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ABSTRACT  
This paper presents a technique to speed up the computation 
of inversion of NIST recommended elliptic curve with 

modulus p521-1. The property of multiplicative inverse 
between pair of numbers over   Meresenne‟s prime is used to 
reduce the number of iterations in the Binary Inversion 
Algorithm in GF(p). This increases the speed requirement for 
point operations applicable to Elliptic Curve Cryptography. 
This paper proposes an model of the architecture to achieve 
the above objective which uses parallelism in multiplicative 
inversion arithmetic block to speed up the computation. 
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1. INTRODUCTION 
The data security has become an important and urgent need 
for modern applications such as health care information, 
confidential communication, storage and financial services. 
The public key cryptosystem is the most effective for the 
secure data transaction and messaging. The challenge to 
implement the most popular public key cryptosystem, RSA  is 

the rapidly growing key size. Elliptic Curve cryptography has 
been considered an alternative to RSA. 

 
The application of Elliptic curves in public-key cryptography 
was proposed by Koblitz[1] and Miller[2] in 1985. Since then, 
enormous amount of work has been done on elliptic curve 
cryptography(ECC).The attractiveness of using elliptic curves 
is that similar level of security can be achieved with 

considerably shorter keys than in methods based on the 
difficulties of solving discrete logarithms over integers or 
integer factorizations. Therefore ECC has become final choice 
in smart cards, credit cards and mobile phones due to its 
strength to provide equivalent security compared to RSA. It is 
estimated that security level of 160 and 224 bits ECC 
cryptosystem is equivalent to the 1024 and 2048 bits RSA 
respectively[3,4] 

 
The research on efficient algorithms and hardware 
accelerations have concentrated on efficient implementation 
of elliptic curve point multiplication which is the  fundamental 
operation of all elliptic curve cryptosystems. The elliptic 
curve point multiplication is computed with point operations 
which, further are computed using finite field arithmetic. 
Although the point multiplication itself is hard to parallelize, 

it is possible to efficiently use parallelism [5],[6],[7], [8] in 
field arithmetic specifically to some of the NIST 
recommended elliptic curves.  

To date, little research has been done on ECC hardware 
architectures over GF (p). [10] – [13] described some 
important contributions. Satoh and Takano [10], described an 
elliptic curve cryptographic processor which is able to operate 
in GF (p) and GF (2m). Their work does not fully deal with 
modular inversion, which is the costliest operation even with 

projective coordinates. They have computed this using 
Fermat‟s Little Theorem which requires modular 
exponentiation. Orlando and Paar [11], proposed an 
architecture using high-radix Montgomery multiplier with 
adders and register used to compute field 
additions/subtractions and to perform comparisons. Again 
Fermat‟s Little Theorem is used to perform modular inversion. 
In [12] bitwise computations have been described. 

 
Kendel Anayi, Hamad Alrimeigh, Daler Rakhmatov [9], 
described a flexible ECC processor for performing additions, 
subtractions, multiplications and inversions over prime finite 
fields GF(p). They have used Binary Inversion Algorithm to 
perform modular inversion. We have developed a technique to 
speed up the computation of this modular multiplicative 
inverse computation. 
 

The main contributions of this work include the following. 
i) A technique to speed up the computation 

of modular multiplicative inversion which 
uses   Binary Inversion Algorithm. This 
technique can be used specifically to 
NIST recommended elliptic curve with 
modulus p521-1. 

ii) A model of the architecture for inversion  

is proposed which uses parallelism in 
multiplicative inversion arithmetic block  
to speed up the computation  

 
The outline of this paper is as follows. In section 2, the back 
ground of Elliptic Curve Cryptography (ECC) is discussed. In 
section 3, how the property of multiplicative inverse between 
pair of numbers over a Mersenne‟s prime speed up the 

computation which uses Binary Inversion Algorithm is 
discussed. Section 4 deals with the proposed model of the  
architecture for inversion, section 5 deals with the results and 
finally section 6 concludes the work. 

2. ECC BACKGROUND 

2.1 Elliptic Curves over GF (P) 
The elliptic curve arithmetic is defined over Galois field 
GF( p) where p is a prime number greater than 3 . All 
arithmetic operations are modulo p. The elliptic curve 
equation E over GF(p) is given  by:y2 = x3 + ax + b ; where p 

> 3, 4a3 + 27b2≠ 0, and x, y, a,b∈  GF(p). There is also a single 
element named the point at infinity or the zero point denoted 
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O, which serves as the additive identity. For any point P(x, 
y)∈E , we have: P + O = P . 

2.2 Point addition and Point Doubling 
Additions in GF(p) are controlled by the following rules: 

O = -O 
P( x, y ) + O = P( x, y ) 
P( x, y ) + P( x, -y) = O 

The addition of two different points on the elliptic curve is 
computed as shown below. 
               P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2 

λ = (y2 – y1)/(x2 – x1) 
x3 = λ2 – x1 – x2 
y3 = λ(x1 – x3) – y1 

The addition of a point to itself (point doubling) on the elliptic 
curve is computed as shown below 

P(x1 , y1) + P(x1 , y1) = P(x3 , y3); 
                 λ = (3(x1)

2 + a) /(2y1)  
x3 = λ2 – 2x1 

y3 = λ(x1 – x3) – y1 

2.3 Point Multiplication 
Scalar multiplication Q=k.P is the result of adding point P to 
itself (k-1) times  
 

                        Q = k.P = P + P + ……. + P. 
                                        (k-1 Times) 
The binary method is the simplest and oldest efficient method 
for point multiplication. It is based on the binary expansion of 
k. The corresponding algorithm shown in Fig.1. 
 

 
INPUT: A point P and an integer k  
OUTPUT: Q = k.P 

1. Q←P 
 
2. For j = L− 2… 1, 0 

2.1 Q ← 2 Q 
2.2  IF k j = 1 THEN Q←Q + P 
3. RETURN Q 
 

Fig.1: Binary scalar multiplication algorithm adopted from [7] 

 
If we assume that on average „n‟ is the number of ones in k 
which  is equal to n = L / 2, the binary method requires (L −1) 
point doublings and n point-additions where L denotes the 
number of bits of the scalar k. The point doubling and point 
addition require inversion. Hence the average number of 
inversion is (L-1) + n. 

 

3. SPEEDING UP MULTIPLICATIVE 

INVERSE COMPUTATION 
In this section, Binary Inversion Algorithm for inversion over  
GF(p), property of multiplicative inverse between pair of two 

numbers over Mersenne‟s prime and how this property speed 
up the multiplicative inverse computation is discussed. 

3.1. Binary Inversion Algorithm 
The extended Euclidean algorithm uses the division 

operations to compute the inversion. The binary inversion 
algorithm replaces the divisions with cheaper shifts (divisions 
by 2) and subtractions. 
 
The modular multiplicative inverse a-1 mod p of an integer a 
exists if and only if a and p are relatively prime, that is gcd 
(a,p) =1. One of the efficient modular inversion algorithms is 
Binary Inversion Algorithm   shown below. 

 
      INPUT: Prime p and a ∈  [1, p-1] 

OUTPUT: a-1 mod p 
 

1. u=a, v=p, x1=1, x2=0 
2. while  (u !=1 and v!=1 ) do 

 while u is even do 
2.2.1 u = u/2 

2.2.2  if x1 is even then x1= x1/2 else    
                        x1= (x1+p)/2 

         2.3    end while 
         2.4    while v is even do 
         2.5.1 v= v/2 
         2.5.2 if x2 is even then x2= x2/2 else   
                                    x2 = (x2+p)/2 
         2.6 end while 

         2.7 if u≥ v then u=u-v, x1=x1-x2 
         2.8 else v=v-u, x2=x2-x1 
      3. end while 
      4.1 if u=1 then return x1 mod p 
        4.2 else return x2 mod p 
 

Fig.2:  Binary Inversion Algorithm in GF(p) 
 

The step 2 of the algorithm runs iteratively. The steps from 

2.1 to 2.3 and steps from 2.4 to 2.6 perform concurrently. A 
speed improvement can be obtained if the number of iterations 
(subtractions) of step2 is reduced. The binary modular 
inversion algorithm can be easily be modified to perform 
modular division b/a mod p by initializing x1 variable in step 
1 by b instead of 1.In the subsequent sections iteration denote 
subtraction. 

3.2 The property and the technique to 

reduce the number of iterations 
If x is a number [1 ≤x ≤p-1] and p is a Mersenne‟s prime then 

the multiplicative inverse of  p-x(this is obtained by p XOR x) 
is the complement of multiplicative inverse of x. The table 1 
illustrates this property.  
 
The number of iterations  of step2 to compute the inverse in 
the Binary Inverse Algorithm is different for x and p-x.  The 
table 2 shows the number of iterations of step 2 of Binary 
Inversion Algorithm over Mersenne‟s prime p31. 
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Table 1. The relation between   multiplicative inverse of x and p-x over p31 

 Number 

x in decimal 

Binary 

of 

x 

x
-1 

in 

decimal 

x
-1

 in 

binary 

Number 

p-x in 

decimal 

Binary 

of 

p-x 

(p-x)
-1

 

in 

decimal 

(p-x)
-1

 in 

binary 

1 00001 1 00001 30 11110 30 11110 

2 00010 16 10000 29 11101 15 01111 

3 00011 21 10101 28 11100 10 01010 

4 00100 8 01000 27 11011 23 10111 

5 00101 25 11001 26 11010 6 00110 

6 00110 26 11010 25 11001 5 00101 

7 00111 9 01001 24 11000 22 10110 

8 01000 4 00100 23 10111 27 11011 

9 01001 7 00111 22 10110 24 11000 

10 01010 28 11100 21 10101 3 00011 

11 01011 17 10001 20 10100 14 01110 

12 01100 13 01101 19 10011 18 10010 

13 01101 12 01100 18 10010 19 10011 

14 01110 20 10100 17 10001 11 01011 

15 01111 29 11101 16 10000 2 00010 

 

Table 2. Number of iterations (subtractions) of step2 to compute the inverse in the Binary Inverse Algorithm for number x 

and p-x over p31. 

Number x 
Number of 
Iterations 

Number p-x 
Number of 
iterations 

Difference in the 
number of 
iterations 

1 0 30 7 7 

2 2 29 3 1 

3 7 28 10 3 

4 3 27 4 1 

5 7 26 7 0 

6 8 25 9 1 

7 8 24 10 2 

8 4 23 5 1 

9 5 22 9 4 

10 8 21 8 0 

11 8 20 9 1 

12 9 19 9 0 

13 6 18 6 0 

14 9 17 7 2 

15 6 16 5 1 

Average difference in the number of iterations 24/15=1.6 

 
If each of all possible x, p-x inputs are processed concurrently 
in the Binary inversion algorithm, it is found that 11 out of 15 
combinations produces different number of iterations in step 2. 
Only 4 out of 15 possible combinations have same number of 
iterations. The difference in the number of iterations   for x 
and p-x inputs ranges from 0 to 7.  

 
In order to speed up the computation of multiplicative 
inversion, we have proposed parallel architectures namely, 
process1 and process2 which are discussed in the section 4. 
Both the processes are Binary Inversion Algorithm. The 
process 1 computes inversion of x while process 2 computes 
inversion of p-x concurrently. The computation time is 
different for process 1 and process 2 because of the difference 

in the number of iterations of step2. Hence either of the 
processes computes inversion faster than the other for 74% 
(with respect to the table 2) of all the possible concurrent 
inputs.  If the output is taken from process 2, the result of the 
process is inverted else it is taken directly from the process 1. 
Hence a speed improvement is obtained by reducing the 
number of iterations with concurrent processes with additional 

two inversions (one inversion to obtain the input p-x from x 
and another to obtain inverted output from process2). The 
schematic of this technique is shown in figure 3. 

4. PROPOSED MODEL OF 

ARCHITECTURE 
The Binary Inversion Algorithm in GF(p) can be implemented 
by hardware. Our proposed model consists of parallel 
arithmetic units for the computation of inversion. One 

arithmetic unit computes the inversion of input x while other 
arithmetic unit computes the inversion of p-x input 
concurrently. The results shown in the section 5 indicates that 
this parallel architecture can be implemented to speed up the 
computation of inversion. The following section describes 
architecture of process1. For the process2 we instantiate the 
same architecture by replacing u,v,p,x1 and x2 by p-u,v,p,x1 
and x2.  

 
After loading u,v,p,x1 and x2 values into registers(step1 of 
Algorithm), the two comparators compare the values of u and 
v registers with 1(step2 of algorithm).If any one of 
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comparator output becomes true then the final result  is made 
available in x1 or x2. The comparators output can be used to 
select either x1 or x2 through multiplexers. 
   
There are two blocks, block1 and block2 which perform 

concurrently. Block1 performs steps 2.1, 2.2.1, 2.2.2, 2.3 and 
block2 performs steps 2.4, 2.5.1, 2.5.2, 2.6 respectively. The 
outputs of block1 and block2 are the updated values of u, x1 
and v, x2 respectively.   

The block3 performs the computation of step 2.7 and step 2.8. 
The updated values of u, x1, v, x2 are made available from 
block1 and block2 to block 3 if both the u and v values are 
odd.  The updated values can be made available to block 3 by 
performing AND operation of the least significant bits of u 

and v and selecting through a multiplexer. The  Figure 4 

shows the proposed model of the architecture .

                             
 
 
                                x                 p                                                                     p-x             p 

 
                                                                                                                                                                                                       
 
 
 
 
 
 

  
 
 
 
                                        x-1modp                                                                                x-1modp                                                                                                                                                        

Fig.3: Schematic of the technique 
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Fig.4: Proposed Model of the Architecture 

 

5. RESULTS AND DISCUSSION 
In order to compute the efficiency of this technique, we 
computed the number of concurrent inputs x and p-x that 
produce difference in the number of iterations and average 
difference in the number of iterations over different 
Mersenne‟s Primes. The results of these are tabulated in table 

3.  
Because of the unfeasibility to compute average difference in 
the number of iterations with all possible concurrent inputs x 
and p-x over Mersenne‟s Primes 261 -1, 289 -1,  2107 -1,  2127 -1,  
2521 -1,   we computed average difference in the number of 
iterations over  randomly selected areas of number space of 

each prime. The result of this is tabulated in Table 4. It is 

found that the Binary Scalar Multiplication algorithm to 
compute Q=k.P over GF(p521) reduce the number of iterations 
in the step2 of Binary Inversion Algorithm on average by 
(521-1)1.62+(521/2)1.62=1264.41. 
 

6. CONCLUSION 
We have presented a technique to speed up the computation of 
inversion by reducing the number of iterations. This is 
achieved by applying the concepts of parallel processes which 
use  Binary Inversion Algorithm. This technique has been 
applied to NIST prime  p521 which reduce the number of 
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iterations on average by 1264.41.Our future effort will target 
speeding up computation  of individual computational blocks,  
integration of the  proposed architecture with these arithmetic 

modules to perform scalar multiplication and its FPGA 
implementation.

 

Table3: Number of concurrent inputs x and p-x that produce difference in the number of iterations over different Mersenne’s 

Primes 

Mersenne‟s 
Prime 

Number of concurrent inputs x and p-x 

that produce  difference in number of 
iterations 

Percentage of concurrent 
inputs x and p-x  that produce 

difference in number of 
iterations 

 Average 
difference in 
the number 
of iterations 

27-1 36 56.69 1.6 

213-1 2276 55.57 1.58 

217-1 36912 56.32 1.61 

219-1 147481 56.25 1.629 

231-1 605483014 56.39 1.613 

 
 

Table 4: Average difference in the number of iterations over Mersenne’s Primes 2
61

 -1, 2
89

 -1,  2
107

 -1,  2
127

 -1,  2
521

 -1 
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Mersenne‟s Prime Average difference in the number of iterations 

261 -1 1.65 

289 -1 1.73 

2107 -1 1.54 

2127 -1 1.56 

2521 -1 1.62 


