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ABSTRACT 

For the last few decades, algorithms like Genetic Algorithms, 

Evolutionary Programming, and Evolutionary Strategies etc. 

are being used for optimization of various problems. 

Nowadays various swarm inspired algorithms have replaced 

them. Bacterial Foraging Optimization (BFO) is the latest 

among these algorithms. It has been widely accepted as global 

optimization technique due to its ease of implementation. In 

this paper we analyzed chemotactic behavior of bacteria by 

minimizing various mathematical benchmark functions. 

MATLAB simulations of these functions for different step 

sizes are shown in graphical form. Work is concluded by 

discussing the effect of varying step size on chemotactic 

movement of bacteria. 
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1. INTRODUCTION 
Nature has always taught the living beings to adapt according 

to its ways for their well being. It guides various species in 

different ways. Homo sapiens, being the most intelligent 

species, has always tried and proved himself successful to 

exploit the nature and its ways for his self motives. From last 

few decades, scientists have been imitating various natural 

procedures like evolution, natural genetics or group behavior 

of various creatures to attain a desired objective. These nature 

inspired methods can be used to optimize many real world 

problems.  

Various methods have been defined for optimization which 

can be broadly classified into three methods namely 

deterministic, stochastic and heuristic methods. Deterministic 

optimization methods depend on mathematical properties for 

finding the optimum solution. These techniques are dependent 

on gradient, local optimums and are inefficient in large scale 

search space [1]. Commonly used deterministic methods are 

Inner approximations, Outer approximations, Cutting 

methods, Branch and Bound methods and many more. 

Stochastic optimization methods are the methods that use 

random variables and random iterates to solve stochastic 

problems. Randomness is introduced in the search-process to 

accelerate search progress. This type of randomness can also 

make the method less sensitive to modeling errors. These 

optimization methods include Simulated annealing, Stochastic 

tunneling, Parallel tampering, Monte Carlo sampling etc. 

Some of the stochastic methods like Stochastic Gradient 

Descent and Finite difference Stochastic Approximation use 

statistical inference tools to estimate the true values of the 

function and/or make statistically optimal decisions about the 

next steps. The third optimization method i.e. heuristic is a 

computational method that uses iterations to improve an 

optimal solution of any problem. This method makes very less 

assumptions about the problem being optimized and can 

search very large spaces of candidate solutions. Many 

heuristics implement some form of stochastic optimization. 

Due to this reason, these methods are also called as 

combinatorial methods. These include Genetic Algorithms, 

Swarm based optimization algorithms, Memetic Algorithms 

etc. Genetic algorithm (GA), which was originally conceived 

by J. Holland, is based on Darwinian evolution and biological 

genetics [2]; Swarm Intelligence uses the collective behavior 

of animals to achieve the desired goal. There are two popular 

swarm inspired methods: Ant Colony optimization (ACO) and 

Particle Swarm Optimization (PSO). Proposed by Marco 

Dorigo et al., ACO is based on foraging behavior of ant 

colonies [3]. PSO, proposed by Eberhart Kennedy, is inspired 

by social behavior of flocks of birds and schools of fish [4]. 

Currently, these nature inspired techniques are being used for 

finding better quality solutions in optimization problems and 

formulate better decision making mechanisms. Bacterial 

Foraging Optimization Algorithm (BFOA) proposed by 

Passino, is a newcomer in this field. BFO is inspired by social 

foraging behavior of Escherichia coli bacteria [5]. BFO has 

been already applied to a number of problems like adaptive 

control (Kim & Cho, 2005b), harmonic estimation (Mishra, 

2005), machine learning (Kim & Cho, 2005a), and optimal 

power flow scheduling (Tang et al., 2006) [6]. The objective 

of this paper is to analyze the effect of varying step size of 

bacterium on its chemotactic behavior. 

The rest of the paper is organized as follows. Section 2 

provides a review of BFO Algorithm. Section 3 describes 

graphical analysis of chemotactic movement of bacteria using 

various mathematical functions. Section 4 presents discussion 

of results. Finally, in last section, we give conclusion of the 

work. 

2. BFO REVIEW 
BFO is based on foraging strategy of bacteria Escherichia 

coli. After many generations, bacteria with poor foraging 

strategies are eliminated while; the individuals with good 

foraging strategy survive signifying survival of the fittest. The 

whole process can be divided into three sections, namely, 

chemotaxis, reproduction, and elimination and dispersal [5]. 

2.1 Chemotaxis 

Chemotaxis can be defined as foraging behavior of bacteria in 

which it try to avoid noxious substances and search for 

nutrient rich substances by climbing up the nutrient 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Stochastic_optimization
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concentration. This process involves two actions; either a run 

(in the same direction as the previous step) or tumble (in an 

absolutely different direction from the previous one). In order 

to explore whole search space there is a limit on run steps in a 

particular direction. So, bacteria tumble after some run steps.  

Suppose θi(j,k,l) be the position of ith bacterium at jth 

chemotactic, kth reproductive and lth elimination & dispersal 

loop. Then chemotactic movement of the bacterium may be 

mathematically represented by following equation.  

 

 

𝜃𝑖 𝑗 + 1, 𝑘, 𝑙 =  𝜃𝑖 𝑗, 𝑘, 𝑙 + 𝐶(𝑖)
∆(𝑖)

 ∆𝑇 𝑖 ∆(𝑖)
′
 

In the above expression, C (i) is the size of the step taken in 

random direction and ∆(i) indicates a vector in the arbitrary 

direction. When the bacterial movement is run, Δ(i) remains 

unchanged; otherwise, Δ(i) is a random vector whose 

elements lie in [−1, 1]. Fitness function, denoted as J (i, j, k, 

l), will be evaluated for each step of run or tumble in the 

chemotactic process. 

2.2 Reproduction 

The health of each bacterium is calculated as the sum of the 

step fitness during its life, namely, 

 

𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖 =  𝐽(𝑖, 𝑗, 𝑘, 𝑙)

𝑁𝑐 +1

𝑗 =1

 

where Nc is number of  chemotactic steps. All bacteria are 

sorted in increasing order according to health status. In the 

reproduction step, only the first half of population survives 

and a surviving bacterium reproduces by splitting into two 

daughter bacteria, which are then placed at the same locations. 

Thus, the population of bacteria keeps constant. 

2.3 Elimination & Dispersal 

The chemotaxis provides a basis for local search, and the 

reproduction process speeds up the convergence of the 

algorithm. However, only chemotaxis and reproduction are 

not enough for global optima searching. Since bacteria may 

get stuck around the initial positions or local optima, it is 

possible for the diversity of BFO to change either gradually or 

suddenly to eliminate the accidents of being trapped into the 

local optima. In BFO, according to a preset probability Ped, 

bacteria are eliminated and dispersed after a certain number of 

reproduction steps. After elimination, they are moved to 

another position within the environment.  

Algorithm:  

Step 1.  Initialize parameters p, S, Nc , Ns, Nre, Ned, Ped,    
 C (i) (i = 1, 2, . . ., S), θi,    

           where            

p: dimension of the search space, 

   S: the number of bacterium, 

       Nc: chemotactic steps, 

         Ns: swimsteps, 

          Nre: reproductive steps, 

     Ned: elimination and dispersal steps, 

     Ped: probability of elimination, 

   C(i): the run-length unit (i.e., the chemotactic step 

 size during each run or tumble). 

 

Step 2.  Elimination-dispersal loop: l =l+ 1. 

Step 3. Reproduction loop: k = k+ 1. 

Step 4. Chemotaxis loop: j =j+ 1. 

Substep 4.1. For i = 1, 2…, S, take a chemotactic step for 

                      bacteria i as follows. 

Substep 4.2. Compute fitness function, J (i,j, k, l). 

Substep 4.3. Let Jlast = J (i, j, k, l) to save this value since  

                      we may find better value via a run. 

Substep 4.4. Tumble: generate a random vector Δ (i) ∈Rp 

                       with each element Δm(i), m = 1, 2, . . .,p, a    

                       random number on [−1, 1] 

Substep 4.5. Move: Compute θi(j+1,k,l).This results in a 

                      step of size C (i) in the direction of the  

                      tumble for bacteria i. 

Substep 4.6. Compute J (i, j +1, k, l) with θi(j+1, k, l). 

Substep 4.7. Swim: 

(i) Let m =0 (counter for swim length) 

(ii) While m <Ns (if not climbed down too 

long) 

a) Let m = m+ 1 

b) If J (i, j +1, k, l_)< Jlast, Let Jlast =J (i, j +1, k, l), 

Then, another step of size C (i) in the same            

direction will be taken as Eq.(1) and use the new 

generated θi(j+1, k, l) to compute the new J(i, j+ 1, 

k, l). 

c) Else Let m= Ns. 

Substep 4.8. Go to next bacterium (i+1): if i≠S go to 4.2  

                      to process the next bacteria. 

 

Step 5.  If j < Nc , go to Step 4. In this case,          

continue chemotaxis since the life of the bacteria is 

not over. 

Step 6.  Reproduction. 

Substep 6.1. For the given k and l, and for each i =1, 2, ..   

                       ., S, let  

 

𝐽ℎ𝑒𝑎𝑙𝑡 ℎ
𝑖 =  𝐽(𝑖, 𝑗, 𝑘, 𝑙)

𝑁𝑐 +1

𝑗=1

 

be the health of the bacteria. Sort bacterium in order 

of ascending values (Jhealth). 

        Substep 6.2. The Sr bacteria with the highest Jhealth    

                              values die, and the other Sr bacteria with 

                              the best values split, and the copies that are 

                              made are placed at the same location as 

                              their parent. 

Step 7. If k < Nre go to Step 2. In this case,  the number 

of specified reproduction steps is not reached; start 

the next generation in the chemotactic loop. 

Step 8.  Elimination-dispersal: for i =1, 2, .. ,S, with 

probability Ped, eliminate and disperse each bacteria, 

which results in keeping the number of            

bacteria in the population constant.  To do this, if a 

bacterium is eliminated, simply disperse one to a             

random location on the optimization domain. If l 

<Ned, then go to Step 2, otherwise, end [7]. 
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3. MATHEMATICAL ANALYSIS OF 

CHEMOTAXIS 

3.1  Mathematical Functions and BFO 

parameters 
To analyze the chemotactic movement of bacteria, we 

consider a set of mathematical benchmark functions of 

varying complexity and dimensions. The considered 

mathematical functions are  

1) Simple 1-dimensional function   ƒ1(x) = x(x-8)  

2)  Two dimensional Sphere function ƒ2(x, y) = x2 + y2 

3) Three dimensional Rastrigin function 

                ƒ3(x, y, z) = 30 + x2+ y2+z2 – 10 (cos (2πx) + cos  

               (2πy)+ cos (2πz)) 

 

Our objective is to minimize these functions and to see the 

effect of varying step size on behavior of bacteria in a given 

search space. 

Analysis is restricted within specified search ranges as given 

in table 1 where p is the dimension of search space. 

  

Table 1. Detail of functions under consideration 

Function Range of Search 

Space 

Minima 

ƒ1 (-10 10)p ƒ1(4) = -16 

ƒ2 (-20 20)p ƒ2(0,0) = 0 

ƒ3 (-20 20)p ƒ3(0,0,0) = 0 

  

The initialization values of various parameters for BFO are 

given in the following table: 

 

Table 2. Parameters for BFO 

Parameter Initial Values 

S 20 

Nc 50 

Ns 4 

Nre 4 

Ned 2 

Sr S/2 

Ped 0.25 

3.2 Results of MATLAB simulations 
MATLAB simulations were done on considered benchmark 

functions by varying the step size in each simulation. Various 

graphs depicting the results are shown for all the functions.  

 

1) ƒ1(x) = x(x-8) 

 

In Fig 1 the function ƒ1 is shown followed by the 

subsequent Fig 2 to 4 showing the graphs of optimal 

solution provided by different bacteria for varying step 

sizes.  

 

 

 

 

 

 
 

Fig 1.  1D Simple function 

 

 
 

Fig 2.  For step size, C(i) = 0.05 

 

 
Fig 3.  For step size, C(i) = 0.1 
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Fig 4.  For step size, C(i) = 0.5 

 

2) ƒ2(x, y) = x2 + y2  

 

In Fig 5 the sphere function is shown followed by the 

subsequent Fig 6 to 8 showing the graphs of optimal 

solution provided by different bacteria for varying step 

sizes.  

 

 
Fig 5. Sphere function 

 

 

 

 

 

 

Fig 6.  For step size C(i) = 0.05 

 

 
Fig 7.  For step size C(i) = 0.1 
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Fig 8.  For step size, C(i) = 0.5 

 

 

3) ƒ3(x, y, z) = 30 + x2+ y2+z2 – 10 (cos  (2πx) + cos 

(2πy)+ cos (2πz)) 

 

 In Fig 9 the Rastrigin function is shown followed by the 

subsequent Fig 10 to 12 showing the graphs of optimal 

solution provided by different bacteria for varying step 

sizes.  

 

 
Fig 9.  Rastrigin function 

 

 

 

 
Fig 10.  For step size C(i) = 0.05 

 

 

 

 

 

 

 

 

 

 

 
Fig 11.  For step size C(i) = 0.1 
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Fig 12.  For step size C(i) = 0.5 

4. DISCUSSION ON THE RESULTS 
Above figures depicting optimal results for different step sizes 

and table 3 clearly show that bacteria with larger step size 

explore more search space as compared to bacteria with 

smaller step sizes. However, they can, sometimes, miss the 

best solution by taking very large steps which can be observed 

from the values of best solution for largest step size as shown 

in table 3.  Smaller step sizes give better results by exploring 

the search space minutely. Limitation of taking small step size 

is that sometimes bacteria may get stuck into local optima as 

shown for function f3 (Rastrigin Function) in table 3. In these 

cases, it may not be able to reach at global optima for its 

entire life time.  

From above discussion it is clear that bacteria with larger step 

size would move in the entire search space while the bacteria 

with smaller step sizes would do fine search around local 

optimal solutions. Hence, chemotactic operator (i.e. the step 

size) should be chosen so as to allow the bacteria to explore 

the entire search space as well as to search effectively around 

the potential solutions. 

 
            Table3: Best solution for different step sizes        

Function Optimum position (Global minima) for different Step Sizes 

C(i) = 0.05 C(i) = 0.1 C(i) = 0.5 

ƒ1(x) 3.90 3.59 3.43 

ƒ2(x, y) 0.0083, 0.0058 -0.0256, 0.0400 0.1866, -0.3083 

ƒ3(x, y, z) 0.0182, -0.0369, -0.0124 0.0037, 0.0245, -0.0092 -0.0428, -0.0047, 1.0130 

 

5. CONCLUSION 
This paper has analyzed the effect of varying step size on 

chemotactic movement and hence foraging behavior of 

bacteria. It has been observed that faster chemotactic 

movement (i.e. larger step size) results in a wider search of 

given search space contrary to slower chemotactic movement 

(i.e. smaller step size) which performs comparatively narrow 

or minute search. From these observations, we conclude that 

Chemotaxis is highly dependent on step size. We further 

conclude that while deciding the step size of bacteria, great 

care should be taken such that bacteria may be able to search 

for the potential solution as effectively as they can. Depending 

on the nature of search space, bacteria can be made self 

adaptive in deciding the value of the step size. Effect of cell to 

cell attractant and repellant can also be included.   

6. REFERENCES 
[1] C. A. Floudas, “Deterministic Global Optimization: 

Theory, Methods and Applications”, vol. 37 of 

Nonconvex Optimization and Its Applications, Kluwer 

Academic Publishers, Dordrecht, The Netherlands, 2000. 

[2] J. H. Holland, “Adaptation in Natural and Artificial 

Systems: An Introductory Analysis with Applications to 

B, control, and Artificial Intelligence”, University of 

Michigan Press, Ann Arbor, Michigan, USA, 1975. 

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: 

Optimization by a colony of cooperating agents,” IEEE 

Transactions on Systems, Man, and Cybernetics. Part B, 

vol. 26, no. 1, pp. 29–41, 1996. 

[4] Kennedy, J., & Eberhart, R. C., “Particle swarm 

optimization” in Proceedings of IEEE international 

conference on neural networks, Piscataway, NJ, pp. 

1942–1948, (1995). 

[5] K. M. Passino, “Biomimicry of bacterial foraging for 

distributed optimization and control,” IEEE Control Syst. 

Mag., vol. 22, no. 3, pp. 52–67, Jun. 2002. 

[6] Sotirios P. Chatzis, Spyros Koukas, “Numerical 

optimization using synergetic swarms of foraging 

bacterial populations”, Elsevier Expert Systems with 

Applications, vol. 38, Issue 12, pp. 15332-15343, Nov.-

Dec.,2011 

[7] Hanning Chen, Yunlong Zhu, and Kunyuan Hu, 

“Adaptive Bacterial Foraging Optimization”, 

Hindawi Publishing Corporation, Abstract and 

Applied Analysis, Volume 2011, Article ID 

108269, 27 pages, doi:10.1155/2011/108269. 

 


