
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

30

Software Performance Quality Evaluation of MINPHIS

Architecture using ATAM

Ishaya Gambo

Obafemi Awolowo University
Computer Science &

Engineering Department
Ile-Ife, Nigeria

Abimbola Soriyan
Obafemi Awolowo University

Computer Science &
Engineering Department

Ile-Ife, Nigeria

Philip Achimugu
Federal Univ. of Agriculture

Computer Science Department
Abeokuta

Abeokuta, Nigeria

ABSTRACT

Software architecture evaluation plays an important role in the

validation of quality models of software systems. This paper

is based on the research carried out where the Architecture

Trade-off Analysis Method (ATAM) was used. ATAM was

chosen and used because it provides insight into the way

quality attributes are mapped onto architecture and also shows

the trade-offs existing between the identified quality and

others. The evaluation was based on the developed Software

Architecture Scenario-Based Performance Quality Model

(SASPUM). The paper presents the results of the analysis

with ATAM by providing the set of scenarios and their

prioritization from brainstorming, the utility tree, the risks

discovered and non-risk documented; the sensitivity points

and trade-off points found. The evaluation supports the fact

that performance can be identified as a software quality

attribute, which is part of the execution model of software

system determined by the architecture of the software system,

and that is suitable for software architectural evaluation.

General Terms

Software architecture, ATAM, MINPHIS.

Keywords

Software quality, ATAM, Software architecture, MINPHIS,

SASPUM

1. INTRODUCTION
Software architecture and software quality are important

subjects in the emerging discipline of software engineering,

and it is concerned with improving the approach to software

quality. Software systems‟ quality can be equal to “error free”

system. In today‟s software development process, quality

requirements during architectural design and decision are

fundamental issues to the stakeholders (developers, analysts,

programmers, users etc.). Even though the software

engineering community has paid closer attention and done a

lot of work around software architecture in recent years, it is

still an evolving area. The software engineering community

has not really looked at software quality thoroughly most

especially from the perspective of software architecture. Till

date it is still like news to many involved in software

development processes and practices, most especially in the

developing nations like Nigeria. They are more particular

about the functionality of the system, and never bothered

about the non-functional attributes which are more paramount

to the stakeholders (end-users most especially). The challenge

in software development is to develop software with the right

quality levels. The main problem is not to know if a project is

technically feasible concerning functionality, but if a solution

exists that meets the software quality requirements. The

problem resulting from this is if the architecture determines

the quality of the system, do existing systems follow any

specific architecture for the quality to be determined at all

times? If architectural decisions determine a system‟s quality

attributes, what is the possibility of evaluating architectural

decisions with respect to their impact on those attributes?

However, we observed that within the engineering practices,

the architectural design is very crucial in the attainment of

quality goals. Quality issues have been a fundamental focal

target in the development of most information systems. This is

because most stakeholders involve in the usability of

information systems are particular about quality in terms of

functionality, ease of use and satisfaction. In this sense, we

are of the opinion that this quality attributes of software

systems can be highly constrained by a system‟s software

architecture. The work in [1] opined that “the importance of

the right software architecture to a development effort is

widely recognized” and [2] have done justice to establish the

prominent role software architecture plays in the overall

system quality. Thus, it is good to determine the time a

system‟s software architecture is specified whether the system

will have the desired qualities and whether it will follow any

specific architecture for the quality to be determined at all

times. To do this, an architectural evaluation will be necessary

to validate such.

Furthermore, the work in [3] opined that “a variety of

qualitative and quantitative techniques are used for analyzing

specific quality attributes.” These techniques have evolved in

separate communities, each with its own vernacular and point

of view that have been typically performed in isolation.

However, being able to evaluate the quality of software is

very important, not only from the perspective of a software

engineer, but also from a business point of view in order to

determine the level of the provided quality. Some of the

analysis and evaluation techniques used to achieve this

includes: the SAAM (Software Architecture Analysis

Method) [4], the QAW (Quality Attribute Workshop) [5], the

ADD (Attribute Driven Design) method [2], ATAM

(Architecture Trade-off Analysis Method) [6] and the CBAM

(Cost Benefit Analysis Method) [7] among others. This paper

addresses quality issues at the architectural level by using

ATAM. The paper is based on the research carried out to

evaluate the architecture of the Made in Nigeria Primary

Healthcare Information System (MINPHIS) currently running

in some tertiary and specialist hospitals in Nigeria. The choice

of ATAM for the evaluation was because it provides insight

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

31

into the way quality attributes are mapped onto architecture

and also shows the trade-offs existing between the identified

quality and others. ATAM was therefore used to provide the

set of scenarios and their prioritization from brainstorming,

the utility tree was provided, the risks were discovered (the

risks are alternatives that might create future problems in

some quality attributes), the non-risks were documented, the

sensitivity points and trade-off points were found. Sensitivity

here are alternatives for which a slight change makes a

significant difference in a quality attribute, while trade-offs

are decisions affecting more than one quality attribute.

2. MOTIVATION
Because software architecture is a major determinant of

software quality, it follows that software architecture is

critical to the quality of any software system. For the Made in

Nigeria Primary Healthcare Information System (MINPHIS),

the ability to know whether the system conforms to the

existing architecture for the quality to be determined at all

times is very important. In the work of [8], the performance

attribute of MINPHIS was considered. Their work approaches

performance issues qualitatively and developed the

performance quality model called Software Architecture

Scenario-Based Performance Quality Model (SASPUM). [8]

noted that “the validity of the model characterized into three

categories: stimuli, architectural decisions, and responses, can

be tested on any existing software architecture using PASA

(Performance Assessment of Software Architecture) and

ATAM”. Obviously, the achievement of quality attributes is

critical to the success of a system. Therefore, it would then

make sense to evaluate the architecture of a system in order to

ensure that it is going on the right track.

3. MADE IN NIGERIA PRIMARY

HEALTHCARE INFORMATION

SYSTEM AND ARCHITECTURE
MIHPHIS is a software package developed within the

INDEHELA projects (Methods for Informatics Development

for Health in Africa) in Nigeria and has been utilized in a

number of Nigerian Teaching and Specialist Hospitals. It is

principally a hospital patient information system. The

development of MINPHIS started back in 1989, by a doctoral

student from the University of Kuopio in Finland who visited

Computer Science and Engineering Department Obafemi

Awolowo University in Nigeria as a researcher. A very

rudimentary hospital information system, running on a stand-

alone PC, was then jointly developed. MINPHIS was

developed as a joint project between University of Kuopio in

Finland (UKU), Computer Science and Engineering

Department, OAU (Obafemi Awolowo University) and

OAUTHC (Obafemi Awolowo University Teaching Hospital

Complex) as a test bed. The system was originally installed on

a PC server with 3 dumb terminals in 1991. The 2nd

generation of the system implemented in 1998 was based on

more powerful servers running Microsoft NT, Intersystems

Cache, the VA Kernel and FileMan, and the FixIT software

developed in Finland. MINPHIS has spanned through a

thorough Information System Development Process with

clinical and patient information well taken care of via a wide

range of reports that could aid health policy and decision

makers.

Today, one of the hospitals currently using the system is the

OAUTHC. At the OAUTHC, MINPHIS is used as the

application system for medical record and other health

information exchange processes. During the research,

MINPHIS was used to make investigation on how it is being

used at the OAUTH. The investigation of the system

(MINPHIS) also serves as the requirements of OAUTH for

the redesign of the system, while the MINPHIS-enabled work

system(s) in OAUTH was considered as the case studies in

generating the scenarios.

The MINPHIS architecture in “figure 1” is a 2-tier

architecture. There are four layers, separated from each other

by well-defined interfaces depicted by dotted lines. As a 2-tier

architecture, it consists of data server (i.e. the FileMan

database and the M software, the legacy system on MINPHIS,

which can access the database directly) and the client

application. The database server is where the database serves

up data based on queries submitted by the application using

the hierarchical database system as the case is with MINPHIS,

while the application on the client computer consumes the

data and presents it in readable format..

4. RESEARCH DESIGN AND

METHODOLOGY
Relevant information on the relationship between a software

architecture and software quality, and requirements of a

system and its architecture were studied. It was discovered

that addressing performance quality attribute among others is

crucial for the system (MINPHIS), and this justifies the fact

that it is the most common quality attributes according to the

SEI-ATAM evaluations [9]. Different software architectural

views were studied and the Krutchen‟s 4+1 Views model with

the different views were adopted and used to provide the basis

for reasoning about the appropriateness and quality of the

architecture in achieving the system quality goals on the

developed quality model. The software architectural views,

tactics and design patterns were broken down into their

structural parts with the aim of providing the needed

architectural quality for evaluation. In this regard, a module

view of MINPHIS architecture was shown, the refinement

process for performance quality characteristics was shown as

reported in [8], and the performance tactics were generated.

The scenario-based approach to analyze and evaluate software

architecture was used after a thorough review of various

analysis and evaluation methods. The Architecture Trade-off

Analysis Method (ATAM) was chosen and used because it

provides insight into the way quality attributes are mapped

onto architecture and also shows the trade-offs existing

between the identified quality and others.

During the research, the OAUTH was visited six (6) times to

make investigation into how the system (MINPHIS) functions

and behaves during execution. The investigation was carried

out using interview and direct observation of the system at run

time. From the behavior of the system and how it functions,

scenarios were generated. Other scenarios were generated by

the stakeholders (these includes the system administrator,

system analyst, programmer, requirement engineer, and

medical record officers as users) based on the business

requirements of the system. All these were carried out with a

view to ensuring that existing software systems (for example

MINPHIS) follow a specific architecture for the quality to be

determined exactly at all times.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

32

Figure 1 : MINPHIS Architecture (Source: [10])

5.EVALUATION OF THE MINPHIS

ARCHITECTURE
ATAM is a scenario-based and model-based analysis

technique for software architectures that analyses a software

architecture with respect to multiple attributes and explicitly

considers the trade-offs inherent in the design. The goal of

ATAM is to learn where a quality characteristic of interest is

affected by architectural design decisions, so that careful

reasoning about those decisions is possible in order to

possibly model them more completely in subsequent analyses.

According to [6] “ATAM process is organized around the

idea that architectural styles are the main determinants of

architectural quality attributes”. ATAM has two main phases,

each of which consists of several intermediate steps. Totally,

the method contains nine steps [5, 11]. In support of [12],

ATAM requires a software architecture (SA) documented

with different views. During the evaluation with ATAM, the

SASPUM in [8] was used as the quality model. ATAM is

considered a mature approach, as it has been validated in

different domains. The purpose of ATAM to MINPHIS is to

assess the consequences of MINPHIS architectural decision

alternatives in light of the performance quality attributes. The

“figure 2” shows the phases and corresponding steps in of

ATAM.

The evaluation of the MINPHIS architecture focused on

determining the performance quality attribute. This quality

was identified among other non-functional qualities as

important characteristics for the system‟s stakeholders. The

purpose of MINPHIS application is for keeping and handling

electronic patient records and generating various reports for

health management and research purposes. The reports

include the patient status, medical history and admissions plus

indicators like length of stay per patient, discharge summaries,

mortality and morbidity data, and operations. So, the

important scenario is the time and resource behaviours. At the

start of the evaluation process, the present MINPHIS system

was considered and seen as a large system expected to

comprise several thousand lines of codes and is the third

version.

 PC Client

Functional and stylistic user interface standard

Web browser application

Visual Basic application

Delphi application

Basic file
entry,

edit,
browsing

Reports Login,
security,

menus,
etc.

Transactio
n

functions

Functional component interface

M Remote Procedure Call API

RPC Broker Client

Java components

Visual Basic components

Pascal components

XFID
comp.

 XFID
comp.

FM Components PRC log-in

TCP/IP network

RPC Broker
Server

M Remote Procedure Call API

M server

FileMan database

Remote Proc File

Fileman

21

Kernel 8 XFIX 1.0 M Application

(Not

Implemented)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

33

.

Figure 2: The phases and steps in ATAM

The system is fully implemented and running in some

hospitals in Nigeria. The system is serving as the information

backbone for the health care institutions in which it was

installed. It provides data about patients' treatment history as

well as tracking their insurance and other payments (i.e the

billing system). The system produces a large number of on-

demand and periodic reports, each tailored to the institutions

or hospitals specific needs. At this phase of evaluation, the

evaluator partners with the developers and end users of the

system in order to gather detail information needed for other

phases of the evaluation process. The evaluator served and

worked as the team leader, evaluation leader, questioner,

timekeeper, scenario scribe, data gatherer, process enforcer,

proceedings scribe and process observer. Three among the

developers of the system were contacted for detailed

information about the system. A one-day discussion was held

with one of the developer to give an overview of the system

from the architectural point of view on how the system

behaves during execution. The following steps of ATAM

were strictly followed.

5.1 Step 1: Present the ATAM
ATAM steps and expected outputs were outline and explained

to the team. Here, the process that everyone will be following

to answer questions and to set the context and expectations for

the other activities were explained by the team leader.

5.2 Step 2: Present business drivers
At the evaluation, one of the system stakeholders (a

developer) presented the business objectives for the MINPHIS

system from the development point of view, as well as from

the viewpoints of end users from the different hospitals using

the system. Some of the MINPHIS application business

requirements that were addressed include:

 Keeping patient records

 Answering ad hoc queries from medical researchers,

end users (e.g. cases of cholera for a period per

geographical location for specific age group or sex

or both).

 Providing performance information relevant to

particular health care professionals, such as the

mortality rates for patients treated by a particular

staff member, as well as number of patients

attended to by particular medical staff.

 Resource management decisions, by improving the

understanding of indicators such as the number of

consultations per day handled by medical

professionals, the number of patients per ward, and

the number of professionals who fails to write

discharge summaries for their patients, etc.

 Generating various reports for health management

and research purposes. The report the system

generates include the patient status, medical history

and admissions plus indicators like length of stay

per patient, discharge summaries, mortality and

morbidity data, and operations.

 Creation of a new version of the system (e.g., to be

web enabled, include web services, technologically

compliant with current needs etc.) that the

development organization could market to

customers and other health/hospital institutions

(teaching, private and public/government hospitals).

For the end users of the system which include but not limited

to: Obafemi Awolowo University Teaching Hospital

(OAUTH), Ladoke Akintola University of Technology

Teaching Hospital (LAUTECH-TH), the MINPHIS system

was to replace the manual system of handling Hospital/Health

Management and Information Systems (HMIS), which were

observed to be difficult to run, operate and maintain as well as

unresponsive to the current and projected business and

management needs of the healthcare practices. At the point

the end user‟s business requirement grew considering the

current trend of technological advancement and availability of

more software tools that can be used to improve the

architecture and system. Some of these business requirements

are:

 the ability of the system to deal with diverse cultural

and regional differences.

 the ability of the system to deal with multiple

languages (especially Foreign, English and other

local dialect like Yoruba, Hausa and Igbo as the 3

main language in the country) and currencies

(especially foreign currencies for foreigners who

might want to transact with the system when it has

been deployed on the web platform).

 a new system at least as fast as any legacy system

being replaced.

Start

Phase 1

Phase 2
Presentation of

the results

(Step 9)

Scenario

Analyses

(Step 8)

Scenario

generation

(Step 7)

ATAM

presentations

(Step 1–3)

Architectural

approaches

(Step 4)

Utility tree

generation

(Step 5)

Scenario

analyses

(Step 6)

Recapitulation

of phase 1

(Step 1-6)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

34

 an improved web based system with web services.

 a new single system combining distinct legacy

financial management systems.

However, the current MINPHIS system architecture needs to

be re-engineered in order to accommodate the above

requirements.

5.3 Step 3: Present architecture
During the evaluation and interactions with the developers

who happen to be the architect, before as well as during the

evaluation exercise, several views of the architecture and the

architectural approaches emerged.

5.4 Step 4: Catalog architectural

approaches
The MINPHIS architectural approaches identified include:

 layering, especially the FileMan, RPC Broker

Server and readymade components.

 cache object orientation.

 client-server transaction processing.

 a data-centric architectural pattern, with a FileMan

database at its heart.

These and other approaches gave the evaluation a conceptual

footing from which to begin asking probing questions when

scenario analysis began.

5.5 Step 5—Generate quality attribute

utility tree
In this step, performance quality attribute of the MINPHIS

system was considered, identified, prioritized, refined and

used to show how it has been affected in particular scenarios.

From the performance attribute selected, one or more specific

descriptions and scenarios were produced. Each scenario is

classified according to their priority on importance and

difficulty. Consequently, “table 1” shows the performance

quality attribute, the attribute refinement and scenarios. These

scenarios are generated for the stakeholders: the end users, the

architect and the application developer. The scenarios in

“table 1” are annotated with the priority rankings assigned by

the decision makers of the system present. The first of each

ordered pair indicates the importance of the capability; the

second indicates the architect's estimation of the difficulty in

achieving it. “Figure 3” shows the performance utility tree.

The utility tree contains „utility‟ as the root node, with the

performance quality attribute forming the secondary level of

the utility tree. The prioritization in the utility tree is based on

relative rankings: High (H), Medium (M) and Low (L). The

utility tree contains utility as the root node, which shows the

overall “goodness” of the system. Typically, the quality

attribute performance is the high-level node immediately

under utility. Performance is broken down into “data latency”,

“transaction throughput” and “transaction response time”.

This is a step towards refining the attribute goals to be

concrete enough for prioritization. Latency and throughput are

two of the types of response measures noted in the attribute

characterization as described in [8]. Data latency was refined

into “Minimize storage latency on patient database” and

“Generate patient report within 10ms”. Transaction response

time is refined into “A user updates a patient's account in

response to a change-of-address notification while the system

is under peak load, and the transaction completes in less than

one second” and “A user updates a patient's account in

response to a change-of-address notification while the system

is under twice the current peak load, and the transaction

completes in less than 4 seconds), while throughput is refined

into “At peak load, the system is able to complete 150

normalized transactions per second”. This is meant to

maximize average throughput to the authentication server”.

Table 1. Tabular form of the utility tree for the MINPHIS

ATAM

Quality

Attribute

Attribute

Refinement

Scenarios

Performance

Transaction

response

time

A user updates a patient's

account in response to a

change-of-address

notification while the system

is under peak load, and the

transaction completes in less

than 1 second. (H,M)

A user updates a patient's

account in response to a

change-of-address

notification while the system

is under twice the current

peak load, and the transaction

completes in less than 4

seconds. (L,M)

 Throughput At peak load, the system is

able to complete 150

normalized transactions per

second. (M,M)

From the utility tree “Minimize storage latency on patient

database” has priorities of (M, L), meaning that it is of

medium importance to the success of the system and low risk

to achieve, while “Generate patient report within 10ms” has

priorities of (H, M), meaning that it is highly important to the

success of the system and achievement of this scenario is

perceived to be of medium risk. “A user updates a patient's

account in response to a change-of-address notification while

the system is under peak load, and the transaction completes

in less than 1 second” has priorities (H, M), meaning that it is

highly important to the success of the system and achievement

of this scenario is perceived to be of medium risk. “A user

updates a patient's account in response to a change-of-address

notification while the system is under twice the current peak

load, and the transaction completes in less than 4 seconds” has

priorities (L, M), meaning that it is of low importance to the

success of the system and medium risks to achieve. “At peak

load, the system is able to complete 150 normalized

transactions per second” has priorities (M, M), meaning that it

is of medium importance to the success of the system and is

perceived to be of medium risk.

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

35

Figure 3: Performance utility tree

5.6 Step 6: Analyze architectural

approaches
In this step, the architectural approaches analyzed were related

to the scenarios and their rankings. The utility tree exercise

produced no scenarios ranked (H, H), which indicates high-

importance, high-difficulty scenarios that merit high

analytical priority. The (H,M) scenarios was targeted, a

cluster of which appeared under "Data Latency" and

“Transaction Response Time” hypothesizing the generation of

patient report within 10ms (H, M) and updating a patient‟s

account in response to a change record while the system is

under peak load, and the transaction complete in less than 1

second. (H,M). From the prioritization of these scenarios,

shown by the (M, L), (H, M), (H, M), (L, M) and (M, M)

beside the scenarios, it is decided that the architectural quality

attribute - performance is important to the system. The second

and third scenario is chosen because it is of high importance

to the success of the system, and of medium level of difficulty

to the stakeholders. The fourth scenario is not considered

because it is of low importance to the system.

5.7 Step 7: Brainstorm and prioritize

scenarios
At the level the some of the stakeholders were actively

engaged and they were so productive and resourceful. They

contributed to the about 5 scenarios in this step. These

scenarios are the ones at the leaves of the step 5's utility tree

but were not analyzed. At this point, the stakeholders

expressed their views on the fact that some scenarios deserved

more attention as in steps 1 and 3 above. Some of the selected

scenarios are outlined in “table 2”:

Table 2. Lists of selected scenarios resulting from step 7.

Number

of event

Scenario

1 Data in the database is replicated to another

department, and performance is degraded

2 Decide to support the local dialet (e.g .Yoruba

and Hausa).

3 Add an NHIS service and supporting

functionality.

4 MINPHIS is installed in a hospital, and the

hospital's existing database must be converted.

5 A report needs to be generated using

information from two hospitals that use

different configurations.

Some of the prioritized list of brainstormed scenarios is

compared with the prioritized scenarios obtained from the

utility tree in step 5. At this point, three sessions of

brainstorming were held using different scenarios at each

session. This includes: (1) Use case scenarios, where the

stakeholder is the end-user, (2) Growth scenarios, which

represents the way in which growth in architecture is

perceived and (3) Exploratory scenarios, which represent

extreme forms of growth in the architecture.

5.8 Step 8: Analyze architectural

approaches
In step 8, the risk, non-risk, sensitivity and trade-off points

were identified. Considering the performance quality attribute,

the performance factor is expressed as number of transactions

per unit time or the time taken to perform one transaction.

This property enables the understanding of the responsiveness

of the system. At this level we sub-divided this step into four

stages consisting of:

Utility

Performance

A user updates a patient's account in response to a change-of-

address notification while the system is under peak load, and

the transaction completes in less than 1 second. (H,M)

Data Latency

Minimize storage latency on

patient DB to 200ms. (M, L)

A user updates a patient's account in response to a change-of-

address notification while the system is under twice the

current peak load, and the transaction completes in less than 4

seconds. (L,M)

At peak load, the system is able to complete 150 normalised

transactions per second. (M, M)

Transaction

Response Time

Transaction

Throughput

Generate patient report within

10ms (H, M)

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.23, May 2012

36

a) Investigation of architectural approach

The MINPHIS architecture is command driven at

the interface level, so the performance of the entire

system cannot be measured as number of

transactions per unit time.

b) Creation of analysis question

At this level we had the following questions for

analysis: (i) Does the architecture process any task

in the fastest possible speed? (ii) How are priorities

assigned to processes? (iii) What are the message

arrival rates? And (iv) What are transaction

processing times?

c) Risk and Non-Risk

The decision to keep backup is a risk if the

performance cost is excessive, while decision to

keep backup is a non-risk if the performance cost is

not excessive.

d) Sensitivity and Trade-off points

The average speed at which the task is performed is

sensitive to the number of components involved in

processing the task. We arrive at the at the trade-off

point of number of components involved in

processing the task. It was also seen that keeping the

backup database affects performance also. So, it is a

trade-off between reliability and performance.

Conclusively, evaluating the system showed that the database

system need to be migrated from hierarchical to relational

structure. This convinced the evaluator that a well-thought-out

procedure was in place, with known strengths and reasonable

limitations.

5.9 Step 9: Analyze architectural

approaches

This is the final step of the ATAM evaluation. The

information collected during the evaluation was presented.

The main findings of the ATAM evaluation include: A utility

tree, Set of generated scenarios, Set of analysis questions, Set

of identified risks and non-risks, and the identified

architectural approaches.

6. CONCLUSION
It may be argued that software quality is part of the execution

model of software system which is determined by the

software architecture. So, quality control and management

must be carried out through the whole development process of

software systems to ensure the implementation of required

quality characteristics. More so, the importance of software

architecture to support the required quality characteristics has

been recognized many times by many different people. Since

quality is in the eye of the beholder, it then means more work

is needed to show the relationship that could exist among the

different perspectives in future analysis of software systems

from the architectural perspective.

7. ACKNOWLEDGMENT
I will like to appreciate Paul C. Clement (Ph.D) who was

formally at the Software Engineering Institute (SEI), Carnegie

Mellon University (CMU), Pittsburgh in USA for comments,

research materials and guidance during the period of my

research from which this paper is written. Your hospitable

spirit really gave me confidence to come closer and to have

more confidence in the subject area of software architecture

and software quality research. You made me feel proud of

what I have done and what I will yet do.

8. REFERENCES
[1] Kazman, R., Bass, Len., and Klein, M. 2006. The

essential component of software architecture design and

analysis. The Journal of Systems and Software 79 (2006)

1207-1216.

[2] Clements, P., Kazman, R., and Klein, M. 2002.

Evaluating Software Architecture: Methods and Case

Studies: Addison-Wesley, Boston, MA.

[3] Barbacci, M., and Klein, M. (1995). Quality attributes.

Technical report, 1995.

[4] Kazman, R., Abowd, G., Bass, Len., Webb, M. 1994.

SAAM: a method for analyzing the properties of

software architectures. In: Proceedings of the 16th

International Conference on Software Engineering.

Sorrento, Italy, May 16-12, 1994. IEEE Computer

Society, Los Alamitos, CA pp.81-90.

[5] Barbacci, M., Ellison, R., Lattanze, A., Stafford, J.,

Weinstock, C., and Wood, W. (2003). Quality Attribute

Workshops (QAW), third ed. (CMU/SEI-2003-TR-016),

third ed. Software Engineering Institute, Carnegie

Mellon University, Pittsburgh, PA.

[6] Kazman, R., Barbacci, M., Klein, M., Carriere, S., 1999.

Experience with performing architecture tradeoff

analysis. In: Proceedings of the 21st International

Conference on Software Engineering, May 1999, Los

Angeles, CA, pp. 54-63.

[7] Kazman, R., Asundi, J., Klein, M., 2001. Quantifying the

costs and benefits of architectural decisions. In:

Proceedings of the 23rd International Conference on

Software Engineering, May 2001, Toronto, Canada, pp.

297-306.

[8] Gambo, I., Soriyan, A., and Achimugu, P., 2011.

Software Architecture Performance Quality Model:

Qualitative Approach. ARPN Journal of Systems and

Software, Vol.1. April 2011, pp. 28-33.

[9] Ozkaya, I., Bass, L., Sangwan, R., and Nord, R. 2008.

Making Practical Use of Quality Attribute Information.

IEEE Software, vol 25, no.2, March/April 2008, pp. 28-

31.

[10] Korpela, M. 1990. The Ife Project: Report 1989. Health

care informatics in the context of a developing country.

University of Koupio, 1990.

[11] Kazman, R., Klein, M., and Clements, P. 2000. ATAM:

A Method for Architecture Evaluation. Technical Report

CMU/SEI-2000-TR-004, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh PA.

[12] Bass, L., Clements, P., and Kazman, R. (2003). Software

Architecture in Practice, second ed. Addison-Wesley,

Reading, MA.

