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ABSTRACT 

An accurate fault classification and distance location 
algorithm for Teed transmission Circuit based on application 
of artificial neural networks (ANN) is presented in this paper. 
The proposed algorithm uses the fundamental component of 
voltage and current signals of each section measured at one 
end of teed circuit to detect, classify and locate the faults. 

ANN has the ability to classify the nonlinear relationship 
between measured signals by identifying different patterns of 
the associated signals. The adaptive protection scheme based 
on application of ANN is tested for shunt faults, varying fault 
location, fault resistance and fault inception angle. An 
improved performance is experienced once the neural network 
is trained adequately, which gives accurate results when faced 
with different system parameters and conditions. The entire 

test results clearly show that the fault is detected, classified 
and located within one cycle; thus the proposed adaptive 
protection technique is well suited for teed transmission 
circuit fault classification, distance location and faulty section 
identification. Results of performance studies show that the 
proposed neural network-based module can improve the 
performance of conventional fault selection algorithms.  

Keywords 
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1. INTRODUCTION 
Protection of multi-terminal lines is not as simple as that of 
two-terminal lines. They usually experience additional 
problems caused by the intermediate infeed from the third 
terminal, or an outfeed to the terminal, difference in line 
length to tee point and also due to different source impedances 
[1]. Most of the work reported deals with two terminal lines 
with less attention to teed feeders transmission line 
configurations. In [2] the high frequency traveling-wave 

information contained in the post fault voltage and current 
signals are used for protection of teed circuits. The main 
problems of the traveling wave method is that it requires high 
sampling rates and has a difficulty in distinguishing between 
traveling waves from the fault and the remote end of the line. 
The wavelet transform analysis [3, 4] is based on the high-
frequency components of the fault generated signals on each 
terminal of the system. The limitation stated is that at low 

signal-noise ratio (SNR), the method becomes inefficient. In a 
directional comparison technique [5] the polarity of the fault 
generated transient current signals is detected at each end of 
teed circuit and is then sent over to the line remote ends 
through communication link. A digital differential relaying 

scheme [6] involves deriving differential signals that are 
functions of both voltages and currents measured at each end. 

The scheme is based on master and slave principles using a 
fibre optic link as a means of communication between ends. 
Fault Location algorithm for locating unbalanced faults based 
on negative-sequence quantities from all line terminals for 
two or three terminal lines is reported in [7]. Fault location 
schemes using synchronized phasor measurements for multi-
terminal transmission line have been developed in [8-10].  
There has been a very limited attention to the use of artificial 

neural network for protection of teed transmission circuit [11]. 
Eyada et. al [11] use radial basis function neural network for 
fault distance location in teed circuits and also detects the 
fault but the network does not identify the phase in which the 
fault occurs.  

 ANN is powerful in pattern recognition, classification and 
generalization. ANN-based techniques show a great 
enhancement in the accuracy of fault classification and 

location in comparison with the conventional techniques. This 
is due to the features of ANN which do not exist in the 
conventional methods such as the capability of non-linear 
mapping, parallel processing, learning and generalisation. In 
this work, we present an extension to our work which 
addresses double circuit transmission lines fault detection and 
classification based neural network [13], to teed circuit 
transmission line. Based on the authors’ comprehensive 
digital simulations of the teed-circuit transmission systems, 

particular emphasis is placed on data preprocessing for feature 
extraction used as inputs to the ANN. The pattern classifier, 
i.e. the protection technique, is tested for shunt faults (LG: 
single phase to ground, LLG: double phase to ground, LL: 
phase to phase, LLLG: three phase to ground fault) under 
different fault locations, fault resistances, and fault inception 
angles. A 220 kV teed-circuit line configuration is simulated 
using MATLAB®-Simpower and Simulink software.  

2. TEED TRANSMISSION SYSTEM 

MODELLING 
The system studied is composed of 220kv teed transmission 
circuit with section lengths 200 km (section-1), 120 km 
(section-2) and 110 km (section-3), connected to sources at 
each end. The single line diagram of the teed transmission 
circuit is shown in Fig. 1. Short circuit capacity of the 
equivalent thevenin sources on each sides of the line is 
considered to be 1.25 GVA and X/R ratio is 10. The 
transmission line is simulated with distributed parameter line 

model using MATALB® software as shown in Fig.2. Teed 
circuit transmission line parameters are shown in Table 1. 
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Fig.1 Single line diagram of power system under study. 

 

 

 

 

 

 

 

 

 

Fig.2. Power system model simulated in MATLAB Simulink software. 

Preprocessing is a useful method that significantly reduces the 
size of the neural network and improves the performance and 
speed of training process [14]. Three phase voltages and three 
phase current input signals were sampled at a sampling 
frequency of 1 kHz and further processed by simple 2nd-order 
low-pass Butterworth filter with cut-off frequency of 400 Hz. 
Subsequently, one full cycle Discrete Fourier transform is 
used to calculate the fundamental component of voltages and 

currents. The input signals were normalized in order to reach 
the ANN input level (±1).   

 

Table 1 Teed circuit line parameter 

Positive sequence resistance R1, Ω/km 0.01809 

Zero sequence resistance R0, Ω/km 0.2188 

Positive sequence inductance L1, H/km 0.00092974 

Zero sequence inductance L0, H/km 0.0032829 

Positive sequence capacitance C1, F/km 1.2571e-008 

Zero sequence capacitance C0, F/km 7.8555e-009 

3. PROPOSED ANN BASED FAULT 

CLASSIFIER AND LOCATOR  
The various steps used to implement a neural network in the 
fault detection, classification and distance location algorithm 
in teed circuit transmission line is described below. 

3.1 Selecting the ANN architecture 
The network inputs chosen here are the magnitudes of the 
fundamental components (50 Hz) of three phase voltages and 
three phase currents of each section measured at one end. The 
basic task of fault classification is to determine the type of 
fault along with the phase; the outputs of the ANN are: three 

outputs corresponding to three phases, one output to represent 
whether neutral is involved in the fault loop and three outputs 
to represent in which line section fault is present. Thus, total 
seven outputs were considered to be provided by the network 

for fault classification. The inputs 1X
and outputs 1Y

for the 
fault classification network are: 











3,3,3,3,3,3

,2,2,2,2,2,2,1,1,1,1,1,1
1

cIbIaIcVbVaV

cIbIaIcVbVaVcIbIaIcVbVaV
X      --(1) 

  3,2,1,,,,1 SSSGCBAY              --(2)     

Similarly, for fault location task, where we have to determine 
the distance to the fault, it was decided that the distance to the 
fault in km with regard to the total length of the line should be 
the only output provided by the fault location network. Thus 

the input 2X
and the output 2Y

for the fault location network 
are: 











3,3,3,3,3,3

,2,2,2,2,2,2,1,1,1,1,1,1
2

cIbIaIcVbVaV

cIbIaIcVbVaVcIbIaIcVbVaV
X   --(3) 

 

    fLY 2                                                             --(4) 

The number of neurons in hidden layer is determined 
empirically by experimenting with various network 
configurations. Through a series of trials and modifications of 
the ANN architecture, the best performance was achieved by 
using a three layer network with 18 neurons in the input layer, 
13 neurons in the hidden layer, and 7 neurons in the output 
layer as shown in Fig. 3. The final determination of the neural 
network requires the relevant transfer functions in the hidden 

and output layers to be established. Activation function of the 
hidden layer is hyperbolic tangent sigmoid function. Neurons 
with sigmoid function produce real valued outputs that give 
the ANN ability to construct complicated decision boundaries 
in an n-dimensional feature space. This is important because 
the smoothness of the generalization function produced by the 
neurons, and hence its classification ability, is directly 
dependent on the nature of the decision boundaries. Saturating 

linear transfer function (Satlin) has been used in the output 
layer as shown in Fig. 3. Depending on the fault type which 
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occurs on the system, various outputs of the network should 
be 0 or 1. For fault distance location task, three layer network 
with 18 neurons in the input layer, 40 neurons in the hidden 
layer and 01 in the output layer was found to be suitable with 
pure linear function “purelin” in the output layer as shown in 

Fig. 4.  

 
Fig.3. Structure of ANN Based Fault Detector and 

Classifier 
 

Fig.4. Structure of ANN Based Fault Locator 
 

3.2 Training Process 
Using SIMULINK & SimPowerSystem toolbox of MATLAB 
each type of fault (SLG, LLG, LL, LLLG each section) at 
different fault locations between 0-90% of line length and 
fault inception angles between 0 & 90° have been simulated 
as shown below in Table 2. The number of fault simulated for 
single phase to ground faults (AG, BG, CG for each section) 
are: 180 for section 1 (= 3*10*3*2) i.e. (types of fault 
*number of fault locations*fault resistances*fault inception 

angles), 108 (= 3*6*3*2) for section 2 and 108 (= 3*6*3*2) 
for section 3. Thus, the total number of fault cases simulated 
for single phase to ground faults is 396. The number of cases 
simulated for double phase to ground faults (ABG, BCG and 
CAG) for each section is:  360 (3*20*3*2 for section 1), 216 
(3*12*3*2 for section 2) and 198 (3*11*3*2 for section 3) 
forming total number of fault cases simulated for double 
phase to ground faults as 774. The number of cases studied for 

phase to phase faults (AB, BC, CA) for each section are:  120 
(3*20*1*2 for section 1), 72 (3*12*1*2 for section 2) and 66 
(3*11*1*2 for section 3) forming total number of fault cases 
simulated for phase to phase faults are 258. Similarly, the 
number of cases simulated for three phase to ground faults are 
120 (1*20*3*2 for section 1), 72 (1*12*3*2 for section 2) and 
66 (1*11*3*2 for section 3), which add to a total 258 cases. 
From each fault case ten numbers of post fault samples have 

been extracted to form the data set for neural network. 40 
samples during no fault are also collected for the fault 
classification task. Thus, the total number of patterns 
generated for training is 16900 for the fault classification and 
location task. When network was trained with large training 
data set, it requires large memory and large computing time. 
Therefore, speed of training is very low. In order to 
compensate for this four different modules i.e. single phase to 
ground, double phase to ground, phase to phase and three 

phase to ground fault classifiers and four corresponding 
locator modules  are designed for fault classification and 
location task.  

 

 

 

 

Table 2 Patterns Generation 

S.No. Parameters                                   Set values 

1.  Fault type AG,BG,CG,ABG,BCG, 

CAG,AB,BC,CA,ABCG 

2. Fault location in 
km 

Section 1 - 0,10,20,30….190 km 
Section 2 - 0,10,20,30....110 km 
Section 3 - 0,10,20,30....100 km 

3. Fault inception 
angle 

0° and 90° 

4. Fault resistance 0,50 and 100 Ω 

 
The networks for fault classification and fault distance 
location were trained using Levenberg–Marquardt training 
algorithm using neural network toolbox of Matlab [15]. 
Architectures of ANN based fault classifier and locator 
modules are shown in Table 3. The number is epochs required 
for training varies from 50 to 350 to reduce the mean square 

error below 0.001. As the training is done off line, the 
iterations and time required for training are not of great 
concern. The trained network is tested for new cases, not 
covered in training pattern to demonstrate the viability of the 
proposed network.    

 

Table 3 Architectures of ANN Based Fault Classifiers and 

Locators 

S. 
No 

Type of 
network 

Number of neurons Mean 
square 
error 

No. 
of 
epoch 

Input 
layer 

Hidden 
layer  

Output 
layer 

1. LG 

classifier  

18 13 7 1.79019

e-04 

66 

2. LLG  
classifier 

18 13 7 1.09385
e-027 

64 

3. LL 
classifier 

18 13 7 2.74725
e-04 

37 

4. LLLG 

classifier 

18 13 7 2.1978 

e-004 

58 

5. LG 
locator 

18 40 1 1.16026
e-003 

300 

6 LLG 
locator 

18 40 1 8.79447
e-005 

300 

7. LL 
locator 

18 40 1 7.68118
e-007 

350 

8. LLLG 
locator 

18 40 1 6.55253 
e-006 

300 

4. TEST RESULTS OF ANN BASED 

FAULT DETECTOR, CLASSIFIER AND 

LOCATOR  
ANN based Fault detector, classifier and locator modules were 

then extensively tested using independent data sets consisting 
of fault scenarios never used previously in training. Fault type, 
fault location and fault inception angle were changed to 
investigate the effects of these factors on the performance of 
the proposed algorithm. 

4.1  Test results of single phase to ground 

fault (LG) 
The network was tested by presenting different single phase  
to ground fault cases with varying fault locations (0-90% of 
total length) and fault inception angles (Φi =0-360°). Fig.5 

(a,b) and Fig.6 show the test results of the ANN based fault  
classifier and fault locator module respectively for “B” phase 
to ground fault in section-1 at 70km, for fault inception time 
72.5ms (Φi = 225°) and fault resistance Rf = 75Ω. It is clear 
from Fig.5 (a,b) that all the outputs of ANN are low (0) before 
the inception of fault and further after the inception of fault at 

IW{1,1} 

b{1} 

LW{2,1} 

b{2} 

13 Neurons 
7 Outputs 

18 Inputs 

IW{1,1} 

b{1} 

LW{2,1} 

b{2} 

40 Neurons 1 Output 
18 Inputs 
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72.5ms the output of the corresponding phase “B”, ground 
“G” and the faulty section “S1” becomes high (1) at 91ms 
time i.e. within one cycle time and all other outputs are low. 
Thus, the fault is simultaneously detected and classified and 
also the section is identified.  
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Fig.5(a)
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Fig.5.(a, b) Test result of single phase to ground fault 

classifier module for BG fault at 70km from section-1 at 

fault inception time  = 72.5ms (Φi =225˚) and fault 

resistance Rf=75Ω. 
The output of ANN based fault locator i.e. estimated fault 
location (Le km) as shown in Fig. 6 is 69.441 at 89ms as 

against the actual fault location 70km,  after one cycle from 
the inception of fault; thus the percentage error in estimation 
of fault location is 0.294%. 
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Fig.6. Test result of single phase to ground fault locator 

module for BG phase to ground fault at 70km from 

section-1 at fault inception time =72.5ms (Φi =225˚) and 

fault resistance Rf=75Ω. 

4.2 Test results of double phase to ground 

fault (LLG) 
The network is tested for a double phase to ground fault 
“ABG” fault in section-2 at 52km, fault inception time is 
60ms (Φi =0°) and fault resistance Rf  = 60Ω. Fig. 7(a,b) and 
Fig. 8 shows the test results of the ANN based fault detector, 
classifier and fault locator module. The output of ANN 

becomes high after 71ms time in corresponding phases A, B, 
ground “G” and section-2 and all other outputs are low. Also 
the estimated fault location is 51.9242km at 81ms as against 
the actual fault location 52km as shown in Fig. 8, thus it is 
located accurately with 0.0689% error. 
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Fig.7(a) 
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Fig.7 (a,b). Test result of double phase to ground fault 

classifier module for ABG fault at 52km from section-2 at 

fault inception angle Φi =0˚ (60ms), and fault resistance 

Rf=60Ω. 
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Fig.8. Test result of double phase to ground fault locator 

module for ABG fault at 52km from section-2 at fault 

inception time =60 ms (Φi =0˚), and fault resistance 

Rf=60Ω. 

4.3 Test results of phase to phase fault LL) 
The test results of the ANN based fault detector, classifier and 
fault locator module for “CA” fault in section-2 at 45km, fault 
inception time = 70ms (Φi = 180°) and fault resistance Rf  = 
0Ω are shown in Fig. 9(a,b) and Fig. 10. The output of ANN 
becomes high (1) at 88ms in corresponding phases “C and A” 

and section-2 within one cycle time from the inception of fault 
and all other outputs are low. The estimated fault location is 
45.1375km at 90ms as against the actual fault location 45km 
as shown in Fig. 10, thus the fault located is estimated 
accurately with -0.125% error. 

4.4 Test results of three phase to ground 

fault (LLLG) 
Fig. 11 (a,b) and Fig. 12  show the test results of the ANN 
based fault classifier and fault locator module  for “ABCG” 
fault in section-1 at 75km for fault inception time of 70ms  (Φi 

= 180°) and fault resistance Rf = 75Ω. The output of ANN 
shown in Fig. 11(a,b) becomes high (1) at 87ms in 
corresponding phases “A, B, C, G” ground and section-2 
within one cycle time from the inception of fault and all other 
outputs are low. The estimated fault location is 75.1028km at 
91ms as against the actual fault location 75km as shown in 
Fig. 12, thus the fault located is estimated accurately with -
0.054% error. 
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Fig.9(a) 
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Fig.9 (a,b). Test result of phase to phase fault classifier 

module for CA fault at 45km from section-2 at fault 

inception time = 70ms (Φi =180˚). 
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Fig.10. Test result of phase to phase fault locator module 

for CA fault at 45km from section-2 at fault inception time 

=70ms (Φi =180˚). 
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Fig.11(a) 
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Fig.11(b) 

Fig.11 (a,b). Test result of three phase to ground fault 

classifier module for ABCG fault at 75km from section-1 

at fault inception angle Φi =180˚and fault resistance 

Rf=75Ω.  
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Fig.12. Test result of three phase to ground fault locator 

module for ABCG fault at 75km from section-1 at fault 

inception angle Φi =180˚(70ms) and fault resistance 

Rf=75Ω. 
 

It is clear from test results shown above that, the faults are 
correctly detected, classified and faulty section is identified 
and located accurately. Some test results of ANN based fault 

detector, classifier and locator modules are shown in Table 4 
and 5. During training of the neural network, samples of fault 
cases with only two values of fault inception angle (0° and 
90°) and three values of the fault resistance (0, 50 and 100 Ω) 
have been taken. However, while testing the neural network 
wide variation in fault inception angle (0-360°) and fault 
resistance (0-100Ω) have been studied as shown in Table 4 
and 5.  

 

 

Table 4. Test results of ANN based fault detector and classifier  

Section Fault 
type 

Fault 
inception    
angle in ° 

Fault location in 
km  

Fault resistance in 
Ω 

ANN based fault detector and classifier 
output 

A B C G S1 S2 S3 

1 AG 0 130 75 1 0 0 1 1 0 0 

BG 225 70 75 0 1 0 1 1 0 0 

CG 270 90 95 0 0 1 1 1 0 0 

ABG 90 30 90 1 0 0 1 1 0 0 

BCG 225 70 45 0 1 0 1 1 0 0 

CAG 270 90 90 0 0 1 1 1 0 0 

AB 90 30 0 1 0 0 1 1 0 0 

BC 225 70 0 0 1 0 1 1 0 0 

CA 315 110 0 0 0 1 1 1 0 0 

ABCG 0 130 75 1 1 1 1 1 0 0 

2 AG 45 90 95 1 0 0 1 0 1 0 

CG 315 10 75 0 0 1 1 0 1 0 

ABG 135 40 75 1 0 0 1 0 1 0 

BCG 135 50 75 0 1 0 1 0 1 0 

CAG 360 70 90 0 0 1 1 0 1 0 

AB 45 90 0 1 0 0 1 0 1 0 

CA 360 70 0 0 0 1 1 0 1 0 

ABCG 270 10 75 0 1 0 1 0 1 0 

3 BG 135 10 75 0 1 0 1 0 0 1 

CG 360 70 95 0 0 1 1 0 0 1 

ABG 45 30 75 1 0 0 1 0 0 1 

BCG 135 10 50 0 1 0 1 0 0 1 
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CAG 270 50 100 0 0 1 1 0 0 1 

BC 90 90 0 0 1 0 1 0 0 1 

CA 270 50                 0 0 0 1 1 0 0 1 

 

Table 5 Test results of ANN based fault locator 
Section Fault 

type 
Fault inception    

angle in ° 
Fault 

resistance 
in Ω 

Fault location 
in km 

Calculated Output 
Lf (km) 

Percentage        
Error (%) 

1 AG 135 50 78 77.57 -0.215 

 BG 315 45 155 154.26 -0.37 

 CG 90 75 168 168.76 0.38 

ABG 90 60 30 30.584 0.292 

BCG 180 45 50 49.23 -0.385 

CAG 270 100 90 90.595 0.2975 

AB 225 0 70 69.33 -0.335 

BC 270 0 90 90.895 0.4475 

ABCG 180 100 170 170.43 0.215 

2 AG 180 50 89 89.54 0.45 

 CG 135 100 46 46.48 0.4 

ABG 135 50 55 54.926 -0.0617 

BCG 180 75 40 40.377 0.314 

CAG 315 50 85 84.16 -0.70 

AB 270 0 95 94.37 -0.525 

CA 90 0 57 57.32 0.266 

3 AG 180 75 48 48.43 0.390 

 ABG 45 60 100 102.12 1.92 

BCG 135 50 35 34.366 -0.576 

CAG 360 100 65 65.551 0.500 

CA 135 0 86 86.45 0.409 

ABCG 90 100 29 29.52 0.473 

 

 

In Tables 5, the maximum deviation of the estimated distance 
Le measured from the relay location and the actual fault 
location Lf is calculated and the resulting estimated error “e” 

is expressed as a percentage of total line length L of that 
section as: 

   %100



L

eLfL
e  ---(5) 

In all the fault cases, the results show that the errors in 
locating the fault are in the range of -0.7% to +1.92%. Thus, 
all test results are correct with reasonable accuracy. 

5. CONCLUSION 
An accurate algorithm and ANN architecture for fault 
detection, classification and distance location for shunt faults 
on teed circuit transmission line fed from sources at all three 
ends is presented in this work. The algorithm employs the 
fundamental components of three phase voltages and the three 
phase currents of each section measured at one end, thus 
requiring less communication. The algorithm provides 

automatic determination of fault type, faulted phases and fault 
distance location after one cycle from the inception of fault. 
The algorithm effectively eliminates the effect of varying fault 
location, fault inception angle and fault resistance. The 
performance of the proposed scheme has been investigated by 
a number of offline tests. The complexity of the possible types 
of faults (LG, LLG, LL, and LLLG for each section), varied 
fault locations (0-90%), fault inception angles (0 & 360°) and 

fault resistance (0-100Ω) are investigated. The proposed 
scheme allows the protection engineers to increase the reach 
setting i.e. a greater portion of line length can be protected as 
compared to earlier techniques.  
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