
International Journal of Computer Applications (0975 – 888)
Volume 47– No.16, June 2012

21

A Technique to Speed up the Modular Multiplicative

Inversion over GF(P) Applicable to Elliptic Curve

Cryptography

V. Sridhar,PhD. Anil Kumar M .N
 Professor Research Scholar

Department of Electronics & Communication PET Research foundation
PET Research foundation, PESCE, Mandya PESCE, Mandya

ABSTRACT
This paper presents a technique to speed up the computation
of inversion of NIST recommended elliptic curve with

modulus p521-1. The property of multiplicative inverse
between pair of numbers over Meresenne‟s prime is used to
reduce the number of iterations in the Binary Inversion
Algorithm in GF(p). This increases the speed requirement for
point operations applicable to Elliptic Curve Cryptography.
This paper proposes an model of the architecture to achieve
the above objective which uses parallelism in multiplicative
inversion arithmetic block to speed up the computation.

Key words
Elliptic curve cryptography, Binary Inversion Algorithm,
GF(p) arithmetic operators.

1. INTRODUCTION
The data security has become an important and urgent need
for modern applications such as health care information,
confidential communication, storage and financial services.
The public key cryptosystem is the most effective for the
secure data transaction and messaging. The challenge to
implement the most popular public key cryptosystem, RSA is

the rapidly growing key size. Elliptic Curve cryptography has
been considered an alternative to RSA.

The application of Elliptic curves in public-key cryptography
was proposed by Koblitz[1] and Miller[2] in 1985. Since then,
enormous amount of work has been done on elliptic curve
cryptography(ECC).The attractiveness of using elliptic curves
is that similar level of security can be achieved with

considerably shorter keys than in methods based on the
difficulties of solving discrete logarithms over integers or
integer factorizations. Therefore ECC has become final choice
in smart cards, credit cards and mobile phones due to its
strength to provide equivalent security compared to RSA. It is
estimated that security level of 160 and 224 bits ECC
cryptosystem is equivalent to the 1024 and 2048 bits RSA
respectively[3,4]

The research on efficient algorithms and hardware
accelerations have concentrated on efficient implementation
of elliptic curve point multiplication which is the fundamental
operation of all elliptic curve cryptosystems. The elliptic
curve point multiplication is computed with point operations
which, further are computed using finite field arithmetic.
Although the point multiplication itself is hard to parallelize,

it is possible to efficiently use parallelism [5],[6],[7], [8] in
field arithmetic specifically to some of the NIST
recommended elliptic curves.

To date, little research has been done on ECC hardware
architectures over GF (p). [10] – [13] described some
important contributions. Satoh and Takano [10], described an
elliptic curve cryptographic processor which is able to operate
in GF (p) and GF (2m). Their work does not fully deal with
modular inversion, which is the costliest operation even with

projective coordinates. They have computed this using
Fermat‟s Little Theorem which requires modular
exponentiation. Orlando and Paar [11], proposed an
architecture using high-radix Montgomery multiplier with
adders and register used to compute field
additions/subtractions and to perform comparisons. Again
Fermat‟s Little Theorem is used to perform modular inversion.
In [12] bitwise computations have been described.

Kendel Anayi, Hamad Alrimeigh, Daler Rakhmatov [9],
described a flexible ECC processor for performing additions,
subtractions, multiplications and inversions over prime finite
fields GF(p). They have used Binary Inversion Algorithm to
perform modular inversion. We have developed a technique to
speed up the computation of this modular multiplicative
inverse computation.

The main contributions of this work include the following.
i) A technique to speed up the computation

of modular multiplicative inversion which
uses Binary Inversion Algorithm. This
technique can be used specifically to
NIST recommended elliptic curve with
modulus p521-1.

ii) A model of the architecture for inversion

is proposed which uses parallelism in
multiplicative inversion arithmetic block
to speed up the computation

The outline of this paper is as follows. In section 2, the back
ground of Elliptic Curve Cryptography (ECC) is discussed. In
section 3, how the property of multiplicative inverse between
pair of numbers over a Mersenne‟s prime speed up the

computation which uses Binary Inversion Algorithm is
discussed. Section 4 deals with the proposed model of the
architecture for inversion, section 5 deals with the results and
finally section 6 concludes the work.

2. ECC BACKGROUND

2.1 Elliptic Curves over GF (P)
The elliptic curve arithmetic is defined over Galois field
GF(p) where p is a prime number greater than 3 . All
arithmetic operations are modulo p. The elliptic curve
equation E over GF(p) is given by:y2 = x3 + ax + b ; where p

> 3, 4a3 + 27b2≠ 0, and x, y, a,b∈ GF(p). There is also a single
element named the point at infinity or the zero point denoted

International Journal of Computer Applications (0975 – 888)
Volume 47– No.16, June 2012

22

O, which serves as the additive identity. For any point P(x,
y)∈E , we have: P + O = P .

2.2 Point addition and Point Doubling
Additions in GF(p) are controlled by the following rules:

O = -O
P(x, y) + O = P(x, y)
P(x, y) + P(x, -y) = O

The addition of two different points on the elliptic curve is
computed as shown below.
 P(x1 , y1) + P(x2 , y2) = P(x3 , y3) ; where x1 ≠ x2

λ = (y2 – y1)/(x2 – x1)
x3 = λ2 – x1 – x2
y3 = λ(x1 – x3) – y1

The addition of a point to itself (point doubling) on the elliptic
curve is computed as shown below

P(x1 , y1) + P(x1 , y1) = P(x3 , y3);
 λ = (3(x1)

2 + a) /(2y1)
x3 = λ2 – 2x1

y3 = λ(x1 – x3) – y1

2.3 Point Multiplication
Scalar multiplication Q=k.P is the result of adding point P to
itself (k-1) times

 Q = k.P = P + P + ……. + P.
 (k-1 Times)
The binary method is the simplest and oldest efficient method
for point multiplication. It is based on the binary expansion of
k. The corresponding algorithm shown in Fig.1.

INPUT: A point P and an integer k
OUTPUT: Q = k.P

1. Q←P

2. For j = L− 2… 1, 0

2.1 Q ← 2 Q
2.2 IF k j = 1 THEN Q←Q + P
3. RETURN Q

Fig.1: Binary scalar multiplication algorithm adopted from [7]

If we assume that on average „n‟ is the number of ones in k
which is equal to n = L / 2, the binary method requires (L −1)
point doublings and n point-additions where L denotes the
number of bits of the scalar k. The point doubling and point
addition require inversion. Hence the average number of
inversion is (L-1) + n.

3. SPEEDING UP MULTIPLICATIVE

INVERSE COMPUTATION
In this section, Binary Inversion Algorithm for inversion over
GF(p), property of multiplicative inverse between pair of two

numbers over Mersenne‟s prime and how this property speed
up the multiplicative inverse computation is discussed.

3.1. Binary Inversion Algorithm
The extended Euclidean algorithm uses the division

operations to compute the inversion. The binary inversion
algorithm replaces the divisions with cheaper shifts (divisions
by 2) and subtractions.

The modular multiplicative inverse a-1 mod p of an integer a
exists if and only if a and p are relatively prime, that is gcd
(a,p) =1. One of the efficient modular inversion algorithms is
Binary Inversion Algorithm shown below.

 INPUT: Prime p and a ∈ [1, p-1]

OUTPUT: a-1 mod p

1. u=a, v=p, x1=1, x2=0
2. while (u !=1 and v!=1) do

 while u is even do
2.2.1 u = u/2

2.2.2 if x1 is even then x1= x1/2 else
 x1= (x1+p)/2

 2.3 end while
 2.4 while v is even do
 2.5.1 v= v/2
 2.5.2 if x2 is even then x2= x2/2 else
 x2 = (x2+p)/2
 2.6 end while

 2.7 if u≥ v then u=u-v, x1=x1-x2
 2.8 else v=v-u, x2=x2-x1
 3. end while
 4.1 if u=1 then return x1 mod p
 4.2 else return x2 mod p

Fig.2: Binary Inversion Algorithm in GF(p)

The step 2 of the algorithm runs iteratively. The steps from

2.1 to 2.3 and steps from 2.4 to 2.6 perform concurrently. A
speed improvement can be obtained if the number of iterations
(subtractions) of step2 is reduced. The binary modular
inversion algorithm can be easily be modified to perform
modular division b/a mod p by initializing x1 variable in step
1 by b instead of 1.In the subsequent sections iteration denote
subtraction.

3.2 The property and the technique to

reduce the number of iterations
If x is a number [1 ≤x ≤p-1] and p is a Mersenne‟s prime then

the multiplicative inverse of p-x(this is obtained by p XOR x)
is the complement of multiplicative inverse of x. The table 1
illustrates this property.

The number of iterations of step2 to compute the inverse in
the Binary Inverse Algorithm is different for x and p-x. The
table 2 shows the number of iterations of step 2 of Binary
Inversion Algorithm over Mersenne‟s prime p31.

International Journal of Computer Applications (0975 – 888)
Volume 47– No.16, June 2012

23

Table 1. The relation between multiplicative inverse of x and p-x over p31

 Number

x in decimal

Binary

of

x

x
-1

in

decimal

x
-1

 in

binary

Number

p-x in

decimal

Binary

of

p-x

(p-x)
-1

in

decimal

(p-x)
-1

 in

binary

1 00001 1 00001 30 11110 30 11110

2 00010 16 10000 29 11101 15 01111

3 00011 21 10101 28 11100 10 01010

4 00100 8 01000 27 11011 23 10111

5 00101 25 11001 26 11010 6 00110

6 00110 26 11010 25 11001 5 00101

7 00111 9 01001 24 11000 22 10110

8 01000 4 00100 23 10111 27 11011

9 01001 7 00111 22 10110 24 11000

10 01010 28 11100 21 10101 3 00011

11 01011 17 10001 20 10100 14 01110

12 01100 13 01101 19 10011 18 10010

13 01101 12 01100 18 10010 19 10011

14 01110 20 10100 17 10001 11 01011

15 01111 29 11101 16 10000 2 00010

Table 2. Number of iterations (subtractions) of step2 to compute the inverse in the Binary Inverse Algorithm for number x

and p-x over p31.

Number x
Number of
Iterations

Number p-x
Number of
iterations

Difference in the
number of
iterations

1 0 30 7 7

2 2 29 3 1

3 7 28 10 3

4 3 27 4 1

5 7 26 7 0

6 8 25 9 1

7 8 24 10 2

8 4 23 5 1

9 5 22 9 4

10 8 21 8 0

11 8 20 9 1

12 9 19 9 0

13 6 18 6 0

14 9 17 7 2

15 6 16 5 1

Average difference in the number of iterations 24/15=1.6

If each of all possible x, p-x inputs are processed concurrently
in the Binary inversion algorithm, it is found that 11 out of 15
combinations produces different number of iterations in step 2.
Only 4 out of 15 possible combinations have same number of
iterations. The difference in the number of iterations for x
and p-x inputs ranges from 0 to 7.

In order to speed up the computation of multiplicative
inversion, we have proposed parallel architectures namely,
process1 and process2 which are discussed in the section 4.
Both the processes are Binary Inversion Algorithm. The
process 1 computes inversion of x while process 2 computes
inversion of p-x concurrently. The computation time is
different for process 1 and process 2 because of the difference

in the number of iterations of step2. Hence either of the
processes computes inversion faster than the other for 74%
(with respect to the table 2) of all the possible concurrent
inputs. If the output is taken from process 2, the result of the
process is inverted else it is taken directly from the process 1.
Hence a speed improvement is obtained by reducing the
number of iterations with concurrent processes with additional

two inversions (one inversion to obtain the input p-x from x
and another to obtain inverted output from process2). The
schematic of this technique is shown in figure 3.

4. PROPOSED MODEL OF

ARCHITECTURE
The Binary Inversion Algorithm in GF(p) can be implemented
by hardware. Our proposed model consists of parallel
arithmetic units for the computation of inversion. One

arithmetic unit computes the inversion of input x while other
arithmetic unit computes the inversion of p-x input
concurrently. The results shown in the section 5 indicates that
this parallel architecture can be implemented to speed up the
computation of inversion. The following section describes
architecture of process1. For the process2 we instantiate the
same architecture by replacing u,v,p,x1 and x2 by p-u,v,p,x1
and x2.

After loading u,v,p,x1 and x2 values into registers(step1 of
Algorithm), the two comparators compare the values of u and
v registers with 1(step2 of algorithm).If any one of

International Journal of Computer Applications (0975 – 888)
Volume 47– No.16, June 2012

24

comparator output becomes true then the final result is made
available in x1 or x2. The comparators output can be used to
select either x1 or x2 through multiplexers.

There are two blocks, block1 and block2 which perform

concurrently. Block1 performs steps 2.1, 2.2.1, 2.2.2, 2.3 and
block2 performs steps 2.4, 2.5.1, 2.5.2, 2.6 respectively. The
outputs of block1 and block2 are the updated values of u, x1
and v, x2 respectively.

The block3 performs the computation of step 2.7 and step 2.8.
The updated values of u, x1, v, x2 are made available from
block1 and block2 to block 3 if both the u and v values are
odd. The updated values can be made available to block 3 by
performing AND operation of the least significant bits of u

and v and selecting through a multiplexer. The Figure 4

shows the proposed model of the architecture .

 x p p-x p

 x-1modp x-1modp

Fig.3: Schematic of the technique

u x1 p v x2

Fig.4: Proposed Model of the Architecture

5. RESULTS AND DISCUSSION
In order to compute the efficiency of this technique, we
computed the number of concurrent inputs x and p-x that
produce difference in the number of iterations and average
difference in the number of iterations over different
Mersenne‟s Primes. The results of these are tabulated in table

3.
Because of the unfeasibility to compute average difference in
the number of iterations with all possible concurrent inputs x
and p-x over Mersenne‟s Primes 261 -1, 289 -1, 2107 -1, 2127 -1,
2521 -1, we computed average difference in the number of
iterations over randomly selected areas of number space of

each prime. The result of this is tabulated in Table 4. It is

found that the Binary Scalar Multiplication algorithm to
compute Q=k.P over GF(p521) reduce the number of iterations
in the step2 of Binary Inversion Algorithm on average by
(521-1)1.62+(521/2)1.62=1264.41.

6. CONCLUSION
We have presented a technique to speed up the computation of
inversion by reducing the number of iterations. This is
achieved by applying the concepts of parallel processes which
use Binary Inversion Algorithm. This technique has been
applied to NIST prime p521 which reduce the number of

comparators

Block1

Block2

multiplexers

Block3

Output

Process 1:
Binary Inversion

Algorithm

Process 2:
Binary Inversion

Algorithm

complement

complement

International Journal of Computer Applications (0975 – 888)
Volume 47– No.16, June 2012

25

iterations on average by 1264.41.Our future effort will target
speeding up computation of individual computational blocks,
integration of the proposed architecture with these arithmetic

modules to perform scalar multiplication and its FPGA
implementation.

Table3: Number of concurrent inputs x and p-x that produce difference in the number of iterations over different Mersenne’s

Primes

Mersenne‟s
Prime

Number of concurrent inputs x and p-x

that produce difference in number of
iterations

Percentage of concurrent
inputs x and p-x that produce

difference in number of
iterations

 Average
difference in
the number
of iterations

27-1 36 56.69 1.6

213-1 2276 55.57 1.58

217-1 36912 56.32 1.61

219-1 147481 56.25 1.629

231-1 605483014 56.39 1.613

Table 4: Average difference in the number of iterations over Mersenne’s Primes 2
61

 -1, 2
89

 -1, 2
107

 -1, 2
127

 -1, 2
521

 -1

7. REFERENCES
[1] N. Koblitz, “Elliptic curve cryptosystems”,

Math.comput., vol.48,pp.203-209,1987.

[2] V.Miller, “Use of elliptic curves in cryptography”, in
Advances in Cryptology (CRYPTO), Newyork:Springer,
1986,vol.218,pp.417-426.

[3] A.Daly, W.Marnane, T.Kerins, E.Popovici, An FPGA
implementation of a GF(p) ALU for encryption
processors, Microprocessors and Microsystems,
vol.28,2004,pages 253-260.

[4] Santhosh Ghosh, Monjur Alam,Indranil Sen Gupta ,
Dipanwita Roy Chowdhury, IIT Kharagpur,10th
Euromicro Conference on Digital System Design
Architectures, Methods and Tools(DSD 2007).

[5] G.B. Agnew, R.C. Mullin and S.A Vanstone”, An
implementation of elliptic curve cryptosystems over
F2155”, IEEE J. Selected Areas of Communication,
vol.11,n05,pp.804-813, Jun.1993.

[6] J. Goodman and A. Chandrakasan, “An energy efficient
reconfigurable public-key cryptography processor
architecture”, in Cryptographic Hardware and Embedded
Systems (CHES). New York: Springer, 2000,

vol.1965,pp.175-190.

[7] A.Satoh and K.Takano, “A Scalable dual-field elliptic
curve cryptography processor”, IEEE Transaction on
Computers, vol.52,no.4,pp.449-460,Apr.2003

[8] Kimmo Jarvinen and Jorma Skytta, “On Parallellization
of High-Speed Processors for Elliptic Curve
Cryptography”, IEEE transactions on VLSI Systems
vol.16, no.9,Sept.2008.

[9] Kendall Anayi,Hamad Alrimeih and Daler Rakhmatov,

“Flexible Hardware Processor for Elliptic Curve
Cryptography”, IEEE Transactions on VLSI Systems,
vol.17,No.8,August 2009.

[10] A.Satoh and K. Takano, “A scalable dual-field elliptic
curve cryptographic processor”, IEEE Trans. Comput.,
vol.52,no.4,pp.449-460, April 2003.

[11] G. Orlando and C. Paar, “ A scalable GF(p) Elliptic
Curve Processor Architecture for Programmable

Hardware”, pp.356-371, CHES 2001, LNCS 2162.

[12] S.B. Ors, L. Batina and B. Preneel, “ Hardware
implementation of elliptic curve processor over GF(p)”,
in Proc. 14th IEEE International Conference on
Application-Specific Systems, Architectures and
Processors, Jun 2003, pp.433-443.

[13] Ciaran J.Mcivor, Marie McLoone, “Hardware Elliptic
Curve Cryptographic Processor Over GF(p)”, IEEE

Trans. On Circuits and Systems-1, vol.53,No.9,
September 2006.

Mersenne‟s Prime Average difference in the number of iterations

261 -1 1.65

289 -1 1.73

2107 -1 1.54

2127 -1 1.56

2521 -1 1.62

