
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

10

Dynamic Load Balancing of Virtual Machines using

QEMU-KVM

Akshay Chandak
Krishnakant Jaju

Department of Computer
Engineering and Information

Technology,
College of Engineering, Pune.

Maharashtra, India.

Akshay Kanfade
Pushkar Lohiya

Department of Computer
Engineering and Information

Technology,
College of Engineering, Pune

Maharashtra, India

Amit Joshi
Department of Computer

Engineering and Information
Technolgy,

College of Engineering, Pune.
Maharashtra, India.

ABSTRACT
Virtualization technologies share the hardware resources

among multiple operating systems and maintain isolation

between virtual machines. Thus, they are used to optimize

resource utilization, minimize job response time and for more

efficient use of servers and other resources. For this, it is

necessary that the load is evenly distributed over all the hosts

in the network. The proposed work emphasizes on the design

and implementation of a policy engine to dynamically balance

the load over a network, using live migration feature of KVM.

The goal is to provide a provisioning monitor that can

dynamically make decisions about migration of

heavily/lightly loaded virtual machines.

Keywords

Virtualization, Load balancing, QEMU-KVM, Live

Migration, Virtual Machine (VM)

1. INTRODUCTION
Virtualization [1] is commonly defined as a technology that

introduces a software abstraction layer between the hardware

and the operating system and applications running on top of it.

Its main advantages include isolation, consolidation and

multiplexing of resources. Other benefits of virtualization

include saving on power by consolidation of different virtual

machines on a single physical machine, migration of virtual

machine for load balancing etc. Virtualization provides full

control of resource allocation to administrator, resulting in

optimum use of resources. More recently, another advantage

of virtualization - live migration of virtual machine is

increasingly used to better handle workload balancing across

physical machines in data center, especially when the

available resources in physical machine are not sufficient for

VMs.

The load balancing [2] problem determines how to divide

work between available machines in a way that achieves

performance goals. In static load balancing, the mapping of

jobs to resources is not allowed to change after the load

balancing has begun. On the other hand, dynamic load

balancing will change the mapping of jobs to resources at any

point, but there may be a cost associated with the changes.

Load balancing is essentially a resource management and a

scheduling problem. The operating system on each host

performs local scheduling. Local scheduling involves

deciding which processes should run at a given moment.

Global scheduling, on the other hand, is the process of

deciding where a given process should run. Global scheduling

may be performed by a central authority or it can be

distributed among all the hosts. The goal of the proposed

work is to dynamically balance load on the hosts by a central

authority, which is also a virtual machine.

Section II gives an overview about Virtualization and live

migration and other prerequisites for the setup. Section III

explains load balancing concept and phases involved in it.

Section IV proposes the algorithm for dynamic load balancing

based upon the framework given in Section III. Results are

shown in Section V. Finally, some conclusions are drawn in

Section VI.

2. VIRTUALIZATION AND LIVE

MIGRATION
Core of any virtualization technology is Hypervisor or Virtual

Machine Manager (VMM). Hypervisor is a piece of software

which allows each virtual machine to access and schedule the

task on resources like CPU, disk, memory, network, etc. At

the same time hypervisor maintains the isolation between

different virtual machines. Virtualization can be classified by

the method in which hardware resources are emulated to the

guest operating system [1]. They are as follows:

2.1 Full Virtualization
Hypervisor controls the hardware resources and emulates it to

guest operating system. In full virtualization, guest does not

require any modification. KVM is an example of full

virtualization technology.

2.2 Paravirtualization
In paravirtualization, hypervisor controls the hardware

resources and provides API to guest operating system to

access the hardware. In paravirtualization, guest OS requires

modification to access the hardware resources. Xen is an

example of paravirtualization technology.

2.3 KVM
Kernel-based Virtual Machine (KVM) [9] project represents

the latest open source virtualization technology. KVM is

implemented as a loadable kernel module that converts the

Linux kernel into a bare metal hypervisor. In the KVM

architecture, the virtual machine is implemented as regular

Linux process, scheduled by the standard Linux scheduler. In

fact each virtual CPU appears as a regular Linux process. This

allows KVM to benefit from all the features of the Linux

kernel.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

11

2.4 QEMU
Q-Emulator [7] is a generic open source processor emulator

and virtualizer. It can run many Operating Systems and

programs made for one machine on another. It uses dynamic

binary translation to achieve high performance. Binary

Translation is an emulation technique in which, instead of

emulating the processor, the virtual machine runs directly on

the CPU [7].

2.5 Shared Storage using Network File

System (NFS)
The hosts in a live migration write to the same VM image file

when a VM is moved. Thus, Live migration requires shared

storage which is provided by NFS.

2.6 Live Migration
Live Migration [6] of a virtual machine is simply moving the

running VM on a physical machine (source host) to another

physical machine (target host) without disrupting any active

network connections, while the VM is running on the source

host, even after the VM is moved to the target host. It is

considered live, since the original VM is running, while the

migration is in progress. Very small downtime, in the order of

milliseconds, is the benefit of doing live migration. We can

migrate a guest between an AMD host to an Intel host and

back. Naturally, a 64-bit guest can only be migrated to a 64-

bit host, but a 32-bit guest can be migrated to 32 or 64 bit

host.

The live migration task comes down to the following steps

[10]:

2.6.1 Pre-Migration
Select VM to be migrated and destination host where

resources required are guaranteed to be present.

2.6.2 Reservation
In this stage, confirmation of necessary resources at

destination host is done and a VM container of that size is

reserved.

2.6.3 Iterative Pre-Copy
The pages from guests physical address space are sent one at a

time to the destination system i.e. the guests memory is copied

to the destination. The pages that are copied are made read-

only for the guest during the live migration process. In the

following iterations, only the dirtied pages are copied.

2.6.4 Stop and Copy
At this stage, VM at source host is suspended and network

traffic is redirected to destination host. Also CPU state and

any remaining inconsistent memory pages are then

transferred.

2.6.5 Commitment
Now, Destination host indicates source host that it has

successfully received a consistent VM image.

2.6.6 Activation
The migrated VM on destination host is now activated.

3. LOAD BALANCING
Load balancing is the process of reallocating VMs on another

host in the network in order to improve resource and network

utilization. Common goals of load balancing include

maximizing throughput, minimizing response time, and/or

minimizing communication time and avoiding the scenario in

network that, some hosts are under-utilized and some over-

utilized. The important factors to consider while developing

such algorithm are estimation of load, comparison of load,

performance of systems, nature of work to be transferred and

selection of hosts [2].

Static load balancing is VM placement problem. Here, the

host on which VM will be placed is decided before it starts

running depending upon the load on the network i.e. host with

least system usage runs the VM. Dynamic load balancing

reassigns VMs based on system performance at run time using

the feature of live migration of QEMU-KVM.

3.1 Goals of Load Balancing
Following are the goals of load balancing as described in [2]:

 To improve the performance substantially

 Fault tolerance in case of system failure

 To maintain the system stability

 To accommodate future modification in the system

3.2 Types of Load Balancing Algorithms
Following are types of load balancing algorithms as described

in [2]:

 Sender initiated : Algorithm initiated by Sender
 Receiver initiated : Algorithm initiated by Receiver
 Symmetric : Combination of above two

3.3 Previous Work
The five phases of load balancing as described in [8] are:

 Load Evaluation

 Profitability Determination

 Work Transfer Vector Calculation

 Task Selection

 Task Migration

The Central Scheduler Load Balancing (CSLB) [4] uses a

central node that makes all load balancing decisions. It uses

the above five phases for VM migration instead of process

migration as proposed in [10].

Policy Engine [3] is heart of load balancing algorithm. It

decides when to migrate virtual machines between hosts and

runs as a normal virtual machine. The aim behind this is, it

can move itself to a different host like any other virtual

machine, depending on the load.(Fig 1)

4. PROPOSED ALGORITHM
The proposed algorithm is modified version of Central

Scheduler Load Balancing (CSLB) algorithm [4]. The

algorithm uses the five phases for load balancing as described

above:

4.1 Load Evaluation
As stated, the algorithm is a central scheduling algorithm,

where all the hosts send load information to the policy engine:

which is responsible for load balancing decisions, after a

predefined time interval which can be changed as per the

requirements.

The CPU utilization is divided into three bands: Lightly

loaded, moderately loaded and heavily loaded based on the

threshold value as shown (Fig 2).

The threshold is the average of CPU usage of all hosts. The

moderately loaded band is created by adding and subtracting a

value, which is the difference between the average and the

mean of the maximum and minimum of the CPU usage of the

hosts or of 20 percent width, across the threshold, whichever

is maximum. All the hosts fall in at least one of the bands.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

12

Fig 1: Relationship between policy engine and the KVM

hosts.

The systems would be in an ideal state if all the hosts lie in the

moderately loaded band.

Calculation of moderate band:
threshold = (α1+α2+α3+...+αn)/n

mean = (αmin+αmax) / 2

diff = |threshold - mean|

if diff > 10

 moderately loaded band = threshold ± diff

else

moderately loaded band = threshold ± 10

where,

αi= CPU usage of ith Host over a defined time in percentage

and i = 1 to n

4.2 Profitability Determination
Migration of virtual machines from one host to another will be

considered profitable if there exists one virtual machine in the

heavily loaded band and one in lightly loaded band.

4.3 Work Transfer Vector Calculation
For hosts that are not in the moderately loaded band, load

balancing policies are applied so that they end up in a

moderately loaded state. This is done by transferring a VM

from heavily loaded band to a lightly loaded band such that

both the systems try to achieve a moderately loaded band. The

value is calculated by taking the difference between the

threshold and the current CPU utilization of the lightly loaded

host.

4.4 VM Selection
VM Selection can be estimated using the virtual machine

usage on a host. The virtual machine that has a usage closer to

the amount calculated in phase 3 (i.e. Work Transfer Vector

Calculation) should be migrated.

4.5 VM Migration

Fig 2: Each host machine is assigned to one of three

groups based on CPU utilization and two thresholds. A

darker color indicates that the host is more heavily loaded.

Here QEMU-KVM’s live migration feature is used. It is done

using the virsh command which is a libvirt API (a toolkit to

interact with Virtualization capabilities of OS).

The relation between five phases of the algorithm is explained

by the following flowchart (Fig 3):

5. PERFORMANCE AND RESULTS

ANALYSIS
In order to assess the performance of the algorithm, a

prototype system of VM management was developed. Virtual

platform: KVM and storage system: NFS was used. A

physical machine was chosen as the host machine. QEMU-

KVM and Virtual Machine Manager were installed to manage

and schedule VM; and its operating system was Fedora 15,

CPU: Intel Core i5-2400 3.10 GHz * 4, and Memory: 3 GB.

Three client machines of same configuration as above were

chosen. libvirt, qemu-kvm, virt-manager, nfs server packages

were installed.

In this scenario the CPU usage sent to policy engine is the

average of CPU usage over last three minutes of respective

hosts. The policy engine calculates thresholds every five

minutes and takes the decision for load balancing i.e. whether

to migrate some VM or not.

The experimental results are as follows (CPU USAGE in

percentage). Table 1,2,3 and 4 depicts the hosts and their

corresponding CPU usage after three iterations of the

algorithm. Followed by Fig. 4 which depicts the variation in

CPU usage of hosts over period of 25 minutes. The usage of

CPU by individual VMs was approximately constant over 25

minutes and each VM was running on single core.

By using the formulae given in Load Evaluation, lower and

upper limit of moderate band are calculated. Hence Host 1 is

in moderately loaded band, Host 2 is in lightly loaded band

and Host 3 in heavily loaded band and A2 is migrated from

Host 3 to Host 2. (Table 2)

By using the formulae given in Load Evaluation, lower and

upper limit of moderate band are calculated. Hence Host 1 is

in moderately loaded band, Host 3 is in lightly loaded band

and Host 2 is in heavily loaded band and K2 is migrated from

Host 2 to Host 3. (Table 3)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

13

By using the formulae given in Load Evaluation, lower and

upper limit of moderate band are calculated. Hence Host 1 is

in moderately loaded band, Host 3 is in lightly loaded band

and Host 2 is in heavily loaded band and K3 is migrated from

Host 2 to Host 3. (Table 4)

Fig 3: Flowchart of five phases of algorithm

Table 1. State of VMs on Hosts

By using the formulae given in Load Evaluation, lower and

upper limit of moderate band are calculated. Hence all hosts

are in moderately loaded band.

Table 2. State of VMs on Hosts

Table 3. State of VMs on Hosts

Table 4. State of VMs on Hosts

6. CONCLUSIONS AND FUTURE WORK
The work has proposed a policy engine to dynamically

balance the load over the network. Originally the network was

imbalanced. There were hosts in heavily as well as lightly

loaded bands. After some iterations (three in the above

scenario) of the load balancing algorithm, all the hosts were

balanced i.e. all the hosts were in the moderately loaded band

(Fig. 4).

Cloud Computing is a vast area and load balancing plays a

very important role in case of Cloud. The work has focused on

CPU usage as load parameter that is applied to the setup, but

there are still other parameters and approaches that can be

applied to balance the load. The performance of the given

algorithm can be increased by varying different parameters

like memory usage, disk I/O, network load.

Further dynamic load balancing can be improved and the Live

Migration algorithm implemented in QEMU-KVM can be

optimized, so that migration time will be reduced

and performance will also be improved.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.6, May 2012

14

Fig 4. Variation in CPU Usage of Hosts

7. REFERENCES
[1] Jyotiprakash Sahoo, Subasish Mohapatra, Radha Lath,

Virtualization: A Survey On Concepts, Taxonomy And

Associated Security Issues, Second International

Conference on Computer and Network Technology,

2010.

[2] Ali M. Alakeel, A Guide to Dynamic Load Balancing in

Distributed Computer Systems, IJCSNS International

Journal of Computer Science and Network Security,

VOL.10 No.6, June 2010.

[3] Terry C. Wilcox Jr, Dynamic Load Balancing Of Virtual

Machines Hosted On Xen, Department of Computer

Science, Brigham Young University, M.S. Thesis, April

2009.

[4] Youran Lan, Ting Yu, A Dynamic Central Scheduler

Load Balancing Mechanism, Computers and

Communications, pp 734-740, May 1995.

[5] Yi Zhao, Wenlong Huang, Adaptive Distributed Load

Balancing Algorithm based on Live Migration of Virtual

Machines in Cloud, Fifth International Joint Conference

on INC, IMS and IDC, 2009.

[6] F. Ma, F. Liu, Z. Liu, Live Virtual Machine Migration

Based on Improved Pre-copy Approach, Proc. Software

Engineering and Service Sciences, pp. 230-233, 2010.

[7] Geoffroy Vallee, Thomas Naughton, Christian

Engelmann, Stephen L Scott, Hong Ong, System-level

Virtualization For High Performance Computing, 2008.

[8] Jerrell Watts, Stephen Taylor, A Practical Approach to

Dynamic Load Balancing, IEEE Transactions on Parallel

and Distributed Systems, Feb 1998.

[9] KVM Kernel Based Virtual Machine Red Hat, Inc. 2009.

[10] Christopher Clark et. al., Live Migration of Virtual

Machines, 2nd Symposium on Networked Systems

Design & Implementation, NSDI’05

