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ABSTRACT 

The collective behavior/motion has always been one of the 

most fascinating phenomena since men started to observe 

nature which remains a real natural phenomenon, were it is 

typical in our social environment. The study of collective 

behavior on a large scale also enables us to better understand 

different approaches to study in the small scale. In this study, 

we discuss the principal effect of the control parameters: The 

binder cumulant, density and the size of system with three 

zones repulsion, orientation and attraction on the collective 

motion in the 2D. Furthermore a simple model with a novel 

type of dynamics is introduced in order to investigate the 

emergence of self-ordered motion in system of particles. In 

our simulation, the particles equivalent to agents interact with 

their neighbors by choosing at each time step a velocity 

depending on their direction. The aim of this article is to 

extend the model proposed earlier by Viscek et al. Numerical 

simulations showed that depending on the control parameters 

both disordered and long-range ordered phases can be 

observed and the corresponding phase space domains are 

separated by singular critical lines. 

Keywords 

Collective motion, Noise, Density, size of system, Binder 

cumulant and Kinetic phase transition. 

1. INTRODUCTION 
Recently there has been an increasing interest in the studies of 

far-from-equilibrium systems typical in our natural and social 

environment. Concepts originated from the physics of phase 

transitions in equilibrium system such as collective behavior, 

scale invariance and renormalization have been shown to be 

useful in the understanding of various non-equilibrium system 

as well. Simple algorithmic models in section 2 have been 

helpful in the extraction of the basic properties of various far-

from-equilibrium phenomena. There is the several models 

where have been suggested and simulated to evaluate the 

main features of the collective motion such as flocks of birds, 

schools of fish and group of bacteria,…. The primary study of 

the collective motion was given by Vicsek and his 

collaborators [1] that studied the problem with computer 

simulation they treated identical point-wise particles, the 

present contribution is a continuation of our study of 

collective behavior of interacting agents Najem & al. [3] 

which we tacked two zones, in this article we consider the 

effect of the three zones: repulsion, orientation and attraction 

of the flocking model. In our model, the agent corresponding 

to particles are driven with a constant absolute velocity locally 

interact with his neighbors and at each time step the velocity 

depending on the direction of the motion [2-5]. This direction 

is being subject to error i.e noise. This movement describes 

the behavior of each individual depending on the state of the 

position and the velocity [6-7]. Our intention is to present a 

detailed numerical study on the effect of the density and size 

of system on the kinetic phase transition, with three zones of 

the flocking model, and find the nature of this transition using 

the Binder cumulant where measure to distinguish between 

first and second order phase transitions. The numerical 

simulation of individuals on the D=2 undergo a kinetic phase 

transition [8-11] from an ordered phase where all the particles 

move in the same direction, to a disordered phase where the 

particles move in random directions i.e from no transport: 

zero average velocity , to finite net transport [12-17].Our 

system depends on many different variables and parameters, 

such as: the noise, density and the size of system that plays a 

very important role and its variations can affect significantly 

the collective behavior motion. The effect of noise causes the 

change the value of density, size of system and velocity. 

These crucial parameters influence the motion of flocks which 

become much more coherent.  

2. PRESENTATION AND 

DESCRIPTION OF THE  

      MODEL 
To understand the complex behavior of non-equilibrium 

multi-agent system, we will extend the two-dimensional 

Viscek model [1] by considering three zones that are defined 

by three concentric circles around every agent as shown in 

Fig.1. The model that we think here studies the effect of each 

zone on the movement of whole flock, where each zone or 

radius around each agent attempts to maintain a minimum 

distance between him and others at all time. Each agent has a 

specified range of awareness where it recognizes other mates 

or obstacles. 
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Fig.1. Schematic representation of the three zones for 

individual i. ZOR is the Zone Of Repulsion (rr radius of 

repulsion); ZOO is the Zone Of Orientation (ro radius of 

orientation) while ZOA is the Zone Of Attraction (ra 

radius of attraction). 

 

In our implementation as in model of Vicsek we consider an 

L × L square shaped surface with periodic boundary 

conditions. We define N  individuals present within the 

system Ni ,....,1 each with a unique position vector 

)(tri  and a unit direction vector )(tvi at time t, where it’s 

partitioned into discrete time steps  t. At each time, every 

individual assesses the other individuals’ positions and 

velocities within a local neighborhood, to find their preferred 

travel direction Vi
d(t). 

The zone of repulsion is modeled by a circular surface with 

radius rr  the set of individuals within this zone is of size Nr. 

The individual i has Nr  neighbors determined by the 

condition rij rtrtr  )()(0 , where )(trj  is the 

position of the j-th neighboring 

individual ),,...,1( ijNj r  . We define  
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The vector )(, tr ji  is the unit vector pointing from individual 

i in the direction of neighbor j. so if neighbors are present in 

an individual’s zone of repulsion i.e. 0rN then the 

preferred direction of travel for the next time step is 
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If there are no neighbors within the zone of repulsion, then 

individual i respond to neighbors within the zone of 

orientation and zone of attraction; radius ro and ra 

respectively. There are No detectable neighbors present in the 

zone of orientation, determined by the condition 

oijr rtrtrr  )()( . Similarly, there are Na  detectable 

neighbors in the zone of attraction, such 

aijo rtrtrr  )()(  is satisfied. The preferred travel 

direction resulting from the zone of orientation is the average 

of the neighbor’s velocities 
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Where ),,...,1( ijNj o  , if neighbors are found in 

zone of orientation then 
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 The preferred direction due to the zone of attraction is 
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Where ),,...,1( ijNj a  , if neighbors are present in 

zone of attraction then  
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In the rare case when the social forces cancel one another out 

and give a zero vector, or if no neighbors are detected, then  

                        )()1( tvi

d

i

tV   

In our simulations, the position )1( tri  for each particle at 

the unit, is  

                ttvtrtr iii  )1()()1(               (4) 

Each group member orients towards their desired travel 

directions at a turning rate of . Otherwise, the individual 

rotates their current direction from the expression:  

              
ii tt )()1(                      (5) 

The quantity 
i

t)(  describes the average direction of 

the i-th particles. A noise η has been introduced as a random 

variable   chosen with uniform distribution in interval  

[- η/2, η/2]. 

The natural order parameter suitable to describe the collective 

behavior of the individuals is the normalized average velocity 

which presents a sense of the ordered/disordered motion for 

the particles, given by 

                         
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We have studied in detail the nature of kinetic phase transition 

by determining the absolute value of the average normalized 
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velocity. In the next, we will adopt the value 1.00 v ; this 

value used for particles that always interact with their actual 

neighbors and move fast enough to change the configuration 

after a few updates of the directions, we announce obviously 

the results are not changed by the parameter 0v  chosen from 

the wide range ( 5.01.0 0  v ) the 1t  means the 

time interval between two updating of the directions/positions.  

3. SIMULATION RESULTS AND 

DISCUSSIONS 

For the statistical characterization of the configuration, a well-

suited order parameter is the magnitude of the average 

momentum of the system: eq. (6), this measure of the net flow 

is non-zero in the ordered phase, and vanishes (for an infinite 

system) in the disordered phase. In the simulation random 

initial conditions and periodic boundary conditions were 

applied. In our presentation, the density   and the size of 

system L in our study play a very important role and they 

variation can affect significantly the collective behavior 

motion. In the simple model of Viscek presented only for one 

zone, it is shown that for small densities and noise, the 

particles move coherently in random directions. While for 

higher densities and noise the motion becomes correlated. The 

density it is defined by 
2L

N
 where N corresponds to the 

number of particles and L the system size. It measures the 

number of particles per unit of surface. In the limit of big 

systems, N and L tend to infinity while   remains finite. We 

declare that the numerical errors in our results are probable in 

the range of 2% due to the correlations and the number of 

iterations. 

In the following, Fig.3.1 (a) investigates the behavior of the 

transport properties (velocity av ) as a function of density  . 

We present our results by calculating the variation of velocity 

in range of noise parameters from η=0 to η=5. For a fixed 

noise (η=0) the velocity increases with the density to a value 

of   after well becomes stable, and much greater the noise 

(η=5) the velocity decreases quantitatively as function of the 

density. These results indicate the strong role of density 

effects in our model. 
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       Figure 3.1: Variation of the average velocity av  as a    

       function of: (a) density ρ and (b) size of system L for   

       different values of noise η  for fixed value of the 

rr=0.1,ro=0.9 and ra=2.0. 

 To explain better the motion of flocks, Fig.3.1 (b) shows the 

change shape of av caused by the effect size L of system, as 

can be seen from the figure, for some range of values of η , 

the velocity av  decreases with size L from its maximal value 

( 1 ~av ) until its minimum value ( 0 ~av ), indicating that 

the transition regime is not fast enough as like as in second-

order transitions. The L is changed by varying the density of 

individuals between ρ = 0.1 and ρ = 10.0 with constant 

number of individuals N. Consequently, the quantitative effect 

of increasing the noise decreases gradually the velocity. These 

results are in good agreement with the results acquired in the 

framework of the similar model finding by Vicsek. These 

finding indicate the strong role and the effect of size system in 

our model. So, the system undergoes a kinetic phase 

transition, which occurs at some critical density c  and at 

some critical size of system cL  from net transport phase to no 

transport phase. 

Another useful observable in the study of equilibrium critical 

behavior is the susceptibility that according to fluctuation–

dissipation can be taken by calculating the variance of the 

order parameter av . However, the fluctuations of the order 

parameter given by the Ising models    



International Journal of Computer Applications (0975 – 8887) 

Volume 46– No.5, May 2012 

24 

                
D

a NvVar )(                              (7) 

With                ][)( 22

aaa vvvVar               (8) 

The )( avVar  is the order parameter variance and D=2. 

Early numerical calculation and theoretical arguments 

strongly propose that the dependence of the critical density 

and the critical size of system corresponding to different noise 

of particles. 

It turned out we analyses in Fig.3.2 (a) the variation of 

susceptibility   as a function of density   for different 

values of the noise η: initially we note that there is an 

increased value of susceptibility as a function of density, this 

increase reaches a maximum value and drops to a minimum 

value equal to zero when the density tends to 

infinity  . The dependence of the susceptibility on the 

density practically is no monotonic exhibiting a turnover. The 

data in this figure shows that for a fixed noise the critical 

density c and the cL  are determined from the maximum 

value of the curve depends strongly on the noise. More 

precisely, by decreasing the noise in Fig.3.2 (b), the peak 

position is shifted to the large size of system L. Therefore, our 

simulation shows that at what critical values of )(c  and 

)(cL the whole flock can stay together and also determines 

the ordered and disordered movement, this transition does not 

depend only on the density as found in the Viscek model but 

also the effect of system size.  
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 Figure 3.2: Variation of the susceptibility  as a   

 function of: (a) density ρ and (b) size of system L for  

 different values of noise η, for fixed value of the 

rr=0.1,ro=0.9 and ra=2.0. 

To study the nature of the transition found in Fig.3.1, and in 

Ref [1, 3] (described the velocity as a function of noise) we 

use the fourth order cumulant of the order parameter which is 

the Binder cumulant [16-18], defined as: 

                                                                (9) 

The Binder cumulant measures the fluctuations of the order 

parameter and is a good measure to distinguish between first 

and second order phase transitions. In case of a first order 

phase transition B has a definite minimum; on the other hand, 

the Binder cumulant exhibits a sharp drop toward negative 

values. This behavior in this case reflects the transition of first 

order. The Fig.3.3 described the variation of Binder cumulant 

B as a function of noise η for different values of L. The Binder 

cumulant has no minimum distinguishable in small sizes 

systems, we conclude that the finite size effects are very 

important and the minimum can be observed only for very 

large sizes. Note that in the case of small sizes of L the finite 

size effects can mask the pic of the first order transition. This 

minimum is due to the simultaneous contributions of the two 

phases coexisting. When  the fluctuations of 

the , it is easy to compute that  in the ordered 

phase. The movement is completely random when . 
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Figure 3.3. Variation of the Binder cumulant G as a 

function of the noise , for different values of system sizes 

L and for fixed value of the density  , rr=0.1, ro=0.9 

and ra=2.0. 

In Fig.3.4 we present the variation of susceptibility  as a 

function of noise  for different values of the radius of 

orientation ro: initially we note that there is an increased value 

of susceptibility as a function of noise, this increase reaches a 

maximum value and drops to a minimum value equal to zero 

when the noise tends to infinity . The dependence of 

the susceptibility on the noise is no monotonic exhibiting a 

turnover. The data in this figure shows that for a fixed density 

and radius of repulsion rr  the critical noise c is determined 

from the maximum value of the curve depends strongly on the 

radius of orientation ro. In fact, by increasing the radius of 

orientation, the peak position is shifted to the large noise the 

result is always the same if we increase the density . And for 

much larger value of radius of repulsion  the peak position 

is oriented also towards large noises. Therefore, our 

simulation shows that at what critical values  orc rr ,,  
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the whole flock can stay together and also determines the 

ordered and disordered movement, this transition does not 

depend only on the density as found in the Viscek model but 

also the effect of radius of repulsion rr  and radius of 

orientation ro.  
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 Figure 3.4. The susceptibility   as a function of noise   

for different values of the radius r o and ra=2.0. 

 
However, in nature, groups are likely to move between the 

collective states if conditions change, therefore the initial 

orientation of individuals and the form of the group can 

influence the future of collective behavior if the parameters 

behavioral change.     
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Figure 3.5. Kinetic phase diagram with the effect of two 

radiuses ro and rr 

In this Figure 3.5 we will determine the evolution of critical 

noise c as a function of radius of orientation ro and radius of 

repulsion rr  for different values of density . This figure 

also describes the variation of the kinetic phase transition in 

flock model of three-dimensional space. From these results, 

we found that the critical noise c  increases with increasing 

the density. However, the determination of the phase diagram 

and more precise with the effect of two radiuses ro, rr and 

density in our new model is outside of the scope of the study 

which concentrate on demonstrating the main features of a 

novel no equilibrium system. 
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Figure 3.6: Variation of the: (a) critical density c  as a 

function of noise  η  and (b) critical size of system cL as a 

function of noise η 

Finally, in Fig. 3.6 (a, b) we determine the kinetic phase 

diagram of the Vicsek model with three zones of the flock 

model in the plane of density versus the noise and the size of 

system versus the noise also. From these results it is evident 

the find the c  increases with η and cL  decreases with η 

also. In fact and in all cases, the relation between c , cL  and 

η is trivial.  

4. CONCLUSION 
The aim of this work is an extension of the Viscek model of 

the collective displacement of self-propelled individuals, 

aimed to contribute and to understand the role: of density and 

the effect size of system in the onset of order motion. Using 

the computation of the susceptibility our simulation proves 

that the  and the L plays a very important role to determine 

the kinetic phase transition from no transport to finite net 

transport. Another important result is that the noise influences 

greatly the critical value of . We observed a 

sharp decreasing of B with  indicating that the transition 

regime is fast enough like the first-order transitions. These 

finding are qualitatively in good agreement with the elegant 

results obtained in the framework of the similar model 

developed by Grégoire and collaborators, As a guide in this 

study, we have examined the effect of the third zone of 

attraction in the model of Viscek and we concluded that this 

zone has no influence on the results found in the movement of 

flock in our simulation. To maintain an order in a flock with 

higher density, it is essential to decrease the noise of the flock. 

In this article, we have not considered the effect of the 

movement in space of three dimensions, and the open 

boundaries which permitted us to have much more 

information about the collective behavior motion of the flock. 

Other studies are being conducted to explore further this 

subject. 
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