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ABSTRACT 

In this paper, we study the effects of the size of the control 
domain on the optimal control problem of monodomain 
model. The optimal control problem of monodomain model is 
a nonlinear optimization problem that is constrained by the 
monodomain model that represents the electrical behavior of 
the cardiac tissue. Two test cases with different sizes of 
control domain are considered, namely Test Case 1 and Test 

Case 2. Numerical results show that the excitation wavefront 
is successfully dampened out by the optimal applied current in 
both test cases. However, Test Case 2 (with smaller size of the 
control domain) requires more iteration as well as longer time 
to dampen the excitation wavefront. Our numerical results 
also indicate that higher current is required in the dampening 
process when the size of the control domain changed to a 
smaller one.  
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1. INTRODUCTION 
Optimal control problem of monodomain model was first 
proposed by Nagaiah et al. [1] and has been subsequently 
studied in [2, 3, 4, 5], with the control objective is to dampen 
the excitation wavefront of the transmembrane potential using 
optimal applied current. The optimal control problem of 
monodomain model is a nonlinear optimization problem that 
is constrained by the monodomain model that represents the 

electrical behavior of the cardiac tissue. The monodomain 
model is a well-known mathematical model extensively used 
in simulating cardiac electrical activity [6, 7]. It consists of a 
parabolic partial differential equation coupled to a system of 
nonlinear ordinary differential equations representing cell 
ionic activity.    

Two types of optimization methods have been applied by 
researchers for solving the optimal control problem of 

monodomain model in the literature, which are nonlinear 
conjugate gradient method and Newton method. Nonlinear 
conjugate gradient method has low memory requirement but 
usually requires many iterations to converge to a solution. In 
contrast, Newton method is likely to converge with less 
iteration but requires higher memory storage.  

The nonlinear conjugate gradient method is first employed by 
Nagaiah et al. [1] to solve the optimal control problem of 

monodomain model. Three variants of the nonlinear conjugate 
gradient method are chosen and compared, namely Polak-
Ribière-Polyak (PRP) method [8, 9], Dai-Yuan (DY) method 
[10] and Hager-Zhang (HZ) method [11].  

Later, Nagaiah et al. [2] proposed a second order optimization 
method, i.e. the Newton method, with the purpose to solve the 
optimal control problem of monodomain model efficiently. 

Numerical results indicate that the Newton method converges 
faster to the solution than the nonlinear conjugate gradient 
method. Furthermore, this second order optimization method 
is enhanced by Nagaiah and Kunisch [3] using adaptive grid 
refinement techniques.  

Recently, Ng and Rohanin [5] applied the modified Dai-Yuan 
(MDY) method [12] for solving the optimal control problem 
of monodomain model. This modified version of the DY 
method is based on the idea of the modified BFGS method as 

proposed by Li and Fukushima [13]. Numerical results show 
that the MDY method performs quite well under Armijo line 
search, using only 38 iterations to converge to a solution.  

Note that the above studies focused on developing efficient 
numerical techniques to solve the optimal control problem of 
monodomain model. However, the effects of the size of the 
control domain on the optimal control problem of 
monodomain model still has not been studied. The purpose of 

this paper is therefore to study these effects using different 
sizes of the control domain in our numerical experiments.  

2. THE OPTIMAL CONTROL 

PROBLEM OF MONODOMAIN MODEL 
In this section, we present the optimal control problem 

governed by the monodomain model. Let 2  be the 

computational domain with Lipschitz boundary  , c  

be the control domain and o  be the observation 

domain. The optimal control problem of monodomain model 
is therefore given by 
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Here   is the regularization parameter, T  is the final 

simulation time,   is the unit normal vector directed 

outwards from  , iD  is the intracellular conductivity tensor, 

 txV  ,  is the transmembrane potential,   is the surface-to-

volume ratio of the cell membrane, mC  is the membrane 

capacitance per unit area,  wVIion  ,  is the current density 

flowing through the ionic channels,  txIe  ,  is the 

extracellular current density stimulus,  txw  ,  are the ionic 

current variables,  wVf  ,  are the prescribed vector-value 

functions and   is the constant scalar used to relate the 

intracellular and extracellular conductivity tensors. Both 

functions  wVIion  ,  and  wVf  ,  depend on the ionic model 

used. In this paper, a simplified two variable model, namely 
the Rogers-modified FitzHugh-Nagumo model [14] is chosen, 

which is given by 
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where pV  is the plateau potential, thV  is the threshold 

potential, and 0,,, 4321 cccc     are positive parameters. Notice 

that the optimal control problem of monodomain model is a 

PDE-constrained optimization problem with eI  as the control 

variable while V  and w  as the state variables. The control 

variable eI  is chosen such that it is nontrivial only on c  

and extended by zero on c \ .  

3. THE OPTIMIZE-THEN-DISCRETIZE 

APPROACH 
This section describes the numerical approach for solving the 
optimal control problem defined in (1). We adopt the 
optimize-then-discretize approach, where the infinite 
dimensional optimality system is derived first and the 
resulting optimality system is then discretized.  

3.1 First Order Optimality System 
For deriving the infinite dimensional optimality system, we 

defined Lagrange functional, L , as follows 
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where  txp  ,  and  txq  ,  are Lagrange multipliers. The first 

order optimality system is stated by requiring stationarity of 

(2) with respect to the state  wV  , , adjoint  qp  ,  and control 

 eI  variables, resulting in 
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where  V    denotes the partial derivative with respect to V ,  

 w    denotes the partial derivative with respect to w , and 

o
V  denotes the transmembrane potential in the observation 

domain. Next, the state and adjoint systems can be formed 
using (3) – (6) together with the following initial, terminal and 
boundary conditions. 
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while the adjoint system is given by 
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Kunisch and Wagner [4] proved that the control-to-state 
mapping is well-defined for the optimal control problem in 
(1). This allows us to rewrite the cost functional in (1) as 
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where (10) is known as the reduced cost functional. It follows 
that the reduced gradient is given by 

   pIIJ ee

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As a result, the first order optimality system consists of the 
state system in (8), the adjoint system in (9) and the optimality 

condition in (7) that served as reduced gradient during 
computation.   

3.2 Discretization of Optimality System  
Once the first order optimality system has been derived, the 
resulting optimality system needs to be discretized. Before the 

numerical discretization is carried out, the operator splitting 
technique proposed by Qu and Garfinkel [15] is applied to 
split the nonlinear PDE in (8) and (9) into a linear PDE and a 
nonlinear ODE. The linear PDEs are then discretized with 
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Galerkin finite element method in space and Crank-Nicolson 
method in time. For temporal discretization of the nonlinear 
ODEs in (8) and (9), the forward Euler method is used. 
Consequently, the discretized state system is given by 
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and the discretized adjoint system is given by 
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where M  is the mass matrix, K  is the stiffness matrix, 1t  

and 2t  are the local time-steps. 

4. OPTIMIZATION PROCEDURE 
In this paper, the optimization stage is carried out using the 
modified conjugate gradient method, that is, the MDY 
method. In order to compute the step-length, the standard 

Armijo line search is used. Given an initial step-length 0  

,  1 ,0  and  1 ,0 , choose  , , ,max 2 k  

such that 
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For the stopping criteria, we consider the following 
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The algorithm for solving the discretized optimal control 
problem is given as follows 
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Step 7. Compute step-length k  that satisfies condition in 

 (13). 

Step 8. Update the control variable kkkk
dII ee 1 . Set 

1 kk  and go to Step 1. 

5. NUMERICAL EXPERIMENTS 

5.1 Experiment Setup 
A two dimensional computational domain    1 ,01 ,0   of 

size 11  cm2 is considered in our numerical experiments and 

the final simulation time is set to be 2T  ms. The 

computational domain   is discretized into 8192 triangular 
elements and the temporal discretization were set to 

2
1 2.5 10t    ms and 3

2 10t   ms. Table 1 lists the 

parameters that we used in our numerical experiments, with 
some of them adopted from [16].  

 

Table 1. Parameters used in numerical experiments 

Parameter Value Units 

  310  1cm  

mC  310  mF 2cm  

l
iD  3103   1cm S   

t
iD  4101525.3   1cm S   

thV  1103.1   mV  

pV  210  mV  

1c  5.1  mS 2cm  

2c  4.4  mS 2cm  

3c  2102.1   1ms  

4c  1  dimensionless 

  410  dimensionless 

  110062.7   dimensionless 

  1 dimensionless 

  410  dimensionless 

  110  dimensionless 

 

Figures 1 and 2 illustrate the positions of the sub-domains in 

the computational domain   for Test Case 1 and Test Case 

2, respectively. From the figures, 1c  and 2c  are the 

control domains, 1

~
c  and 2

~
c  are the neighborhoods of the 

control domains,  21

~~
\ cco    is the observation 
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domain and oexi   is the excitation domain. In our 

experiment, the control domain might correspond to 
implantable cardioverter defibrillator (ICD) implanted in the 
chest of a patient to avoid sudden cardiac death. 
Consequently, the control domain for Test Case 1 can be 

interpreted as a heavier (with bigger size) ICD while the 
control domain for Test Case 2 can be interpreted as a lightly 
(with smaller size) ICD that can be placed into the chest. 

 

Fig 1: Computational domain   and its sub-domains for 

Test Case 1 

 

Fig 2: Computational domain   and its sub-domains for 

Test Case 2 

The initial values for the state variables are given as 

 


 


otherwise,      mV, 0

,  mV, 105
0 ,

exix
xV    and       xxw    ,00 ,  

On the other hand, the initial value for the control variable is 
set to be zero in the control domain, i.e. no current is applied 
at the beginning of the numerical experiments. 

5.2 Experiment Results 
In this section, we present the experiment results for Test 

Case 1 and Test Case 2. The minimum values of the reduced 

cost functional  kJ eIˆ  along the optimization process for both 

test cases are depicted in Figure 3. As shown in the figure, 

Test Case 1 requires 18 iterations to converge to the solution 
while Test Case 2 takes 30 iterations. This result implies that 
when the size of the control domain is reduced to a smaller 
one, more iteration is required to dampen the excitation 
wavefront of the transmembrane potential.   

 

Fig 3: Minimum values of Ĵ  for 2 ms of simulation time 

Figure 4 depicts the corresponding norm of reduced gradient 

 kJ eIˆ  for Test Cases 1 and 2. As shown in Figure 4, the 

gradient for Test Case 1 is decreased sharply at the beginning 
of optimization process, followed by a smooth decrease to the 

end. On the other hand, the gradient for Test Case 2 is 
decreased smoothly started from the beginning to the end of 
iterations. This phenomenon happens because the applied 
current is unable to give a significant effect to the dampening 
process if a small size control domain is used. 

 

Fig 4: Norm of reduced gradient of Ĵ  for 2 ms of 

simulation time 

 

Next, the uncontrolled solutions at times 0.2 ms, 1 ms and 2 
ms are illustrated in Figure 5, while the controlled solutions 

for Test Cases 1 and 2 are shown in Figures 6 and 7. Observe 
that the uncontrolled wavefront spreads from the inside to the 
outside of the computational domain during the time interval 
from 0 ms to 2 ms. This result implies that the uncontrolled 
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wavefront of the transmembrane potential will continue to 
propagate to the computational domain if the control is not 
switched on. For the optimally controlled case, the excitation 
wavefront is successfully dampened out by the optimal 

applied current opt
eI  for both test cases. Observe that, the 

excitation wavefront for Test Case 1 is almost completely 
dampened out at time 1 ms, however, this is not the case for 
Test Case 2. For Test Case 2, longer time is needed to dampen 
out the excitation wavefront if compared to Test Case 1. 

 

   

(a) (b) (c) 

Fig 5: The uncontrolled solutions  V  at (a) 0.2 ms (b) 1 ms and (c) 2 ms 

  
  

(a) (b) (c) 

Fig 6: The controlled solutions  optV  for Test Case 1 at (a) 0.2 ms (b) 1 ms and (c) 2 ms  

   

(a) (b) (c) 

Fig 7: The controlled solutions  optV  for Test Case 2 at (a) 0.2 ms (b) 1 ms and (c) 2 ms  
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Lastly, Figure 8 displays the optimal applied current opt
eI  over 

the time evolution, at a fixed point in the control domain, i.e. 

  cx  5.0,5625.0   . As shown in the figure, Test Case 2 

requires higher current than Test Case 1 in the effort to 
dampen out the excitation wavefront.  

 

Fig 8: Time evolution of the optimal applied current  opt
eI  

at point  5.0 , 5625.0x  

6. CONCLUSIONS 
In this paper, we have presented the numerical experiment 
results for the optimal control problem of monodomain model 
for two test cases. Test Case 1 consists of a bigger size of the 

control domain, while Test Case 2 consists of a smaller one. 
Our results show that when the size of the control domain has 
changed to a smaller one, more iteration is required to dampen 
the excitation wavefront. Besides that, longer time is also 
needed for dampening the excitation wavefront if a small size 
control domain is used. Moreover, by implanting a more 
lightly ICD, higher electrical shock is required to be delivered 
to the patient in order to restore the normal heart rhythm. 
Alternatively, if a heavier ICD is implanted in a patient, lower 

electrical shock will be delivered to the patient for restoring 
normal heart rhythm. If we can balance the trade-off between 
the size (weight of ICD) and the current (electrical shock 
delivered by ICD), it will be good news for patients that 
decide to implant ICD.      
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