The aim of the 
learning procedure as shown in Fig.1 is to adjust weights and 

biases such that error E(t) will be minimized. A brute force 
parameter pruning method could be to set every parameter to 
zero and evaluate change in E(t). If it increases then restore 

the parameter value otherwise remove it [2]. However the 
brute force method is not an effective method for parameter 
elimination. There are two most popular pruning methods are 
found in the literature: sensitivity based pruning and penalty 
term based pruning. The sensitivity based pruning method can 
be represented as shown in Fig. 2. The sensitivity based 
pruning methods estimate the sensitivity S(t) of the error E(t) 
to removal of a parameter. During training process the 

sensitivity of all the parameters of the network are calculated. 
The parameters with least sensitivityS(t) will be removed[1]  
form the network and network is retrained. This process is 
usually repeated several times. 

The penalty term pruning method is represented in Fig. 3. In 
these methods the forward calculation and backward 
propagation is same as that of standard learning method. 
However penalty terms are added with objective function that 

rewards the network for choosing efficient solution. The 
penalty term methods modify the cost function so that while 
parameter modification the function drives unnecessary 
parameters to zero and in effect removes them during training. 

 
 
 

 

Fig. 2:  Neural network pruning by sensitivity method.
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Fig. 3: Neural network pruning by penalty term method.

3. OPTIMAL BRAIN DAMAGE 
The Optimal Brain Damage (OBD) pruning method involves 
in selectively deleting the parameters to reduce the size of the 
network. This process of selectively deleting the parameters is 
carried out during the training process. In the OBD a method 
to measure the saliency of a parameter based on the objective 

function is derived. The saliency of a parameter is considered 
as change in the objective function caused by deleting that 
parameter. The OBD technique uses the second order 
derivative of the objective function with respect to the 
parameters to compute the saliencies.Here object function is 
defined as approximation of error E by Taylor series. A 

perturbation δUof the parameter vector will change the object 

function by 
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Where,
ui can control one or more connections

wijor biases 

ib
, U is a vector of 

ui , uiδ
is perturbation in 

ui , 
g

i is 

component of gradient GofEwith respect to U ,  
hij

 are 

elements of Hessian matrix H of E with respect to U  
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The goal is to find a set of parameters whose deletion will 

cause the least increase of E. Toevaluate δE ,several 

approximations are made. Extremal Approximation: the 
extremal approximation assumes that the parameter deletion 
will be performed after training has converged. The parameter 
vector is then at a (local) minima of E and first term in the 
equation can be neglected. Furthermore, at local minimum, all 

the hii ’s are non-negative, so any perturbation of parameter 

will cause E to increase or stay the same; Diagonal  

 

Approximation: the diagonal approximation assumes that the 

δE  caused by deleting several parameters is the sum of the 

δE ’s caused by deleting each parameter individually, so third 

term in the equation discarded;Quadration approximation: the 
quadration approximation assumes that the cost function is 
nearly quadratic, so that the last term is the equation can be 
neglected.By simplifications (3) reduced to term containing 
perturbation in saliency and diagonal element of Hessian 
matrix.  
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Now we need an efficient way of computing the diagonal 

second derivatives ii
h

. Such a procedure was derived in [15] 
and was the basis of a back-propagation method used 
extensively in various applications. Here the objective 
function is taken as Mean Squared Error (MSE). In a shared-

weight network, a single parameter k
u

can control one or 

more connections: 
k

u
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V
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a set of index pairs. By the chain rule, the diagonal terms of H 
are given by 
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The summand can be expanded as: 
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The second derivatives are back propagated from layer to 
layer: 
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We also need the boundary condition at the output layer, 
specifying the second derivative of E with respect to the last-
layer weighted sums: 
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for all units i in the output layer.In some cases, the second 
term of the right hand side of the last two (8) and (9) 
equations (involving the second derivative of f) can be 
neglected.  

4. BOTTOM-UP FREEZING 

ALGORITHM 
In recent years, many neural networks algorithms have been 
proposed by researchers to overcome the inefficiency of 
ANNs with predetermined architecture. They all address 
ANNs with dynamic structures where the learning algorithms 
not only search the weights space, but also modify the 
architecture of the network during the training. Here an 
investigationof Bottom-Up Freezing (BUF) algorithm based 
[11] is made, which alters nodes and ultimately optimizes the 

network architecture as learning proceeds. The basic idea 
underlying the BUF algorithm is to evaluate the hidden nodes 
and isolate (freeze) those hidden nodes whose contribution to 
the convergence of the network falls below a certain 
threshold. When a node is frozen, it will not participate in the 
training process for a certain period of time or for a given 
number of training examples and this is called as local 
pruning. When the freezing period of a node is over, it is 

returned to the network. The state of the node at the time of 
return will be the same as its state at the time of freezing.  

If a node freezes very often and the number of instances that a 
node was frozen exceeds a certain limit, the node is 
permanently removed from the network i.e. pruning of the 
node. The pruning occurs when a node is found to be 
redundant and ineffective to the progress of learning a 
problem. The local freezing and node pruning of the BUF 

approach allows a network to change its underlying structure 
and adapt dynamically to the ever-changing problem space as 
the training proceeds. 

4.1 Local Freezing 
In the local freezing the error signal e(t) of node i in the layer l 
is measured as given in (10) over a single training pattern 
presented at t time. Then e(t) can be used to evaluate the 
contribution of node i to the network convergence.  
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ij

w

i

(Δ(t)l
i

e 

(10) 

Where
ij

w
represents the outgoing weight of node i.Let 

λSρ   represent an 
ρ

approximation, where Srepresent the 

size of the training set and λ is set by the user. A node is a 

candidate for local freezing if its error signal did not decrease 
in the last ρ  consecutive presentations of the training 
examples. The rate of increase of error signale(t) is computed 
as error rate, which is, 
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The freezing time of a node (i.e., the number of presentations 
that a node does not participate in the training process) is 

decided using the distribution of the errors of 
ρ

consecutive 

increases in the error signals, which is calculated as, 
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Where
].μ[

represents the mean.The magnitude of 

l
i

D
shows 

the degree of poor behavior of node iduring the
ρ

consecutive 

presentations of the training examples.The magnitude of Dis 
used as the freezing time; thus, a larger Dmeans a longer 
freezing time. Freezing the insignificant nodes during the 

training process will speed up the convergence. 

4.2 Relative Importance of a Node 
The number of times a node has been frozen, m is used to 
approximate the relative importance of that node to the 
convergence of a network. The magnitude of mis a clear 
indication of the contribution of a node to reducing the 
errorE(t). The relative importance, R, of a given node is 
defined as follows:  


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The relative importance of a node is a decreasing function 
based on the magnitude of m. At the beginning of the training 
process it is set to the value 2. The relative importance of a set 

of nodes is represented by the vector 
R

. As the training 

proceeds, the number of frozen nodes as well as the number of 
times that a given node is frozen increases. Similarly, the 

variance of 
R

, 
]R[σ2

, increases, whereas the mean of the 

values of
R

, 
μ[R]

, decreases. One of the key questions in the 

pruning algorithm is when is the proper time to remove a node 
from the network architecture. In BUF, the basic idea 
underlying the node removal is to analyze the freezing 
behavior of a hidden node and remove the node if it freezes 
very frequently. A node that freezes frequently is referred as 
node trashing. 

4.3 Node Pruning 
Let's assume that during the training of a network a node is 
frozen relatively large number of times. If this node freezes 
one more time as the learning progresses, due to a small 
change in the magnitude of R(relative importance) of this 
node, the variance and the mean of relative importance of all 

nodes, 
R

of the network do not change significantly. However 

when the difference between consecutive mean 
Δμ

and 

variance
2Δσ  of relative importance of all the nodes is 

inspected, it is seen that magnitude of minimum values of all 

μ
decreases. The 

μ
and

2σ of a node i in layer l are 

computed as, 

1)](tl
i

μ[R(t)]l
i

μ[RΔμ 
 

1)]-(tl
i

[R2σ(t)]l
i

[R2σ2σ 
(14) 



International Journal of Computer Applications (0975 – 8887)  

Volume 47– No.2, June 2012  

13 

Thus, we can define the pruning time of a node as the time 

when the min [
Δμ

] changes (reduces). However, this 

criterion is not suitable at the beginning of the training process 
when freezing frequency of a node is not high and a single 

freeze reduces the value of min[
Δμ

]. To solve this problem, 

in addition to inspecting the value of min[
Δμ

] we also use the 

consecutive delta variances, 
2Δσ to determine a freezing 

candidate.At the beginning of a training process, a single 
freezing of a node changes the magnitude of its Rby a 
relatively large factor. Therefore, the differences between 
consecutive variances are high. However, as the learning 
progresses and a node show ill behavior and its mgets larger, 
further freezing of such a node does not have any significant 
effect on its variance. In such a case, the delta variance 

remains nearly constant. We consider a delta variance 

constant if the variance of the last three

2σ
s is less than 0.5. 

It is now possible to fully define the criteria to effectively 
prune an (nearly) irrelevant node. The training process is 
temporarily halted and the least important nodes are removed 

if the value of min [
Δμ

] is changed and last three 

2σ
 are 

less than0.5.In each step of the BUF algorithm, only one node 
with the highest trashing (i.e., largest m) is removed. In a 
multi-hidden layernetwork, the pruning is done on a layer 

basis. The node pruning procedure starts with the first layer 
(bottom layer) and continues to remove the irrelevant 
nodesfor next hidden layers. 

5. FEATURE EXTRACTION METHOD 

AND DATABASE 
In this research the experiments have been conducted on the 
MNIST database of handwritten numerals.Each image of the 
numeral is size normalized to 28X28. Along three directions 
such as horizontal, vertical and diagonal features are extracted 

as shown in Fig. 4. To extract horizontal features the image is 
subdivided into four segments. Similarly, for vertical features 
the image is divided into six segments and for diagonal 
features it is divided into four segments as shown in Fig. 4. 

From each segment a feature value is computed. Suppose the 
segment is of size nm  and f(x,y) represents gray level at 
pixel (x,y) then feature value vi is computed as 

nmy))max(f(x,

y)f(x,

v

m

0x
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0y

i





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(15) 

For all x=0 to m and y=0 to n. From an image, 14 salient 
directional features are obtained based on (15), which are used 
for classification. 

6. EXPERIMENT AND RESULTS 
The selected two pruning algorithms OBD and BUF are 
integrated with multilayer feed-forward neural network 

separately and learning behavior has been analyzed. The 
backpropagation learning algorithm is employed to train these 
two feed-forward networks. These two neural networks are 
trained to recognize MNIST handwritten numerals.The 
MNIST data set is a subset of a larger set available from 
NIST.Out of large data 5000 pattern samples are considered 
for analyzing the learning behavior of the neural networks. 

The important 14 features are extracted from different 
segments of the image as described in section 5. Thus 
extracted features forms input vector to neural network. Two 
topologies for neural networks are considered. For feed-
forward network integrated with OBD, the number of input 

nodes of 14, a hidden layer with 30 as its nodes and output 
layer contains 10 nodes is formed (denoted as 14-30-10). For 
feed-forward network integrated with BUF, input nodes of 14, 
10 output neurons and 3 hidden layer having 15 neurons is 
considered (denoted as 14-15-15-15-10). 

 

Fig. 4: Feature Extraction. 

6.1 Feed-Forward Network Integrated With 

OBD  
The network 14-30-10 is trained for 4000 epochs with 
learning rate of 0.25 and after each 1000 epochs the OBD 
pruning is carried out on the network. The parameters with 
saliency measures less than a chosen thresholdare removed. 

Empirically a threshold is selected as 0.0001. After 1000 
epoch a classification rate of 98.5% and MSE of 0.014339 is 
observed in the network. At this point, the OBD is applied and 
48 parameters with the saliency less than the threshold are 
removed from the network. Due to pruning the network’s 
performance is dropped and a classification rate of 59.5% and 
MSE of 0.908538 is observed. However the network is 
continued to train without 48 parameters in it, the network 

shows good learning behavior and at 2000 epoch a 
classification rate of 99.0% and MSE of 0.25708 is obtained.  

Table. 1. Parameters removed. 

OBD 
Applied Epoch 

Number of 
Parameters Removed 

1 1000 48 

2 2000 15 

3 3000 11 

 

At 2000th epoch, OBD pruning method is applied second time 
and 15 parameters are removed. A classification rate of 93.0% 
and MSE of 0.407682 is observed as a result of removal of 

these parameters. Further network is subjected to training. At 
3000th epoch OBD is applied and 11 parameters are removed. 
Due to this classification rate of 97.5% and MSE of 0.284787 
is observed. The number of parameters are removed after each 
1000 epoch has been shown in Table 1. 

The effect of removal of least significant parameters from the 
network has been shown in Fig. 5. At first application of OBD 
on the network has drastic effect on network and classification 

rate reduced from 98.5% to 59.5% and MSE increased from 
0.014339 to 0.908538 as shown in Fig. 5(a) and 5(b). 
However as the training of the network continues 
classification rate and MSE improve as depicted in Fig. 5. It 
can also be observed that as the network reaches its local 
minima the effect of pruning of parameters by OBD has less 
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effect on the network’s performance. At the end of 4000 
epochs a classification rate of 98.3% and MSE of 0.164332 is 
observed in the network.  

6.2 Feed-Forward Network Integrated With 

BUF 
A network architecture having 14 input neurons, 10 output 
neurons and 3 hidden layer having 15 neurons, is trained for 
2000 epochs with learning rate 0.25. The network consists of 
865 parameters (810 weights and 55 bias) to fit the input-
output mapping. After each 5 epochs BUF algorithm is 

employed on the network and behavior of integrated network 
is analyzed. 

The Fig. 6(a) shows the number of nodes frozen and Fig. 6(b) 
shows number of nodes pruned when the algorithm is applied 
on the network. Freezing of a node depends upon its last 5 

error signals. If the error signal did not reduced in last 5 
observations then the node is frozen. The Table 2 shows few 
nodes which are frozen during learning phase. For last 5 
epochs error rate for the node 3 in the layer 4 did not reduce 
and therefore it is frozen at epoch 50 for duration of 1 epoch. 
Other few node which are frozen are shown in Table 2. 

 

 
             (a)                                      (b) 

 

Fig. 5: (a) Classification rate. (b) MSE during nodes pruning by OBD. 

 

 

 (a) (b) 

 

Fig. 6: (a) Number of nodes frozen.(b) Number of nodes pruned due to application of BUF. 
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Table 2: Duration and Error Signals of a frozen node. 

 

Epoch Layer NodeNo Duration Error Rate Of Last 5 Epochs 

50 4 3 1 154.147516 1.06687 0.659187 63.219315 15.053593 

135 3 10 1 6.983052 11.31784 7.557551 29.177522 2.318116 

145 4 9 1 8.63546 25.797278 33.757988 65.79339 45.151762 

255 3 7 1 138.316476 7.263404 24.938371 2.470866 14.578681 

275 2 11 1 32.531938 46.325595 0.263319 11.066844 11.058986 

595 4 11 1 50.885971 226.640126 23.34371 14.063278 16.564948 

625 4 10 1 77.438726 26.088658 83.256769 34.750765 103.217916 

 

To decide the pruning in a layer, the mean and variance of 
relative importance of each node are observed. The Fig. 7(a) 
shows the mean and Fig 7(b) shows the variance of the 
relative importance of all the nodes in hidden layers. In BUF 
algorithm, the basic idea underlying the node removal is to 
analyze the freezing behavior of a hidden node and remove 
the node if it freezes very frequently. If a node is frozen in a 
layer then mean of relative importance in that layer decreases 

and variance of relative importance increases, which is readily 
be observed in Fig. 7.  

 

The Table 3 specifies the nodes that are pruned from network 
during different epochs. Total number of nodes pruned is 9. 
During epoch 15, 15th node in layer 2 is pruned, as its relative 
importance was 4. During epoch 15, 20, 25 remaining 8 nodes 
were pruned as shown in the Table 3.When the nodes are 
frozen during the training, it affects the performance of the 
network. The Fig. 8(a) shows effect of freezing of nodes on 
the classification rate. The effect of freezing of nodes on MSE 

is depicted in the Fig. 8(b). Whenever nodes are frozen a 
slight decrease in classification rate and increase in MSE is 
observed. 

 

 (a)                                           (b) 

Fig. 7(a) The mean. (b) The variance of all the nodes in layers.

Table 3:  Nodes pruned during epochs

Epoch 15 15 15 20 20 20 25 25 25 

Layer 2 3 4 2 3 4 2 3 4 

Node 15 15 15 14 14 14 13 13 13 

R 4 4 4 4 4 4 4 4 4 
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(a)            (b) 
Fig.8: (a) Classification rate. (b) MSE in network observed after applying the BUF. 

The performance of the network when node pruning is 
analyzed. The Fig. 9(a) shows classification rate and Fig. 9(b) 

shows MSE when pruning is performed. On removing nodes 
from the network the classification rate decreases and MSE 
increase. At epoch 10 the classification rate of 28.1% and 
MSE of 0.07598 are observed. When three nodes are pruned 
at epoch 15 the classification rate decreases to 27.6% and 
MSE increased to 0.081202. Similarly observation can be 
made in Fig. 9 at epochs 20 and 25 as 6 more nodes are 
pruned. But a rapid increase in classification rate and decrease 

in MSE of 60.7% and 0.078902 respectively are observed 
immediately after node pruning. This indicates the BUF 
algorithm remove least important nodes from the network.   

Determining the appropriate size of a neural network to solve 
a given problem is one of the important issues while designing 

the neural network. Dynamic learning algorithms have been 
proposed by researcher to overcome trail-and-error scheme of 
selecting the topology. Aim of the dynamic learning 
algorithms are to find the adequate size of neural networks 
during learning phase. The dynamic learning based on 
pruning involves in eliminating few elements to determine 
appropriate size of the neural network. In this paper the OBD 
and BUF algorithms are integrated separately with multilayer 

feed-forward neural network and their learning behavior has 
been analyzed. 

  
(a)    (b) 

Fig. 9(a) Classification rate.(b) MSE in network observed between epochs 10 to 40.

7. CONCLUSION 
The OBD method involves in removing least saliency 

parameters from the neural network. The BUF algorithm 

identifies nodes whose contribution to convergence fall below 

a certain threshold and freezes them. When a node is frozen 

very oftenly and number of times a node is frozen exceeds a 

certain limit then it is permanently removed from the network. 

The experiments have been conducted on feed-forward neural 

network to recognize MNIST handwritten numerals. It has 

been observed that wheneverredundant elements are removed 

from the network during training its performance reduces 

which is indicated in decrease in classification rate and 

increases in MSE. However as the training continues the 

neural network shows the ability to learn with fewer elements 

in it. From experiments it is also observed that as the network 

reaches its local minima, applying OBD or BUF and pruning 

few elements has less effect on its performance than the initial 

phase of learning. Thus on integrating pruning methods such 

as OBD or BUF with multilayer feed-forward network allows 
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to determine optimum sized network by reducing number of 

elements from it during the learning phase. 
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