
International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

9

Multilayer Feed-Forward Neural Network Integrated with
Dynamic Learning Algorithm by Pruning of Nodes and

Connections

SiddhalingUrolagin, PhD.
Department of Computer Sc. and Engg.,

Manipal Institute of Technology,
Manipal-576104, Karnataka India.

ABSTRACT
Neural networks have found many applications in the real
world. One of the important issues while designing the neural
network is the size of the architecture. Dynamic learning
algorithms aim to determine appropriate size of the network
during learning phase. The dynamic learning algorithm by
pruning involves in removing networks elements such as
nodes, weights or biases from the network to reduce its size
and make network size appropriate to solve a problem. In this

paper two dynamic learning by pruning methods have been
integrated with multilayer feed-forward neural network. The
Optimal Brain Damage method is the connections (weights or
biases) pruning method and Bottom Up Freezing method
involves in freezing and pruning of nodes. The experiments
have been conducted on MNIST handwritten database. The
learning behavior of the multilayer feed-forward neural
network integrated with OBD and BUF method has been

analyzed.

Keywords
Pruning, Dynamic Learning, Freezing, Neural Network.

1. INTRODUCTION
Despite many advances, for neural networks to find general
applicability in real-world problems, several questions need to
be answered. One such open question is determining the most
appropriate network size for solving a given problem [1]. If
the network is too small then network does not learn at all [2].

The network does not have the required parameters so that it
can learn according to the patterns and their classification. On
other hand, if the network is too big then excessive number of
hidden neurons may cause a problem called over fitting. The
network will have so much information processing capability
that it will learn insignificant aspects of training set, that are
irrelevant to the general population [3] and it cannot
generalize well. For a network to be able to generalize, it

should have fewer parameters than there are data points in
training set [4-6]. Hence the network should have a topology
that is large enough to learn the mapping and at the same time
small enough to generalize well. Until now selecting a
topology is an art, which involves trying different topologies
and choosing one that best satisfies the requirements.
However,to overcome this time consuming
approach,researchers have investigated the alternative

approaches to conventional trial-and-error scheme and have

proposed dynamic learning algorithms to automate the

process of neural network design. Dynamic learning
algorithms are aimed at finding an adequate sized network for
a given problem.The dynamic learning by pruning algorithms
involve in the use of larger network architecture at the
beginning and pruning it down to near optimum size as
training progresses. Examples include Optimal Brain Damage
(OBD) [7], optimal brain surgeon [8], interactive pruning
[1,9], skeletonization [10] and Bottom Up Freezing (BUF)

[11]. A good review on pruning algorithms has been covered
in [2].Pruning of neural network has found several
applications. In [12] the pruning is used for designing the
neural network for hydrological prediction. It is shown in [12]
that the quality of forecast is improved because of pruning of
less influential parameters. The application of neural network
pruning for sonar image recognition has been described in
[13]. The synthesizing of desired filter using multilayer

neural network along with pruning algorithm is presented in
[14]. This research work focuses on integrating pruning
algorithms with multilayer feed-forward neural network and
apply it for handwritten numeral recognition. In section 2
details about the dynamic learning by pruning methods has
been given. In this paper two known pruning methods have
been selected and they are OBD of [7] and BUF of [11]. The
OBD involves in identifying least significant parameters from
the network and prune them during the training period. The

BUF algorithm has two phases: local freezing and node
pruning. When contribution of a node falls below a certain
threshold it is frozen and when a node is frozen more oftenly
then it is pruned permanently from the network. Both these
methods have been further elaborated in section 3 and 4
respectively. The neural networks have been integrated with
these dynamic learning methods separately and learning
behavior has been analyzed.The details about database and

feature extraction method used in this research areexplained in
section 5. In section 6 experiments conducted and analysis of
results are covered. Finally the conclusion is given in section
7.

2. DYNAMIC LEARNING BY PRUNING

METHODS
The neural network is a massively parallel architecture
consisting of number of neuron in highly interconnected

manner. The neurons are the computing units of the neural

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

10

Fig. 1: Neural network training process.

Network. As shown Fig. 1 the network consists of a number
of layers. A layer intern consists a number of nodes. In a
typical multilayer feed-forward neural network, nodes of

lower layer are connected to nodes of higher layer through
weights.

Let
wij

 denotes the weight between connections
node j

 to

nodei . On a particular input vector at time t let (t)X̂ is

vector denoting the desired output of neural network. The
actual output vector X(t) of the network which may differ

from vector (t)X̂ . Forward calculation for
nodei is:

j

x
j

ij
w

i
a and)

i
f(a

i
x 

(1)

Where, f is transfer function, ix
is output of nodei .The

difference between actual output X(t) produced by the neural

network and output expected
(t)X̂

is usually calculated as

summation of square error E(t).

)
i

x̂
i

(x 2n

1i

E(t)
2
1 





(2)

Where n number of nodes at output layer. The aim of the
learning procedure as shown in Fig.1 is to adjust weights and

biases such that error E(t) will be minimized. A brute force
parameter pruning method could be to set every parameter to
zero and evaluate change in E(t). If it increases then restore

the parameter value otherwise remove it [2]. However the
brute force method is not an effective method for parameter
elimination. There are two most popular pruning methods are
found in the literature: sensitivity based pruning and penalty
term based pruning. The sensitivity based pruning method can
be represented as shown in Fig. 2. The sensitivity based
pruning methods estimate the sensitivity S(t) of the error E(t)
to removal of a parameter. During training process the

sensitivity of all the parameters of the network are calculated.
The parameters with least sensitivityS(t) will be removed[1]
form the network and network is retrained. This process is
usually repeated several times.

The penalty term pruning method is represented in Fig. 3. In
these methods the forward calculation and backward
propagation is same as that of standard learning method.
However penalty terms are added with objective function that

rewards the network for choosing efficient solution. The
penalty term methods modify the cost function so that while
parameter modification the function drives unnecessary
parameters to zero and in effect removes them during training.

Fig. 2: Neural network pruning by sensitivity method.

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

11

Fig. 3: Neural network pruning by penalty term method.

3. OPTIMAL BRAIN DAMAGE
The Optimal Brain Damage (OBD) pruning method involves
in selectively deleting the parameters to reduce the size of the
network. This process of selectively deleting the parameters is
carried out during the training process. In the OBD a method
to measure the saliency of a parameter based on the objective

function is derived. The saliency of a parameter is considered
as change in the objective function caused by deleting that
parameter. The OBD technique uses the second order
derivative of the objective function with respect to the
parameters to compute the saliencies.Here object function is
defined as approximation of error E by Taylor series. A

perturbation δUof the parameter vector will change the object

function by

)δu
3

O(u jδuiδ

ji

hij
2

1

u2
i

δ

i

hii
2

1
uiδ

i

gi
δE







(3)

Where,
ui can control one or more connections

wijor biases

ib
, U is a vector of

ui , uiδ
is perturbation in

ui ,
g

i is

component of gradient GofEwith respect to U ,
hij

 are

elements of Hessian matrix H of E with respect to U

u jui

E2
hij

 and
ui

E
gi 







(4)

The goal is to find a set of parameters whose deletion will

cause the least increase of E. Toevaluate δE ,several

approximations are made. Extremal Approximation: the
extremal approximation assumes that the parameter deletion
will be performed after training has converged. The parameter
vector is then at a (local) minima of E and first term in the
equation can be neglected. Furthermore, at local minimum, all

the hii ’s are non-negative, so any perturbation of parameter

will cause E to increase or stay the same; Diagonal

Approximation: the diagonal approximation assumes that the

δE caused by deleting several parameters is the sum of the

δE ’s caused by deleting each parameter individually, so third

term in the equation discarded;Quadration approximation: the
quadration approximation assumes that the cost function is
nearly quadratic, so that the last term is the equation can be
neglected.By simplifications (3) reduced to term containing
perturbation in saliency and diagonal element of Hessian
matrix.

u
2
i

δ

i

hii
2

1
δE 

 (5)

Now we need an efficient way of computing the diagonal

second derivatives ii
h

. Such a procedure was derived in [15]
and was the basis of a back-propagation method used
extensively in various applications. Here the objective
function is taken as Mean Squared Error (MSE). In a shared-

weight network, a single parameter k
u

can control one or

more connections:
k

u
ij

w 
 for all , k

Vj)(i, 
, where k

V
is

a set of index pairs. By the chain rule, the diagonal terms of H
are given by

2
ij

w

E2

k
Vj)(i,

kk
h







 
 (6)

The summand can be expanded as:

2
j

x
2
i

a

E2

2
ij

w

E2










 (7)

The second derivatives are back propagated from layer to
layer:

i
x

E
)

i
(af

2
l

a

E2

l

2
li

w2)
i

(af
2
i

a

E2















(8)

We also need the boundary condition at the output layer,
specifying the second derivative of E with respect to the last-
layer weighted sums:

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

12

)
i

(af)
i

x
i

2(a2)
i

(af2
2
i

a

E2






(9)

for all units i in the output layer.In some cases, the second
term of the right hand side of the last two (8) and (9)
equations (involving the second derivative of f) can be
neglected.

4. BOTTOM-UP FREEZING

ALGORITHM
In recent years, many neural networks algorithms have been
proposed by researchers to overcome the inefficiency of
ANNs with predetermined architecture. They all address
ANNs with dynamic structures where the learning algorithms
not only search the weights space, but also modify the
architecture of the network during the training. Here an
investigationof Bottom-Up Freezing (BUF) algorithm based
[11] is made, which alters nodes and ultimately optimizes the

network architecture as learning proceeds. The basic idea
underlying the BUF algorithm is to evaluate the hidden nodes
and isolate (freeze) those hidden nodes whose contribution to
the convergence of the network falls below a certain
threshold. When a node is frozen, it will not participate in the
training process for a certain period of time or for a given
number of training examples and this is called as local
pruning. When the freezing period of a node is over, it is

returned to the network. The state of the node at the time of
return will be the same as its state at the time of freezing.

If a node freezes very often and the number of instances that a
node was frozen exceeds a certain limit, the node is
permanently removed from the network i.e. pruning of the
node. The pruning occurs when a node is found to be
redundant and ineffective to the progress of learning a
problem. The local freezing and node pruning of the BUF

approach allows a network to change its underlying structure
and adapt dynamically to the ever-changing problem space as
the training proceeds.

4.1 Local Freezing
In the local freezing the error signal e(t) of node i in the layer l
is measured as given in (10) over a single training pattern
presented at t time. Then e(t) can be used to evaluate the
contribution of node i to the network convergence.

2)
ij

w

i

(Δ(t)l
i

e 

(10)

Where
ij

w
represents the outgoing weight of node i.Let

λSρ  represent an
ρ

approximation, where Srepresent the

size of the training set and λ is set by the user. A node is a

candidate for local freezing if its error signal did not decrease
in the last ρ consecutive presentations of the training
examples. The rate of increase of error signale(t) is computed
as error rate, which is,

1001)
1)e(t

e(t)
((t)l

i
γ 




(11)

The freezing time of a node (i.e., the number of presentations
that a node does not participate in the training process) is

decided using the distribution of the errors of
ρ

consecutive

increases in the error signals, which is calculated as,

]l
i

μ[γρ

]l
i

μ[γ(t)l
i
γρ

1t

l
i

D






 
(12)

Where
].μ[

represents the mean.The magnitude of

l
i

D
shows

the degree of poor behavior of node iduring the
ρ

consecutive

presentations of the training examples.The magnitude of Dis
used as the freezing time; thus, a larger Dmeans a longer
freezing time. Freezing the insignificant nodes during the

training process will speed up the convergence.

4.2 Relative Importance of a Node
The number of times a node has been frozen, m is used to
approximate the relative importance of that node to the
convergence of a network. The magnitude of mis a clear
indication of the contribution of a node to reducing the
errorE(t). The relative importance, R, of a given node is
defined as follows:
















otherwise m2

frozen is l
i

node if
m2

1)(m2
l
i

R

(13)

The relative importance of a node is a decreasing function
based on the magnitude of m. At the beginning of the training
process it is set to the value 2. The relative importance of a set

of nodes is represented by the vector
R

. As the training

proceeds, the number of frozen nodes as well as the number of
times that a given node is frozen increases. Similarly, the

variance of
R

,
]R[σ2

, increases, whereas the mean of the

values of
R

,
μ[R]

, decreases. One of the key questions in the

pruning algorithm is when is the proper time to remove a node
from the network architecture. In BUF, the basic idea
underlying the node removal is to analyze the freezing
behavior of a hidden node and remove the node if it freezes
very frequently. A node that freezes frequently is referred as
node trashing.

4.3 Node Pruning
Let's assume that during the training of a network a node is
frozen relatively large number of times. If this node freezes
one more time as the learning progresses, due to a small
change in the magnitude of R(relative importance) of this
node, the variance and the mean of relative importance of all

nodes,
R

of the network do not change significantly. However

when the difference between consecutive mean
Δμ

and

variance
2Δσ of relative importance of all the nodes is

inspected, it is seen that magnitude of minimum values of all

μ
decreases. The

μ
and

2σ of a node i in layer l are

computed as,

1)](tl
i

μ[R(t)]l
i

μ[RΔμ 

1)]-(tl
i

[R2σ(t)]l
i

[R2σ2σ 
(14)

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

13

Thus, we can define the pruning time of a node as the time

when the min [
Δμ

] changes (reduces). However, this

criterion is not suitable at the beginning of the training process
when freezing frequency of a node is not high and a single

freeze reduces the value of min[
Δμ

]. To solve this problem,

in addition to inspecting the value of min[
Δμ

] we also use the

consecutive delta variances,
2Δσ to determine a freezing

candidate.At the beginning of a training process, a single
freezing of a node changes the magnitude of its Rby a
relatively large factor. Therefore, the differences between
consecutive variances are high. However, as the learning
progresses and a node show ill behavior and its mgets larger,
further freezing of such a node does not have any significant
effect on its variance. In such a case, the delta variance

remains nearly constant. We consider a delta variance

constant if the variance of the last three

2σ
s is less than 0.5.

It is now possible to fully define the criteria to effectively
prune an (nearly) irrelevant node. The training process is
temporarily halted and the least important nodes are removed

if the value of min [
Δμ

] is changed and last three

2σ
 are

less than0.5.In each step of the BUF algorithm, only one node
with the highest trashing (i.e., largest m) is removed. In a
multi-hidden layernetwork, the pruning is done on a layer

basis. The node pruning procedure starts with the first layer
(bottom layer) and continues to remove the irrelevant
nodesfor next hidden layers.

5. FEATURE EXTRACTION METHOD

AND DATABASE
In this research the experiments have been conducted on the
MNIST database of handwritten numerals.Each image of the
numeral is size normalized to 28X28. Along three directions
such as horizontal, vertical and diagonal features are extracted

as shown in Fig. 4. To extract horizontal features the image is
subdivided into four segments. Similarly, for vertical features
the image is divided into six segments and for diagonal
features it is divided into four segments as shown in Fig. 4.

From each segment a feature value is computed. Suppose the
segment is of size nm and f(x,y) represents gray level at
pixel (x,y) then feature value vi is computed as

nmy))max(f(x,

y)f(x,

v

m

0x

n

0y

i





 

(15)

For all x=0 to m and y=0 to n. From an image, 14 salient
directional features are obtained based on (15), which are used
for classification.

6. EXPERIMENT AND RESULTS
The selected two pruning algorithms OBD and BUF are
integrated with multilayer feed-forward neural network

separately and learning behavior has been analyzed. The
backpropagation learning algorithm is employed to train these
two feed-forward networks. These two neural networks are
trained to recognize MNIST handwritten numerals.The
MNIST data set is a subset of a larger set available from
NIST.Out of large data 5000 pattern samples are considered
for analyzing the learning behavior of the neural networks.

The important 14 features are extracted from different
segments of the image as described in section 5. Thus
extracted features forms input vector to neural network. Two
topologies for neural networks are considered. For feed-
forward network integrated with OBD, the number of input

nodes of 14, a hidden layer with 30 as its nodes and output
layer contains 10 nodes is formed (denoted as 14-30-10). For
feed-forward network integrated with BUF, input nodes of 14,
10 output neurons and 3 hidden layer having 15 neurons is
considered (denoted as 14-15-15-15-10).

Fig. 4: Feature Extraction.

6.1 Feed-Forward Network Integrated With

OBD
The network 14-30-10 is trained for 4000 epochs with
learning rate of 0.25 and after each 1000 epochs the OBD
pruning is carried out on the network. The parameters with
saliency measures less than a chosen thresholdare removed.

Empirically a threshold is selected as 0.0001. After 1000
epoch a classification rate of 98.5% and MSE of 0.014339 is
observed in the network. At this point, the OBD is applied and
48 parameters with the saliency less than the threshold are
removed from the network. Due to pruning the network’s
performance is dropped and a classification rate of 59.5% and
MSE of 0.908538 is observed. However the network is
continued to train without 48 parameters in it, the network

shows good learning behavior and at 2000 epoch a
classification rate of 99.0% and MSE of 0.25708 is obtained.

Table. 1. Parameters removed.

OBD
Applied Epoch

Number of
Parameters Removed

1 1000 48

2 2000 15

3 3000 11

At 2000th epoch, OBD pruning method is applied second time
and 15 parameters are removed. A classification rate of 93.0%
and MSE of 0.407682 is observed as a result of removal of

these parameters. Further network is subjected to training. At
3000th epoch OBD is applied and 11 parameters are removed.
Due to this classification rate of 97.5% and MSE of 0.284787
is observed. The number of parameters are removed after each
1000 epoch has been shown in Table 1.

The effect of removal of least significant parameters from the
network has been shown in Fig. 5. At first application of OBD
on the network has drastic effect on network and classification

rate reduced from 98.5% to 59.5% and MSE increased from
0.014339 to 0.908538 as shown in Fig. 5(a) and 5(b).
However as the training of the network continues
classification rate and MSE improve as depicted in Fig. 5. It
can also be observed that as the network reaches its local
minima the effect of pruning of parameters by OBD has less

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

14

effect on the network’s performance. At the end of 4000
epochs a classification rate of 98.3% and MSE of 0.164332 is
observed in the network.

6.2 Feed-Forward Network Integrated With

BUF
A network architecture having 14 input neurons, 10 output
neurons and 3 hidden layer having 15 neurons, is trained for
2000 epochs with learning rate 0.25. The network consists of
865 parameters (810 weights and 55 bias) to fit the input-
output mapping. After each 5 epochs BUF algorithm is

employed on the network and behavior of integrated network
is analyzed.

The Fig. 6(a) shows the number of nodes frozen and Fig. 6(b)
shows number of nodes pruned when the algorithm is applied
on the network. Freezing of a node depends upon its last 5

error signals. If the error signal did not reduced in last 5
observations then the node is frozen. The Table 2 shows few
nodes which are frozen during learning phase. For last 5
epochs error rate for the node 3 in the layer 4 did not reduce
and therefore it is frozen at epoch 50 for duration of 1 epoch.
Other few node which are frozen are shown in Table 2.

 (a) (b)

Fig. 5: (a) Classification rate. (b) MSE during nodes pruning by OBD.

 (a) (b)

Fig. 6: (a) Number of nodes frozen.(b) Number of nodes pruned due to application of BUF.

Frozen Nodes/Epoch

0

0.2

0.4

0.6

0.8

1

1.2

5

1
5

5

3
0

5

4
5

5

6
0

5

7
5

5

9
0

5

1
0

5
5

1
2

0
5

1
3

5
5

1
5

0
5

1
6

5
5

1
8

0
5

1
9

5
5

Epoch

N
o

.
o

f
fr

o
z
e

n
 n

o
d

e
s

Removed Nodes/Epoch

0

0.5

1

1.5

2

2.5

3

3.5

5

1
6
5

3
2
5

4
8
5

6
4
5

8
0
5

9
6
5

1
1
2
5

1
2
8
5

1
4
4
5

1
6
0
5

1
7
6
5

1
9
2
5

Epoch

N
o

.
o

f
re

m
o

v
e

d
 n

o
d

e
s

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

15

Table 2: Duration and Error Signals of a frozen node.

Epoch Layer NodeNo Duration Error Rate Of Last 5 Epochs

50 4 3 1 154.147516 1.06687 0.659187 63.219315 15.053593

135 3 10 1 6.983052 11.31784 7.557551 29.177522 2.318116

145 4 9 1 8.63546 25.797278 33.757988 65.79339 45.151762

255 3 7 1 138.316476 7.263404 24.938371 2.470866 14.578681

275 2 11 1 32.531938 46.325595 0.263319 11.066844 11.058986

595 4 11 1 50.885971 226.640126 23.34371 14.063278 16.564948

625 4 10 1 77.438726 26.088658 83.256769 34.750765 103.217916

To decide the pruning in a layer, the mean and variance of
relative importance of each node are observed. The Fig. 7(a)
shows the mean and Fig 7(b) shows the variance of the
relative importance of all the nodes in hidden layers. In BUF
algorithm, the basic idea underlying the node removal is to
analyze the freezing behavior of a hidden node and remove
the node if it freezes very frequently. If a node is frozen in a
layer then mean of relative importance in that layer decreases

and variance of relative importance increases, which is readily
be observed in Fig. 7.

The Table 3 specifies the nodes that are pruned from network
during different epochs. Total number of nodes pruned is 9.
During epoch 15, 15th node in layer 2 is pruned, as its relative
importance was 4. During epoch 15, 20, 25 remaining 8 nodes
were pruned as shown in the Table 3.When the nodes are
frozen during the training, it affects the performance of the
network. The Fig. 8(a) shows effect of freezing of nodes on
the classification rate. The effect of freezing of nodes on MSE

is depicted in the Fig. 8(b). Whenever nodes are frozen a
slight decrease in classification rate and increase in MSE is
observed.

 (a) (b)

Fig. 7(a) The mean. (b) The variance of all the nodes in layers.

Table 3: Nodes pruned during epochs

Epoch 15 15 15 20 20 20 25 25 25

Layer 2 3 4 2 3 4 2 3 4

Node 15 15 15 14 14 14 13 13 13

R 4 4 4 4 4 4 4 4 4

Variance of Relative

 Imp in Layers

0

0.5

1

1.5

2

2.5

1
0

1
6

0

3
1

0

4
6

0

6
1

0

7
6

0

9
1

0

1
0

6
0

1
2

1
0

1
3

6
0

1
5

1
0

1
6

6
0

1
8

1
0

1
9

6
0

Epoch

V
a

ri
a

n
c

e
 i

n
 L

a
ye

r

Frozen Nodes

VAR in L1

VAR in L2

VAR in L3

Mean of Relative

Imp of Layers

0

1

2

3

4

5

6

10 23
0

45
0

67
0

89
0

11
10

13
30

15
50

17
70

19
90

Epoch

M
ea

n
 in

 L
ay

er

Frozen Nodes

Mean in L1

Mean in L2

Mean in L3

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

16

(a) (b)
Fig.8: (a) Classification rate. (b) MSE in network observed after applying the BUF.

The performance of the network when node pruning is
analyzed. The Fig. 9(a) shows classification rate and Fig. 9(b)

shows MSE when pruning is performed. On removing nodes
from the network the classification rate decreases and MSE
increase. At epoch 10 the classification rate of 28.1% and
MSE of 0.07598 are observed. When three nodes are pruned
at epoch 15 the classification rate decreases to 27.6% and
MSE increased to 0.081202. Similarly observation can be
made in Fig. 9 at epochs 20 and 25 as 6 more nodes are
pruned. But a rapid increase in classification rate and decrease

in MSE of 60.7% and 0.078902 respectively are observed
immediately after node pruning. This indicates the BUF
algorithm remove least important nodes from the network.

Determining the appropriate size of a neural network to solve
a given problem is one of the important issues while designing

the neural network. Dynamic learning algorithms have been
proposed by researcher to overcome trail-and-error scheme of
selecting the topology. Aim of the dynamic learning
algorithms are to find the adequate size of neural networks
during learning phase. The dynamic learning based on
pruning involves in eliminating few elements to determine
appropriate size of the neural network. In this paper the OBD
and BUF algorithms are integrated separately with multilayer

feed-forward neural network and their learning behavior has
been analyzed.

(a) (b)

Fig. 9(a) Classification rate.(b) MSE in network observed between epochs 10 to 40.

7. CONCLUSION
The OBD method involves in removing least saliency

parameters from the neural network. The BUF algorithm

identifies nodes whose contribution to convergence fall below

a certain threshold and freezes them. When a node is frozen

very oftenly and number of times a node is frozen exceeds a

certain limit then it is permanently removed from the network.

The experiments have been conducted on feed-forward neural

network to recognize MNIST handwritten numerals. It has

been observed that wheneverredundant elements are removed

from the network during training its performance reduces

which is indicated in decrease in classification rate and

increases in MSE. However as the training continues the

neural network shows the ability to learn with fewer elements

in it. From experiments it is also observed that as the network

reaches its local minima, applying OBD or BUF and pruning

few elements has less effect on its performance than the initial

phase of learning. Thus on integrating pruning methods such

as OBD or BUF with multilayer feed-forward network allows

Classification Rate

per Epoch

0

20

40

60

80

100

120

1
0

1
6

0

3
1

0

4
6

0

6
1

0

7
6

0

9
1

0

1
0

6
0

1
2

1
0

1
3

6
0

1
5

1
0

1
6

6
0

1
8

1
0

1
9

6
0

Epoch

C
la

ss
if

ic
a

ti
o

n
 R

a
te

Frozen Nodes

Classification

Rate

MS Error

per Epoch

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

1
0

2
4

0

4
7

0

7
0

0

9
3

0

1
1

6
0

1
3

9
0

1
6

2
0

1
8

5
0

Epoch

M
S

 E
rr

o
r

Frozen Nodes

MS Error

International Journal of Computer Applications (0975 – 8887)

Volume 47– No.2, June 2012

17

to determine optimum sized network by reducing number of

elements from it during the learning phase.

8. REFERENCES
[1] Giovanna Castellano, 1997.Ann Maria Fanelli and

MarcellocPelillo, An Iterative Pruning Algorithm for

Feed forward Neural Networks, in IEEE Trans. on
Neural Network, 8, (3),519-531.

[2] Russel Reed, 1993.Pruning Algorithms- A Survey, in
IEEE Trans. on Neural Network, 4, (5), 740-747.

[3] Timothy Masters, 1993. Practical Neural Network
Recipes in C++ Academic Press, Inc, Harcourt Brace &
Company Publisher, Boston San Diego New York.

[4] E.B. Baum and D.Haussler, 1989.What size net gives

valid generalization? inNeural Computation, 1, 151-160.

[5] J.Denker, D.Schwartz, B.Wittner, S.Solla, R.Howard,
L.Jackel and J.Hopfield, 1987.Large automatic learning,
rule extraction, and generalization, in Complex Systems,
1, 877-922.

[6] Y.LeCun, 1989.Generalization and network design
strategies, in Connectionism in Perspective, R.Pfeifer,
Z.Schreter, F.Fogelman-Soulie and L.Steels, Eds,
Amsterdam: Elsevier, 143-155.

[7] Y. Le Cun, J.S. Denker, and S.A. Solla, 1990.Optima
Brain Damage, in Advances in Neural Information
Processing (2), D.S. Touretzky, Ed (Denver 1989), 598-
605.

[8] B. Hassibi and D.G. Stork, 1993.Second-order
derivatives for network pruning: Optimal Brain Surgeon,
in Advances in Neural Information Processing Systems,
S.J.Hanson, J.d.Cowan and C.L.Gileses San Mateo, CA:

Morgan Kaufmann, 164-171.

[9] Sietsma, J., and R.J.F. Dow, 1991. Creating artificial
neural networks that generalize, in Neural Networks, vol.
4,(1), 67-79.

[10] Mozer, M.C., and P. Smolensky,1989.Skeletonization: A
technique for trimming the fat from a network via

relevance assessment, in D.S. Touretzky, editor,
Advances in Neural Information Processing Systems
(Denver, 1988) (1), Morgan Kaufmann, San Mateo, 107-
115.

[11] Ali Farzan and Ali A. Ghorbani, 2001.The Bottom-Up
Freezing: An Approach to Neural Engineering, in
Proceedings of Advances in Artificial Intelligence: 14th
Biennial Conference of the Canadian Society for

Computational Studies of Intelligence, AI, Ottawa,
Canada, 317 – 324.

[12] Giorgio Corani, Giorgio Guariso, 2005. An application
of pruning in the designof neural networks for real time
flood forecasting, in Journal Neural Computing and
Applications, 14, (1), 66-77.

[13] P. Galerne , K. Yao , G. Burel1998.New Neural Network
Pruning and its application to sonar Imagery, in

Conference IEEE-CESA’98, Hammamet, Tunisia, April
1-4.

[14] Kenji Suzuki, Isao Horiba, Noboru Sugie, 2001. A
Simple Neural Network Pruning Algorithm with
Application to Filter Synthesis, in Neural Processing
Letters, 13, (1), 43-53.

[15] LeCun, Y., 1987.Modelesconnexionnistes de
l’apprentissage (connectionist learning models). PhD

thesis, UnivesityP.et.M.Curie (Paris 6).

