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ABSTRACT 

This paper deals with a reliability model developed for a 
single-unit system which may fail completely either directly 
from normal mode or via partial failure. There is a single 
server who inspects the unit at its partial and complete failure 

to examine the feasibility of repair. If repair of the unit at these 
stages is not feasible, it is replaced immediately by new one. 
The system remains operative with partially failed unit. The 
server is subjected to failure while conducting inspection and 
repair of the unit. Treatment is given to the server upon failure. 
The repair of the unit and treatment given to the server are 
considered as perfect. The failure time of the unit and server 
follow negative exponential while the distributions of 

inspection and repair times of the unit as well as the 
distribution of treatment time of the server are taken as 
arbitrary. 
To carry out cost-benefit analysis, the expressions for several 
measures of system effectiveness are derived using semi-
Markov process and regenerative point technique. The 
graphical behavior of MTSF, availability and profit has been 
shown with respect to treatment rate of the server keeping 

fixed values of other parameters.   

General Terms 
Reliability and Server Failure 

Keywords 

Single-unit System, Server Failure, Replacement of the Unit, 
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1. INTRODUCTION 
In reliability theory, it is proved that performance and 
reliability of repairable systems can be improved by the 
method of redundancy. But there are many systems in which a 
unit cannot be kept as spare due to its high cost. Therefore, 
reliability models of single-unit systems with different failure 
modes have also been probed by the authors including Malik 

and Bansal [1], Malik [2] and Pawar and Malik[3]  keeping in 
view of their practical utility and common man’s affordability. 
In most of these papers, it is assumed that repair facility neither 
fails nor deteriorates. In fact, this assumption becomes 
unrealistic whenever server facility meets with an accident due 
to one reason or the other. And, in such situation, server may 
be given some treatment for curability. Recently, Dhankar and 
Malik [4] have studied reliability models of a single-unit 

system under different failure modes and server failure during 
inspection and repair. In these models, it is assumed that repair 

of the unit at its complete failure is always possible. Again, 
this assumption seems to be impracticable because repair of a 
unit at any stage of its failure more or less depends on the type 
of faults - repairable or non repairable. This can be revealed by 
inspection. And, if inspection reveals that unit is not repairable, 
it can be replaced by new one in order to avoid the unnecessary 
expenses on repair.  

While considering the above facts and observations, this paper 

is devoted to the analysis of a reliability model developed for a 
single-unit system which may fail completely either directly 
from normal mode or via partial failure. The system remains 
operative with the partially failed unit. There is a single server 
who visits the system immediately to do repair activities at 
different failure modes. The server inspects the unit at its 
partial and complete failure to see the feasibility of repair. If 
repair of the unit at these failure modes is not feasible, it is 

replaced by new one. The server is subjected to failure while 
performing jobs. Treatment is given to the server upon failure 
for his curability. The repair of the unit and treatment given to 
the server are considered as perfect.  

All random variables are uncorrelated and statistically 
independent. The switch devices are fault free. The failure time 
of the unit and server follow negative exponential whereas the 
distributions of inspection and repair time of the unit as well as 

the distribution of treatment time of the server are taken as 
arbitrary with different probability density functions. To carry 
out cost-benefit analysis, the expressions for transition 
probabilities and mean sojourn times, mean time to system 
failure (MTSF), availability, Busy period analysis, expected 
number of inspections by the server, expected number of 
treatments given to the server, expected number of visits by the 
server, expected number of replacements of the unit at its both 
failure modes and profit function in steady state are derived 

using semi-Markov process and regenerative point techniques. 
The graphical study of the results  has also been made for a 
particular case. 

2. NOTATIONS 
E            :  Set of regenerative states.  

 
O           :   The unit is operative and in normal mode. 
 
SG         :  The server is good. 
 
λ / λ1 /λ2: Constant failure rate of the unit from normal mode to 
                complete failure / normal mode to partial failure / 
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partial failure mode to complete failure. 
 
PUi/ PUr / PWi / PWr:The unit is partially failed and under 
               inspection /under repair / waiting for inspection / 
               waiting for repair. 

 
FUi /FUr / FWi /FWr  : The unit is completely failed and under  
                inspection/    under  repair / waiting for   inspection / 
             waiting for  repair.  
SFUt /SFUT  : The server  is failed and under treatment / under  
                Treatment continuously from  
                previous state. 
µ             :   Constant failure rate of the server. 

p / q      :  Probability that repair  of the unit at partial failure is                not feasible / feasible.  
m / n  :   Probability that repair  of the unit at complete failure 
              is not feasible / feasible. 
 
g(t) / G(t); g1(t) / G1(t):pdf / cdf of repair time of the 
           completely failed unit and partially failed unit.  
 
f(t) / F(t)   :  pdf / cdf of treatment time of the server. 

  
h1(t) / H1(t):pdf / cdf of inspection time of the unit at partial  
                   failure. 
 
k(t) / K(t) :  pdf / cdf of inspection time of the unit at complete  
                   failure. 
 
qij(t)/ Qij(t):pdf andcdf of direct transition time from a  

regenerative state i to a regenerative state j without visiting any 
 other regenerative state. 
 
qij.k(t) / Qij.k(t) : pdf and cdf of first passage time from 
aregenerative state i to a  regenerative state j or to a  
                failed state j visiting state k once in (0,t].   

 

Mi(t)   : Probability that the system is up initially in state Si E 

             is up at time t without visiting to any other 
            regenerative  state. 
Wi(t)   :  Probability that the server is busy in the state Si upto 
 time ‘t’without  making any transition to any other 
 regenerative state or  returning to the same state via one or 
 more non-regenerative states. 

mij      : Contribution to mean sojourn time (i) in state Si 

when system transit                                                                 
directly to state Sj so that 

i ij

j

m   and                                                                  

mij=   
* '( ) (0)ij ijtdQ t q   

 
 
(s) / ©     :Symbol for Stieltjes convolution / Laplace 
convolution. 
 
 ~ / *   :  Symbol for Laplace Stieltjes  
                 Transform(LST)/Laplace  Transform (LT). 

 
/(desh):Symbol for derivative of the function. 
 
The transition states S0 , S1 , S2  , S3 , S4 , S5 , S6 , S8 , S9are 
regenerative and state S7  is non regenerative as shown in figure 
1. 

3. RELIABILITY INDICES 

3.1 Transition Probabilities and Mean 

        Sojourn Times 
Simple probabilistic considerations yield the following  

expressions for the non-zero elements 

 

pij = Qij ( ) = ij (t) dt   as we get  

 

p06= ,p08 =   ,   p10 = , 

  p18 =  ,    

 

p13 =   ,   p20= g*(μ) 

  ,p23= 1- g*(μ),  p31 = p56 =f*(λ2) 

 

p38.7 = p58.7 = {1-f *(λ2)}f *(0), p42 = p78 =p98 = f *(0) 

  ,   p60 = p  

 

p61=  q  ,  p65 =  

, p68 =   

 

p80 = m k*(μ)  , p82 = m k*(μ)  ,  p89 = 1- k*(μ)  

 

It can be easily verified that  

 

p06+ p08 = p10 + p13+ p18 = p20+ p24= p31+ p38.7 =p42 

= p56 + p58.7 = p60+ p61 + p65 +p68 =p80+ p82+ p89=  p98= 1 

 

Mean Sojourn times are 

µ0 = m02+ m09= (T > t)dt =   ,  µ1 = m10 + 

 m13 + m18 =     

 

µ2 =m20 + m24 =   ,              µ3= m31 + m37 

 =  

= m31 + m38.7 = = m56 + m58.7 =        

  

 µ4 = m42 =µ9 = m98 = ,  µ6 = m60 + 

 m61 + m65 + m68= ,     µ8 = m80 + m82+ m89 

=  
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3.2 Reliability and Mean Time to System 

        Failure (MTSF) 
Let Φi(t) be the cdf of the first passage time from 
regenerative  
state i to a failed state regarding the failed state as absorbing 
 state. We have the following recursive relations for  Φ i(t): 
 

Φ0(t) = Q06(t) (s) Φ6(t) + Q08(t)  
 
Φ1(t) = Q10(t) (s) Φ0(t) + Q13(t) (s) Φ3(t) + Q18(t) 
  
Φ3(t) = Q31(t) (s) Φ1(t) + Q37(t) 
 
Φ5(t) = Q56(t) (s) Φ6(t)+ Q57(t) 
 

Φ6(t) = Q60(t) (s) Φ0(t) + Q61(t) (s)Φ1(t) + 
 Q65(t) (s) Φ5(t) + Q68(t)                                                …(1) 
 

Taking LST of above relations (1) to obtain  .  

Using  

this, we have 
 

R*(s) =                                                   … (2) 

 
The reliability R(t) of the system model can be obtained 
 by taking Laplace inverse transform of (2) . The mean time 

 to system failure is given by 
 

MTSF =   R*(s)                                                     … (3) 

 
MTSF 

=

 1−𝑝13𝑝31  {µ0 1−𝑝56𝑝65 )+µ5𝑝06𝑝65 +µ6𝑝06 

+𝑝06𝑝61 (µ1+µ3𝑝13 )

 1−𝑝13𝑝31  (1−𝑝56𝑝65−𝑝06𝑝60 )−𝑝06𝑝10𝑝61
 

 
 
  
   

3.3 Steady State Availability 
Let Ai(t) be the probability that the system is in upstate at 

instant 

 t given that the system entered regenerative state i at t = 0.The 

 recursive relations for Ai(t) are as follows: 

 

A0(t)  = M0(t) + q06(t) © A6(t) + q08(t) © A8(t) 

 

A1(t) = M1(t) + q10(t) © A0(t) + q13(t) ©A3(t) + q18(t) ©A8(t) 

 

A2(t) = q20(t) © A0(t) + q24(t) © A4(t)  ,  A3(t) = M3(t) +  

q31(t) © A1(t) + q38.7(t) ©A8(t) 

 

A4(t) = q42(t)©A2(t) ,  A5(t) = M5(t) + q56(t) © A6(t)  

+ q58.7(t) ©A8(t) 

 

A6(t) = M6(t) + q60(t) © A0(t) + q61(t) ©A1(t)+ q65(t) 

 © A5(t) + q68(t) ©A8(t) 

 

A8(t) = q80(t) © A0(t) + q82(t) ©A2(t) + q89(t) ©A9(t) 

 
A9(t) = q98(t) © A8(t)   …(4) 

where 

M0(t)= e-(λ+λ1)t  ,      M1(t) = e-(μ+λ2)t , M3(t) = 

 M5(t) =  e-λ2t    ,      M6(t) = e-(μ+λ2)t  

 

Now taking L.T. of relations (4) and obtain the  

value of A0
*(s). By using this, the steady state 

 availability is given by 

  

A10 = sA0
*(s) = N11/D11   ,where            …(5) 

  

N11= 𝑝20 1 − 𝑝89 [ 1 − 𝑝13𝑝31 { 
 1 − 𝑝56𝑝65)µ0 + 𝑝06(µ5𝑝65 + µ6)  
+𝑝06𝑝61(µ1 +            µ3𝑝13) 

 

D11= 

  𝑝20 1 − 𝑝89 [ 1 − 𝑝13𝑝31  

 µ0 1 − 𝑝56𝑝65 + µ5
′ 𝑝06𝑝65 + µ6𝑝06  

+             𝑝06𝑝61 µ1 + µ3
′ 𝑝13 ] + 

{ 1 − 𝑝13𝑝31 (1 − 𝑝56𝑝65 − 𝑝06𝑝60) 

−                   𝑝06𝑝10𝑝61}{𝑝82 µ2 + µ4𝑝24  
+𝑝20 µ8 + µ9𝑝89 } 

 

3.4 Busy Period Analysis for the Server 
Let Bi(t) be the probability that the server is busy at instant  

t given that the system entered regenerative state i at t = 0. 

The recursive relation for Bi(t) are as follows: 

 

B0(t)  =  q06(t) © B6(t) + q08(t) © B8(t) 

 

B1(t) = W1(t)  +  q10(t) © B0(t) + q13(t) ©B3(t) + q18(t) © B8(t) 

 

B2(t) =  W2(t)  +  q20(t) © B0(t) + q24(t) © B4(t) 

  

B3(t)  =  q31(t) © B1(t) + q38.7(t) © B8(t),   B4(t) = q42(t) © B2(t) 

  

B5(t) = q56(t) © B6(t) + q58.7(t) ©B8(t) 

 

B6(t) = W6(t) + q60(t) © B0(t) + q61(t) © B1(t)+ q65(t) © B5(t) 

 + q68(t) © B8(t) 

 

B8(t) = W8(t) + q80(t) © B0(t) + q82(t) ©B2(t) + q89(t) ©B9(t) 

 

B9(t) = q98(t) © B8(t)                                                    …(6) 

 

where,  

 

W1(t) =  e-(μ+λ2)t  ,  W2(t) =  e-μt ,  W6(t) =  e-(μ+λ2)t 

  ,  W2(t) =  e-μt  

 

Now taking L.T. of relations (6) and obtain the value of B0
*(s)  

and by using this, the time for which server is busy in steady  

state is given by 

 

B10 = sB0
*(s) = N12/D11, 

where 
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N12=𝑝06𝑝20 1 − 𝑝89  µ6 1 − 𝑝13𝑝31 + µ1𝑝61  
+[𝑝06𝑝61 𝑝13𝑝38.7 + 𝑝18 +                     
  1 − 𝑝13𝑝31  
 𝑝06𝑝68 + 𝑝08 1 − 𝑝56𝑝65 + 𝑝06𝑝58.7𝑝65 ] 
(µ8𝑝20 + µ2𝑝82) 

 

and D11 is already defined 

 
 

3.5 Expected Number of Inspections by the  

       Server 
Let Ii(t) be the expected number of inspections by the server  

 in (0,t] given that the system entered regenerative state i at t=0. 

The recursive relations for Ii(t) are as follows: 

 

I0(t) = Q06(t) (s) [1+I6(t)] + Q08(t) (s) [1+ I8(t)] 

 

I1(t) = Q10(t) (s) I0(t) + Q13(t) (s) I3(t) + Q18(t) (s) [1+I8(t)] 

 

I2(t) = Q20 (t)(s) I0(t) + Q24(t)(s) I4(t) , I3(t) = Q31(t) (s) I1(t)  

+ Q38.7(t)(s) [1+I8(t)] 

 

I4(t) = Q42(t) (s) I2(t),  I5(t) = Q56(t) (s) [1+I6(t)] + Q58.7(t) 

 (s) [1+ I8(t)] 

 

I6(t) = Q60(t) (s) I0(t) + Q61(t) (s) I1(t)  + Q65(t) (s) I5(t)  + 

 Q68(t) (s) I8(t)          …(7)  

 

I8(t) = Q80(t) (s) I0(t) + Q82(t) (s) I2(t)  + Q89(t) (s) I9(t) , 

  I9(t) = Q98(t) (s) [1+I8(t)] 

 

Now taking L.S.T. of relation (7) and solving for . 

 By using this, the expected numbers of inspections carried  

out by the server in steady state are given by 

 

I10 = = N13/D11 

 

Where 

N13= 𝑝20 1 − 𝑝13𝑝31  
{ 1 − 𝑝56𝑝65 − 𝑝06𝑝89 + 𝑝06 𝑝65 + 𝑝68𝑝89   
+    𝑝06𝑝20𝑝61 𝑝13𝑝38.7 + 𝑝18  
and, D11 is already defined. 

3.6 Expected Number of Treatments Given  

        To the Server 
Let Ti(t) be the expected number of Treatments given 

 to the server  in (0,t] such that the system entered regenerative 

 state i at t = 0.The recursive relations for Ti(t) are as follows: 

 

T0(t)  =  Q06(t) (s) T6(t) + Q08(t) (s) T8(t) 

 

T1(t) = Q10(t) (s) T0(t) + Q18(t) (s) T8(t) + Q13(t) (s) [1+T3(t)] 

 

T2(t) =  Q20(t) (s) T0(t) + Q24(t) (s) [1+T4(t)] 

 

T3(t) =  Q31(t) (s) T1(t) + Q38.7(t) (s) T8(t) 

 

T4(t)  =  Q42(t) (s)T2(t)  ,  T5(t) = Q56(t) (s) T6(t) + Q58.7(t) (s) T8(t)  

 

T6(t) = Q60(t) (s) T0(t) + Q61(t) (s) T1(t)  + Q65(t) (s) [1+T5(t)]   

+ Q68(t) (s) T8(t) 

 

T8(t) = Q80(t) (s) T0(t) + Q82(t) (s) T2(t) + Q89(t) (s) [1+T9(t)] ,  

 T9(t) = Q98(t) (s) T8(t)                                                            …(8) 

 

Now taking L.S.T. of relations (8 ) and solving for and by  

using this, the expected number of the treatments given to server  

are given by 

 

T10 =   s = N14/D11  ,where 

 

N14=   𝑝89𝑝20 + 𝑝24𝑝82  

  1 − 𝑝13𝑝31  1 − 𝑝56𝑝65 − 𝑝06𝑝60 −  𝑝06𝑝10𝑝61  
+  𝑝06𝑝20 1 − 𝑝89 {𝑝65 1 − 𝑝13𝑝31 + 𝑝13𝑝61} 

 

and D11 is already defined. 

 

    3.7 Expected Number of Treatments  

           Given to the Server 
Let Ni(t) be the expected number of visits by the server  in (0,t] 

given  that the system entered regenerative state i at t = 0.The 

recursive  

relations for Ni(t) are as follows: 

 

N0(t)  =  Q06(t) (s)[1+N6(t)] + Q08(t) (s) [1+N8(t)] 

 

N1(t) = Q10(t) (s) N0(t) +Q13(t) (s) N3(t) + Q18(t) (s) N8(t) …(9) 

N2(t) =  Q20(t) (s) N0(t)+ Q24(t) (s) N4(t)  

 

N3(t)  =  Q31(t) (s) [1+N1(t)] + Q38.7(t)(s) [1+N8(t)] 

 

N4(t) =  Q42(t) (s) [1+N2(t)]  ,  N5(t) = Q56(t) (s) [1+N6(t)] + 

 Q58.7(t) (s) [1+ N8(t)] 

 

N6(t) = Q60(t) (s) N0(t) + Q61(t) (s) N1(t)  + Q65(t) (s) N5(t)  +  

Q68(t) (s) N8(t) 

 

N8(t) = Q80(t) (s) N0(t) + Q82(t) (s) N2(t) + Q89(t) (s) N9(t)  

 

N9(t) = Q98(t) (s) [1+N8(t)] 
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Now taking L.S.T. of relations (9) and solving for ,  

the expected number of visits by the server are given by 

  

N10 =   s  = N15/D11    ,   where 

 

N15= 𝑝89𝑝20 + 𝑝82𝑝24  
  1 − 𝑝13𝑝31  1 − 𝑝56𝑝65 − 𝑝06𝑝60 

−  𝑝06𝑝10𝑝61  
+  1 − 𝑝89 𝑝20{ 1 − 𝑝13𝑝31  1 − 𝑝56𝑝65

+ 𝑝06𝑝65  

+ 𝑝06𝑝13𝑝61} 

 

and D11 is already defined 
 

3.7 Expected Number of Replacements of  

        The Unit 
Let Ri(t) be the expected number of replacements of the 

 unit in (0,t] given that the system entered regenerative  

state i at t = 0.The recursive relations for Ri(t) are as follows: 

 

R0(t)  =  Q06(t) (s) R6(t) + Q08(t) (s) R8(t) 

 

R1(t)  =  Q10(t) (s) R0(t) + Q13(t) (s) R3(t) +Q18(t) (s) R8(t)   

  

R2(t)  =  Q20(t) (s) R0(t) + Q24(t) (s) R4(t)                                                              

 

R3(t)  =  Q31(t) (s) R1(t) + Q38.7(t) (s) R8(t)        …(10) 

 

R4(t) = Q42(t) (s) R2(t) ,    R5(t) = Q56(t) (s) R6(t) + Q58.7(t) (s) 

R8(t) 

 

R6(t) = Q60(t) (s) [1+R0(t)] + Q61(t) (s) R1(t)  + Q65(t) (s) R5(t)  

 + Q68(t) (s) R8(t) 

 

R8(t) = Q80(t) (s) [1+R0(t)] + Q82(t) (s) R2(t) + Q89(t) (s) R9(t) 

 

R9(t) = Q98(t) (s) R8(t) 

 

Now taking L.S.T. of relations (10) and solving for , 

 the expected number of visits by the server are given by 

  

R10 =   s  = N16/D11      ,   where 

 

N16= 𝑝20 1 − 𝑝13𝑝31  
 𝑝80 1 − 𝑝56𝑝65 + 𝑝06𝑝60𝑝82 − 

 𝑝06𝑝10𝑝20𝑝61𝑝80and D11 is already defined 

  

3.8 Cost-Benefit Analysis 
Profit incurred to the system model in steady state is given by  

P= K0 A10 - K1 B10 - K2 I10 -K3 T10 - K4 N10 - K5 R10       … (11) 

where  

K0 = Revenue per unit up time of the system. 

K1 = Cost per unit time for which server is busy. 

K2= Cost per unit time inspection by the server. 

K3 = Cost per unit time treatment given to the server. 

K4 = Cost per unit visit by the server. 

K5 = Cost per unit time replacement of the unit. 

 

4. CONCLUSION 
In the present study, results for a particular case 

 g(t) = α e-αt, g1(t) = e-α1t,f(t) = βe-βt,h1(t) = γ1e
-γ1t

,    k(t)  

= δ e-δt are obtained. The mean time to system to system 
 failure (MTSF) goes on increasing with the increase of 
 treatment rate (β) of the server, repair rate (α1) and 

 inspection rate( γ1) of the partially failed unit for fixed 
 values of other parameters with m=.6=p and n=.4=q as 
 shown in the table 1. But the effect of repair rate (α1) and 
 inspection rate (γ1) of the completely failed unit is about 
 negligible on MTSF. And, the value of MTSF decreases 
 with the increase of different failure rates (λ, λ1, λ2) and 
 failure rate (µ) of the server. Again, it may be noted that  
MTSF become less by interchanging the values of p and q. 
 From tables 2 and 3, it is observed that availability and 

 profit of the system model follow upward trend by  
increasing the treatment rate (β), repair rates (α and α1) and  
inspection rates (δ and γ1) for m=p=.6 and n=q=.4 with  
K0=2000, K1= 500, K2=K3=K4=200 and K5= 100. However, 
 their values follow a decline trend with the increase of  
failures rates (λ, λ1, λ2) and failure rate (µ) of the server.  
Further, it can be seen that the effect of repair rate (α) and  
direct failure rate (λ) is much more on availability and profit  

of the system model as compared to other parameters. Also, 
 the systems become less profitable by interchanging the values 
 of m with n and p with q. 
Thus the study reveals that a single unit system with  
 different failure modes and server failure can be made more 
 economically beneficial in the following ways: 

(i)      By controlling the direct failure rate of the unit. 
(ii)      By increasing inspection and repair rates of the  

completely failed unit. 
(iii)      By giving preference to the replacement of the failed 

 unit by new one over repair in case server fails frequently.  
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 Table 1: MTSF Vs. Treatment Rate 

 

 

 

 

 

 

 

Table 2: Availability Vs. Treatment Rate 

 

β 

 

α=1 α1=2 δ=3.5 μ=0.1 γ1=4 λ=0.3 λ1=0.5 λ2=0.7 m=0.6,n=0.4 p=0.6,q=0.4 

 

α=1 α=1.1 α1=2.1 δ=3.6 μ=0.2 γ1=4.1 λ=0.4 λ1=0.6 λ2=0.8 m=0.4,n=0.6 p=0.4,q=0.6 

0.1 0.618 0.628 0.619 0.62 0.503 0.619 0.577 0.605 0.612 0.567 0.606 

0.2 0.701 0.711 0.702 0.703 0.623 0.702 0.661 0.692 0.695 0.651 0.692 

0.3 0.734 0.743 0.734 0.736 0.676 0.734 0.694 0.726 0.727 0.685 0.726 

0.4 0.751 0.76 0.751 0.753 0.705 0.751 0.712 0.744 0.744 0.703 0.744 

0.5 0.761 0.771 0.762 0.763 0.724 0.762 0.723 0.755 0.755 0.714 0.756 

0.6 0.768 0.778 0.769 0.77 0.737 0.769 0.73 0.763 0.762 0.722 0.763 

0.7 0.774 0.783 0.774 0.776 0.746 0.774 0.736 0.768 0.768 0.727 0.768 

 

 

Table 3: Profit Vs. Treatment Rate 

 

β 

 

α=1 α1=2 δ=3.5 μ=0.1 γ1=4 λ=0.3 λ1=0.5 λ2=0.7 m=0.6,n=0.4 p=0.6,q=0.4 

 

α=1 α=1.1 α1=2.1 δ=3.6 μ=0.2 γ1=4.1 λ=0.4 λ1=0.6 λ2=0.8 m=0.4,n=0.6 p=0.4,q=0.6 

0.1 905.89 925.36 907.61 910.12 730.68 907.25 804.75 859.28 893.55 813.33 886.47 

0.2 1027.4 1046.9 1028.8 1031.6 903.36 1028.5 921.69 981.48 1014.2 933.96 1012 

0.3 1074.7 1094 1076.1 1078.9 979.5 1075.7 967.93 1029.5 1061.5 981.95 1061.3 

0.4 1099.7 1118.8 1100.9 1103.8 1021.9 1100.6 992.43 1054.8 1086.5 1007.5 1087.3 

0.5 1114.9 1133.9 1116.2 1119.1 1048.7 1115.8 1007.5 1070.3 1101.8 1023.3 1103.3 

0.6 1125.2 1144.1 1126.4 1129.3 1067.1 1126 1017.6 1080.7 1112.2 1033.9 1114 

0.7 1132.5 1151.3 1133.7 1136.6 1080.4 1133.3 1024.9 1088.2 1119.6 1041.5 1121.6 

 

β 

 

α=1 α1=2 δ=3.5 μ=0.1 γ1=4 λ=0.3 λ1=0.5 λ2=0.7 m=0.6,n=0.4 p=0.6,q=0.4 

 

α=1 α=1.1 α1=2.1 δ=3.6 μ=0.2 γ1=4.1 λ=0.4 λ1=0.6 λ2=0.8 m=0.4,n=0.6 p=0.4,q=0.6 

0.1 2.759 2.759 2.764 2.759 2.728 2.764 2.238 2.684 2.666 2.759 2.69 

0.2 2.763 2.763 2.768 2.763 2.735 2.767 2.24 2.687 2.67 2.763 2.694 

0.3 2.766 2.766 2.771 2.766 2.74 2.77 2.241 2.691 2.672 2.766 2.697 

0.4 2.768 2.768 2.773 2.768 2.745 2.773 2.242 2.693 2.675 2.768 2.699 

0.5 2.77 2.77 2.775 2.77 2.748 2.775 2.243 2.695 2.676 2.77 2.701 

0.6 2.772 2.772 2.777 2.772 2.752 2.777 2.244 2.697 2.678 2.772 2.703 

0.7 2.773 2.773 2.779 2.773 2.755 2.778 2.245 2.699 2.68 2.773 2.705 

 


