
International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

12

An Adaptive Scheduling System for Computational Grid

using Autonomic Computing

Ebrahim Aghaei
Department of Computer
Engineering, Science and

research Branch,
Islamic Azad University

Khouzestan-Iran

Mohammad Saniee
Abadeh

Electrical and Computer
Engineering Faculty,

Tarbiat Modares University
Tehran

Mohammad Hossein
Yektaie

Department of IT,
Faculty of Technology and

Engineering, Qom University
Gom

ABSTRACT

Grid computing provides an environment to be share software
and hardware resources.Ontheonehand,
environmentofGridcomputingis inherently large, complex,
heterogeneous and dynamic and its state changes over time,
on the other hand, incoming job to Grid show unstable
behavior, which before that is not known and changes over
time. As regards that scheduling in Grid has a vital role in

overall system performance, the need to scheduling methods
to adapt themselves to conditions in Grid, and regarding
current state of the environment and jobs the scheduler must
be able to make decisions. In this article, for the scheduling of
computational Grid, we have used Autonomic Computing
principles to enable Grid scheduler dynamically adapt itself
totheenvironmentandincreaseefficiency. Autonomic
computing systems are inspired by biologically systems which
their goal is to manage themselves with minimal involvement

of managers. Autonomic computing is suitable for a
computational Grid because of the large, heterogeneous,
dynamic and autonomous nature of the Grid. The proposed
method in this study, in terms of makes pan, execution time
and resource utilization has shown higher performance,
compared to other methods and related numerous
experiments.

General Terms

Adaptive Algorithms, Grid Scheduling, Autonomic Grid.

Keywords

Computational Grid, Grid Scheduling, Adaptive Scheduling,
Autonomic Computing.

1. INTRODUCTION
TheGridisanemerginginfrastructurethatusefromnumerousresou

rcesacrosstheworldassharedmanner[1]. Anyone from
anywhere in the world can easily be connected to the Grid and
uses a numerous computing resources and
communicationresourcessharedittorunhis(her)applications.

Using of different types of computing resources via computer
networks and the Internet, allow us able to much use of their
capabilities. Using these infrastructures, we have the
capability that can be shared distributed resources across the

world to solve very large problems in many different fields of
science and industry. The research was done in this area, has
emerged the paradigm of distributed computing which today
is known as Grid.

Grid execution environments and applications have
characteristics that have distinguished them from other
traditional infrastructure [2][3]. Some of these characteristics

of Grid are: Heterogeneity in Grid, which shows Grid
environments composed of large numbers of different
independent computational resources which geographically
distributed in the world (supercomputers, personal computers,
services and so on), and Similarly, applications typically
combine multiple independent components or services which
Each have their own specific requirements. The next
characteristic of Grid is Dynamism. The Grid environment is
continuously changing; at any moment of time may a resource

add to system or failure; Applications similarly have dynamic
runtime behaviors and they can change in any time.
Complexity is other characteristic of Grid. Whatever system
is larger and composed of various components, have more
complexity. The Grid can be expanded in the whole world;
So, Such a system has much complexity which it may be
difficult to management. Today, a fundamental problem
facing managers is the complexity of the Grids. Uncertainty

is other characteristic of Grid. Uncertainty in Grid
environment is caused by multiple factors, including
dynamism, failures, and incomplete knowledge of global
system state [2]. Uncertainty in Grid causes which cannot
consider static states for the Grid. Finally, Security is a
critical challenge in these environments, because on the one
hand, an application could have security requirements and, on
the other hand, the Grid resource could have their own

security requirements.

Due to these characteristics, management of Grid based on
passive components and static states is not practical. Clearly,
the need to consider many of fundamental issues, to its
management and configure be easier. These issues have
caused researchers to turn to principles of management
techniques, which are able to dynamically adapt themselves to
existing conditions. The resulting approach is called

autonomic computing, which its purpose is to provide the
computing systems which are able to manage themselves with
minimal human intervention managers [4][5]. By changing in
the environment of autonomic systems (i.e. human body), the
system makes action to fit it and take away it to another
correct state. An autonomic system or application offers
features self-awareness, self-definition, self-healing, self-
configuring, self-optimizing and self-protection and so on.
This is known as self-* features [6].

One part of the Grid which has a vital role in its performance
is scheduling. Hence, decisions of scheduler must be taken
appropriately to could be use available resources in Grid in
optimal form. Changeability is one of intrinsic properties of

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

13

Grid, and the scheduler should be aware of these changes as
soon as possible to make the best decision. In the Grid may be
resources added to the system or leave it at any time. In
addition, various errors may occur in any moment of time.
These errors can be resources errors, network errors,

application errors and so on. Therefore, the use of static
algorithms in such system would be problematic. We need to
dynamic algorithms for scheduling which could use of the
latest information, and adapt themselves with
suchenvironment.Mostexistingschedulingalgorithms,notconsi
der to conditions and changes has been in Grid which this
causes the scheduler to make the wrong decisions.

In this paper we have presented an architecture based on the

principles of autonomic computing for computational Grid
scheduling. Using the proposed method, the scheduler can as
soon as be aware of changes and errors generated in the Grid
and based on information obtained make better decisions. In
each period, scheduler uses the best available resources and
does not use inefficient resources. Our proposed method takes
into consideration this fact which sometimes may be a
resource with high performance become a resource with low

performance (based on existing conditions), and vice versa,
some of the resources with low performance become
resources with higher performance. This means that our
proposed method do not consider a constant state for
resources and assume that resources are changing over time.

The remainder of this article is structured as follows. Section
2 describes the issues that are about the scheduling in Grid.
Section 3 shows the principle of autonomic computing and

Section 4 describes the proposal that was formulated to solve
an issue we identified during investigation. Section 5 reveals
an evaluation of the proposal, and finally Section 6 mentions
some of the conclusions that can be drawn from all of this
work.

2. GRID SCHEDULING
The scheduling of jobs to heterogeneous resources in Grid is a
well-known NP-hard problem, and various sub-optimal
solutions have been proposed [7][8][9][10][11]. When a
single job arrives at a Grid within a unit scheduling time slot,
the scheduling system will analyze the load situation of every
resources and select one resource to run this job.

The process of allocation a resource to a job involves three
basic phases and each phase involves several steps [12]. In the

first phase, the resources currently available in the Grid are
identified and all the required information of the resources
must be collected and store in a database. The Scheduler, use
of available resource information to determine the resource is
able to run which jobs. This information can include: resource
operating system, resources speed, bandwidth between the
scheduler and the resource, cache memory size of the
resource, the current load of the resource, the current

availability of the resource and so on.

In the second phase, a resource from the available resources is
chosen by using a scheduling algorithm and the job assign to
that. All resources could not be candidates for the allocation
of jobs. Therefore, the selection process is carried out based
on job requirements and resource characteristics. The
scheduling algorithm tries to maximize some optimization
criterion specified by the user or by the system. This criterion

can be throughput, response time,

The third phase of Grid scheduling is running a job. In this
phase, the job is migrated to the selected resources and
executed on it. This phase is called job migration[13].

Depending on the job and its running time, users may monitor
the progress of their job and possibly change their mind about
where or how it is executing. Historically, such monitoring is
typically done by repetitively querying the resource for status
information, but this is changing over time to allow easier

access to the data. If a job is not making sufficient progress, it
may be rescheduled or migrated to other resources.

3. AUTONOMIC COMPUTING
Autonomic Computing is a term coined by IBM, and its goal
is realizing computing systems and applications capable of

managing themselves with minimum human intervention [4]
[5][14].Autonomic computing is inspired by the human
autonomic nervous system that handles complexity and
uncertainties. The human nervous system is an evolved great
example of natural autonomous behavior. This system is able
to balance the body and keep it in steady state. Autonomic
systems represent an appropriate response to any change in
the environment to that always system remains in a stable

balanced state.

3.1 Autonomic Computing Architecture
IBM has to offer reference architecture for autonomic
computingwhich is composed of several basic
components[14]. These components work together to that

adapt themselves to current conditions. These components are
composition together to that provides a service in accordance
with the policies of the application or system, and
continuously and dynamically they can adapt themselves to
changes over time. The next section provides a brief
description of the autonomic computing to the concept is
obvious[15][16][17][18].

IBM described several components (layer) for autonomic

system. These components include manual managers,
autonomic managers, touchpoints and managed resources that
they use a share knowledge source. Manual manager is an
interface for the IT professional through it specifies high level
policies of system; this component will produce an overall
plan and uses it to guide application and system and
determines forthem how to act to achieve an optimal healthy
state.

Function of autonomic manager is production and execution a

plan based on predefined policies and existing conditions.
Autonomic manager do work in lower level then manual
manager and often is considered as the core an autonomic
system. This component monitors information of the system
andmanageit based on occurred change. The internal structure
of an autonomic manager includes four functions: monitor,
analyze, plan and execute with knowledge. These functions
compose a loop called MAPE-K. The monitor function

collects the information from the managed resources, via
sensors. The analyze function use the information obtained
from monitor function and analyze them to determine whether
need to change or not. In plan function a desired plan selected
or created. Finally, the desired plan execute, via effectors.
This loop repeated to system adapts itself with existing
conditions.

A touchpoint is an interface which links the autonomic

manager to the managed resource. This link can be through
sensors or effectors. Sensors enable autonomic manager to
observesystem's behavior, and effectors, let autonomic
manager modify the behavior of system.

A managed resource is a hardware or software component that
can be managed. A managed resource could be anything like

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

14

server, storage unit, database, service, application or other
entity.

Variouscomponents can obtain and share knowledge via
knowledge sources. The various components can receive
necessary information from the knowledge sources and update

that, if necessary.

4. SCHEDULING SYSTEM

ARCHITECTURE
Our proposed system has a User Interface module (UI),
Global Scheduler module (GS) and Grid Information System

(GIS), which on above them placed the layer ofself-
management which uses the principles of autonomic
computing. All system components, share the information
through Grid Information System (in principle of autonomic
computing know knowledge base). The components of the

proposed scheduling system are shown in Fig 1.

Grid

R1

R2

Rn

User Interface

Global Scheduler

Job Queue

Jobs

Job Account

Job Submit

Jo
b In

foJob Scheduling

Job Dispatcher

Job Results

Manitor

Analyze Plan

Execute

Grid Information Service(GIS)
Or

Knowledge Base

Sensor Effector

Application

Application

Application

Fig 1: Proposal algorithm architecture

The UI module provides an environment which users are able
to deliver their applications and then taking over required
results. Through this interface, users can obtain
informationabout how to run the assignedapplications.Also, to
inform user, using it for progress report, occurred errors,
account and etc. With running applications, results obtained

are delivered to the user. The UI module, after receiving the
user's applications, converts into one or more jobs, and then
delivers job(s) to the GS.

GIS module collects information about the status of resources,
the status of jobs, status job queue and etc. Resources
informationcan be architecture, operating system, speed,
workload, number of processors, amount of memory,
communication bandwidth and etc. The information in this
module must become updated periodically. Updated

information in this module has a vital role in the Grid
scheduling;because if does not reach updated Information to
the scheduler, last changes are not considered and the
schedulerwill make wrong decisions. Thus, available
informationin this component in the decision-making
scheduleris very effective.

GS moduleis divided into three sub modules the Job Queue,
the Job Scheduler and the Job Dispatcher. After that UI

moduledelivered jobs to GS, they are entering to Job Queue.
Job Queue sub module is used for storing ready jobs. This
queue, keeps lists of jobs that are currently not able to run in
Grid (may be currently have not sufficient resources). Jobs
queuing can be done based on different levels of jobs priority.

Job Scheduling submoduleisresponsibleforallocatingavailabler

esourcestoreadyjobs. JobSchedulerreceives latest
informationof system from the GIS and makes decision
accordingto jobs in the job queue. The Job Scheduler tries to
selectmost appropriate resource(s) to execute the jobs, to
increase the utilization of resources and jobs be executed with
high speed.

The Job Dispatching sub module dispatches the job to the
resource that will execute it. This sub module receives the job
from the Job Scheduler module and sends it to the

corresponding resource(s) to run in the resource(s).

4.1 Proposed System Structure
The purpose of proposed autonomic system, is quickly
detectionof changes in Grid, so that scheduler must be able
adapt themselves with to these changes and deliver user's jobs

to the bestcurrent resources. To do this we have used the
principles of autonomic computing, which very well can be

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

15

work in dynamic environment and many uncertainties of Grid.
The structure of proposed system is shown in Fig 1. In this
section, we first describes how collect information in
proposed method and then describes how to schedule.

4.1.1 Collect Information in Proposed Method
We in proposed architecture used of a hybrid push-pull
method for collecting information; means,
informationreceives from resource and placed in theGIS(pull),

and resources themselves send some of information
forGIS(push).

On the one hand, self-managinglayer,atregularperiods,collects
information from the Grid and store in GIS. Monitor function
is responsible for collecting information. Monitor function
obtained this information through the sensors. The collected
information is given to analyze function, to if needed
appropriate plan is executed. In the large systems of Grid,for

that communication bandwidth, too much does not
spend information transfer; Sources can be divided into
several domains. In each domain, end Resources send
informationto the intermediate resource in that domain, and
self-managing layer at the end of period receives resources
informationfrom this intermediate resource. In this case, does
not need to get all resources information; self-managing layer
can only get information changeable such as current load
resources,the amount of available memory and etc., to the

communication bandwidth wasted in vain.

When a resource has left the system without previous notice
or a resource has failure, self-managing layer can detect it
very quickly and stores in GIS; because in each period,
informationobtains from Grid.

Self-managing layer could change period in a dynamic mode;
means period could become low and high over time. The
reason for this is that if the changes source's dynamic

information is a lot, then information should store faster in
GIS, to Scheduler be able use them. If the changes is low,
resources information are collected at longer period, to
communication bandwidth wasted in vain.

On the other hand, resources themselves have a duty which
some of information send to the GIS. This mode can be used
for the following: A resource add to Grid, the resource with
the prior notice leaves the Grid, the resource Want to report

specific information or an error, and some of the non-dynamic
properties of resources are subject to change.

4.1.2 The Proposed Scheduling
Our proposed scheduling is Scheduling using the principles
of Autonomic Computing (SAC). In the proposed method, the
UI module, receive user's applications and divides them into
one or more jobs and adds this jobs to the job queue sub
module. Then job scheduling sub module receives jobs
information from job queue sub module. Jobs information can
be jobs number, jobs type, jobs length, type of requirements
resource and etc. also, this sub module receives resources
informationfrom GIS. After that necessary information

received from the GIS and the job queue, scheduler decide
based on requirements of entered jobs and based on current
status of resources and assign jobs to appropriate resources.

Scheduler in each period receives the necessary information
from the GIS and based on equation 1 calculates current
amount of resources capability:

𝑳𝑺𝒓 𝒕, 𝒕 + 𝒑 = 𝑺𝒓 ∗ 𝟏 − 𝑳𝒓 𝒕, 𝒕 + 𝒑 𝟏

Where t is current time and p is the size of the period; Sr is the
speed of resource r, Lr(t,t+p) is current load of resource r
inperiod t to t+p. also, LSr(t,t+p(is amount of resource
capability r in period t to t+p. As you can see in the equation
1, LSr(t,t+p) is calculated based on speed and current load of

resource.

After that scheduler received updated information from the
GISin each period, calculates the LS Matrix (see Fig 2). Then,
the Scheduler sorts the LS matrix in descending order to be
achieved SLS matrix. When SLS was obtained, the largest
job in the job queue can be assigned to the first resource in
the SLS. The second largest job assigned to the second
resource in the SLS. Assigning of jobs to the next period will

continue the same form (For that small jobs not suffer
from starvation can be used a method like the aging). As
explained, the Scheduler assigns each job to the available
resource with largest current capability. If in a given period, to
allappropriate resource one job allocated, again assignment is
repeated from the first resource (in circular). If the Resource
has a high workload or Resource may not be able to do this
job, the next Resource in SLS will select. High limit of the

resource load specify with resources owners or system
administrator (e.g. 95%). If current load of resource exceeds
from specified High limit, Scheduler will not assign any job to
that Resource and this operation repeated until the Resource
load will be return to an acceptable level.

If in a period all resources have computational overhead, Does
not allocation any of resource to jobs And jobs must wait until
the next period.

If in a period, any of resource is not suitable for execution of
job, Next job in the job queue is chosen and execution of that
job done on the next period.

In our proposed method, the job is not assigned to faster
Resource in the list, but the job will be assigned to a resource
which currently has highest capability. This means that we
will act according to Resource speed and current load. Reason
which the job is assigned to a resource with amount more
capability is that may be a Resource has a high speed, But

Currently workload is also high; In this case may assignment
to such a resource Cause execution inefficient the job, and
also decline efficiency of the resource.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

16

t1t0 t2 ... tm-1 tm

R2

R1

...

Rn

W2(t0-t1)

Wn(t0-t1)

W1(t0-t1)

time

W1(t1-t2)

W2(t1-t2)

...

...

Wn(t1-t2)

...

...

...

...

W1(tm-1-tm)

W2(tm-1-tm)

Wn(tm-1-tm)

...

S1

S2

...

Sn

S W

t1t0 t2 ... tm-1 tm

SW2(t0-t1)

SWn(t0-t1)

SW1(t0-t1)

time

SW1(t1-t2)

SW2(t1-t2)

...

...
SWn(t1-t2)

...

...

...

...

SW1(tm-1-tm)

SW2(tm-1-tm)

SWn(tm-1-tm)

...

SW

Fig 2: Obtain current capability of resources

Our proposed algorithm is shown in Fig 3.

GS receives jobs information from the Job Queue
and the initial resources information from the GIS;
computes SW for each resource for first time;
 SSW=sort SW in descend order;
sort job in descend order;
j = first job in the job list;
while (there are tasks to schedule)
{
 if(period is finished)

 {
 receives resource information from GIS;
 computes SW for each resource;
 SSW=sort SW in descend order;
 }
 r = the first resources in the SSW matrix;
 while (r is not available or r is overloaded or r do not matched with j)
 {
 r = next resource in the SSW matrix;
 }
 if(all r is overloaded)
 {
 wait until period finished;
 }
 if(is not any r for this j now)
 {
 j = next job in the job list;
 continue;
 }
 allocate r to j;
 mark all allocated resource in the resource list;
 remove j from job list;

 j = next job in the job list ;

}

Fig 1: Proposed algorithm

5. A ILLUSTRATIVE EXAMPLE
Consider a Grid environment with four resources R1, R2, R3
and R4 and a job group J with eight jobs J1, J2, J3, J4, J5, J6,
J7and J8. Initially resources speed is respectively 20, 10, 15
and 5. Period is assignment three jobs to resources.

You can see assignment of jobs to resources in the period t0 to
t1 in Fig 4. After that LS matrix obtained based on S and L

and arrangement based on resources capability specify in the
SLS, The biggest job in the list (J3) is assigned to the first
resource in SLS (R1). The second biggest job (J3) is assigned
to the next resource in the SLS (R3). Assignment of jobs to
resources is repeated until the period does end. If in a period,
allocated job to all the resources in the SLS, assignment starts
again from the first resource.

t1t0

R2

R1

R4

20

10

5

S L(%)

Jobs Lenght

J1 J2 J3 J4 J5 J6 J7 J8

t1

LS

t0

J3

J8

J6

R3

R2

R1

R4

R3

10 8 90 3 30 43 18 89

Resource

t1t0

(a)

(b) (c)

15

28

30

47

42

14.4

7

2.65

8.7

(1)

(2)

(3)

SLS=(R1,R3,R2,R4)

Fig 2: Assignment of jobs to resources in the period t0 to t1

After that a period finished or a resource reported new
information to the GIS, GIS information is received again and
the operation is repeated. In t1 to t2 period is assumed that
speed of resource R4 has increased from 5 to 12 and current
load of resource R3 has reached to 98%. Although speed of R3
is more than R2 and R4, But in this period, does not allocated
any jobs to resource R3, because current load of this resource
is high, And if a job be assigned to that, may be resource
situation be worse and the job execute with very few

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

17

performance or worse, job failed. As you can see in Fig 5,
biggest current job (J5) to first resource in SLS (R4), second
job (J7) to second resource (R2) And the third job (J1) to third
resource (R1) are assigned.

t2t1

R2

R1

R4

20

10

12

S L(%)

Jobs Lenght

J1 J2 J4 J5 J7

t2

LS

t1

J1

J7

J5

R3

R2

R1

R4

R3

10 8 3 30 18

Resource

t2t1

(a)

(b) (c)

15

80

37

25

98

4

6.3

9

0.3

(1)

(2)

(3)

SLS=(R4,R2,R1,R3)

Changed

Speed

Fig 3:Assignment of jobs to resources in the period t1 to t2

In period t2 to t3, is assumed that R2 disabled, and R1 and R3
are also very high workload. Scheduler decides that in this
period jobs only assign to resource R4, because Assignment of
jobs to other resources brought down system performance.
Operations in period t3 to t4 are shown in Fig 6.

t3t2

R2

R1

R4

20

X

12

S L(%)

Jobs Lenght

J2 J4

t3

LS

t2

J4 J2

R3

R2

R1

R4

R3

8 3

Resource

t3t2

(a)

(b) (c)

15

99

X

30

96

0.2

X

8.4

0.6

(1)(2)

SLS=(R4,R3,R1)

Fig 4:Assignment of jobs to resources in the period t2 to t3

6. RESULTS AND DISCUSSIONS
For simulate and evaluate the proposed method, we have used
the Matlab software. The environment of Grid is simulated

with several independent jobs and several heterogeneous
resources. We have assumed which applications users are
divided into one or more independent job and add to the job
queue. In different experiments, number of jobs is from 1 to
100,000. In each experiment, the jobs length generated in a
specify range and randomly. The range of jobs length has
been considered from 1,000 to over 1,000,000,000. The
Resource speed assigned randomly in the range of is 1000000

to 1,000,000,000. Periods in the range of 0.001 to 0.01
seconds in change.

In proposed method is used current load of resources; for this
reason, in each period current load of each Resource is
determined randomly in range of 1 to 100. Current load each
Resource is expressed in percentage. If load of a resource is
set to 20, Means Currently of 20 percent capacity of Resource

used and other 80 percent is not used; and if the load of
resource is 100, Means that 100 percent capacity of Resource
is used currently.

Experiments have been run on the computer with the Intel
architecture, speed 2.5 GHz and 4 GB of memory. Proposed
algorithm has been compared with several well-known
algorithms in the field of Grid computing, such as Min-Min,
Max-Min and DPSO [19] and their results are shown in Figs 7

to 9. Our evaluation is based on makespan, execution time and
average resource utilization. Because of random inputs and
reduce noise in results, Experiments is performed with 50
repetitions per set of input And their average is shown.

In figure7,thecomparison based on themakespanis shown.
Becauseofconsiderationresourcesload, the proposed
methodislessfluctuated and better results are obtained.

Fig 5: makespan

Figure 8(a) and 8(b) shown execution time of
algorithms.Reason that our methodgets less of execution

time than othermethodsis that the internal loop of
our proposed methodisonly based on the the number of
resources, in case,bothalgorithms Min-Minand Max-Minis
based on the number of jobsand number
ofresourcesintheDPSOalgorithmiterationsis based on the
number of particlesand the number of jobs.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

18

Fig 6(a): Execution time

Because of DPSO algorithm execution time is high,in Fig.
8(a) the proposedmethod has not

beenclearlycomparedwithother methods. For this
reason,resultsDPSOalgorithm have removed from Fig. 8(a)
and the results of othermethodsareshowninFig.8(b).

Fig 7(b): Execution time

One another important criterion in the evaluation of Grid
scheduling is resource utilization. The purpose of this
criterion is that use of all available resources efficiently. This
criterion can be used to demonstrate the load balancing in the
system. We have calculated the average utilization of

resources based on Equation 2:

 𝐚𝐯𝐞𝐫𝐚𝐠𝐞𝐮𝐭𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧

=
 𝐜𝐨𝐦𝐩𝐥𝐞𝐭𝐢𝐨𝐧 𝐫 𝐫 𝛆 𝐫𝐞𝐬𝐨𝐮𝐫𝐜𝐞

𝐦𝐚𝐤𝐞𝐬𝐩𝐚𝐧. 𝐫𝐞𝐬𝐨𝐮𝐫𝐜𝐞𝐍𝐮𝐦𝐛𝐞𝐫
(𝟐)

In Equation 2, completion[r] is the time of last completed job
executed in each source, makespan is the largest completion

time between resources and resourceNumber is total number
of resources.

Fig 8: resource utilization

As you can see in Fig 6, our proposed method provides better

average resources utilization than the other of

methods.ReasonDPSOalgorithmhasworseresults than

othermethods, a shorttime to decide.Becausesuch

heuristicalgorithmsrequirestoo much time to better results.

7. CONCLUSIONS
Due to the inherent complexity, heterogeneous and dynamism

of Grid systems, achieving large-scale distributed computing
in Grids turns out to be an elaborated work. One way for this
problem is using autonomic computing, which can change its
behavior in response to changes in the status of the system.
We have presented an architecture which merges Grid
scheduling with automatic computing techniques in order to
provide self-managing behavior.

This paper presented a novel methodology for Grid

scheduling using autonomic computing.We propose an
autonomicGrid scheduling architecture as a possible solution,
which can make scheduling decisions based on the current
status of the system. Scheduler can make a decision according
to the latest information obtained which can be achieved
better results. We consider the load of computing resources to
the best resource for execution the job is chosen in each
period.

The proposed method is compared with other methods based

on the makespan, execution time of algorithm and resource
utilization. Experiments have shown that whatever increase
resources heterogeneity, the proposed method will provide
less makespan. Also, the algorithm has very little running
time due to that use of fewer loops at the time of making
decisions. Finally, all resources are used appropriately until
increase their utility and at each period uses of the resources
with more performance.

International Journal of Computer Applications (0975 – 888)

Volume 47– No.13, June 2012

19

8. REFERENCES
[1] I. Foster and K. Kesselman, 2004, The Grid 2: Blueprint

for a New Computing Infrastructure, 2nd ed., Morgan
Kaufmann Publishers.

[2] M. Parashar, H. Liu and et al., 2006, "AutoMate:
Enabling Autonomic Applications on the Grid",Cluster
Computing, vol. 9, no. 2, pp. 161-174.

[3] Y. Gaoa, H. Rongb and J. Z. Huangc, 2005, "Adaptive
grid job scheduling with genetic algorithms",Future
Generation Computer Systems, vol. 21, no. 1, pp. 151-

161, October 2005.

[4] J. O. Kephart and D. M. Chess, 2003, "The Vision of
Autonomic Computing",Computer, vol. 36, no. 1, pp. 41-
50.

[5] S. Hariri, B. Khargharia and et al., 2006, "The
Autonomic Computing Paradigm",Journal of Cluster
Computing, vol. 9, no. 1, pp. 5-17.

[6] M. Rahman, R. Ranjan and R. Buyya, 2010, "A

Taxonomy of Autonomic Application Management in
Grids",16th IEEE International Conference on Parallel
and Distributed Systems, pp. 189-196.

[7] F. Xhafa and A. Abraham, 2010, "Computational models
and heuristic methods for Grid scheduling
problems",Future Generation Computer Systems, vol.
26, no. 4, pp. 608-621.

[8] T. D. Braunt, H. J. Siegel and et al., 2001, "A

Comparison of Eleven Static Heuristics for Mapping a
Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems",Journal of Parallel and
Distributed Computing, vol. 61, no. 6, pp. 810-837.

[9] J. Yu, R. Buyya and K. Ramamohanarao, 2008,
"Workflow Scheduling Algorithms for Grid
Computing",Metaheuristics for Scheduling in Distributed
Computing Environments, vol. 146, pp. 173-214.

[10] D. I. G. Amalarethinam and P. Muthulakshmi, 2011, "An

Overview of the Scheduling Policies and Algorithms in

Grid Computing",International Journal of Research and
Reviews in Computer Science, vol. 2, no. 2, pp. 280-294.

[11] H. Casanova, M. Kim and et al., 1999, "Adaptive
Scheduling for Task Farming with Grid
Middleware",International Journal of High Performance

Computing Applications, vol. 13, no. 3, pp. 231-240.

[12] J. M. Schopf, 2003, "Ten actions when grid scheduling",
in Grid resource management Management: State of the
Art and Future Trends, first ed., Springer, pp. 15-23.

[13] T. Altameem and M. Amoon, 2010, "An Agent-Based
Approach for Dynamic Adjustment of Scheduled Jobs in
Computational Grids",Journal of Computer and Systems
Sciences International, vol. 49, no. 5, pp. 765-772.

[14] IBM White Paper, 2005,"An Architectural Blueprint for
Autonomic Computing", 3th ed., IBM Corporation.

[15] M. Parashar and S. Hariri, 2007,"Autonomic Computing
Concepts, Infrastructure, and Applications", CRC Press,
Taylor & Francis Group.

[16] R. Nou, F. Julia and et al., 2011, "A path to achieving a
self-managed Grid middleware",Future Generation
Computer Systems, vol. 27, no. 1, pp. 10-19.

[17] M. Salehie and L. Tahvildari, 2009, "Self-adaptive
software: Landscape and research challenges",ACM
Transactions on Autonomous and Adaptive Systems, vol.
4, no. 2, pp. 1-42.

[18] M. C. Huebschr and J. A. Mccann, 2008, "A survey of
Autonomic Computing — degrees, models and
applications",ACM Computing Surveys, vol. 40, no. 3,
pp. 1-31.

[19] H. Izakian, B. Tork Ladani and et al., 2010, "A Discrete
Particle Swarm Optimization Approach for Grid Job
Scheduling",International Journal of Innovative
Computing, Information and Control, vol. 6, no. 9, pp.
4219-4233.

