
International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

39

Multi Objectives heuristic Algorithm for Grid Computing

Fahd Alharbi

College of Engineering
King Abdulaziz University

Rabigh, KSA

ABSTRACT
Grid computing provides the means of using and sharing
heterogeneous resources that are geographically distributed
to solve complex scientific or technical problems. Task
scheduling is critical to achieving high performance on grid
computing environment. The objective of the scheduling
process is to map each task with specific requirements to a
capable machine in order to minimize the makespan. Task

scheduling is shown to be NP-complete problem, which
can be solved using heuristic algorithms. Several heuristic
algorithms have been proposed in the literature, and they
are either not efficient or complex. In this paper, we are
proposing a Multi Objectives heuristic Algorithm to
minimize the makespan and flow time and to maximize the
resource utilization with a low computational complexity.

General Terms
Heuristic algorithms

Keywords
Grid computing, scheduling, makespan, flow time

1. INTRODUCTION
The grid infrastructure provides a mechanism to execute

applications over geographically distributed machines by

sharing resources, which may belong to different

organizations [1-2]. These applications consist of various

tasks that must be performed on some capable resources in

the grid environment. Grid scheduler receives applications

from grid users, selects resources for these applications

according to their requirements, and finally maps

applications to resources based on certain objective. The

grid aims to schedule large number of tasks, with the goal

of reducing the tasks' completion time (makespan),

balancing the load across the machines [3-6], and

maximizing the resource utilization.

The problem of mapping resources to tasks has been shown

to be NP-complete [7-10]. These hard combinatorial

problems can be solved using the heuristic approach. There

are several heuristic algorithms have been proposed to

minimize the total completion time of the tasks in grid

systems [8, 11]. Among these heuristics, the Min-min

algorithm is considered to be simple and achieves the best

performance with respect to the makespan. This paper

presents the Mact-min for efficient tasks' mapping in the

grid computing systems.

The main features of the Mact-min are to achieve

minimum makespan, minimum flow time and maximum

resource utilization with low computational complexity.

The rest of the paper is organized as follows. Section 2

presents the related works. Section 3, the new scheduling

algorithm is presented. Section 4 presents some illustrative

examples. Section 5 exhibits comparison study among the

scheduling algorithms and we conclude at Section 6.

2. Related Works
In this section, we will discuss the scheduling operation in the
Grid systems along with the major available heuristic
scheduling algorithms and the performance criteria. Consider
a Grid system with M tasks to be mapped to N machines.

Each machine in the computational grid executes a single task
at a time. In static heuristics, the accurate estimate of the
expected execution time for each task on each machine is
known before scheduling process. The expected time to
compute matrix (ETC) includes the estimated execution time

of task i (1,2,...,i M) on machine j (1,2,...,j N), ETC

(ti, mj). When machine mj is not capable to execute task ti, the
value of ETC (ti, mj) is set to infinity. The completion time for
a task ti on machine mj, ct (ti, mj), is as follows:

ct (ti, mj)= mat(mj)+ ETC (ti, mj) (1)

where, mat(mj) is the machine availability time; the time
when machine mj complete the execution of all the previously
assigned tasks.

2.1 Grid Scheduling Objectives
Now, we discuss several performance criteria to evaluate the
quality of the grid scheduling algorithm.

2.1.1 Computational complexity
This criterion will measure how fast the scheduling algorithm
in finding the feasible solution in a highly dynamic
environment.

2.1.2 Makespan
The main objective of the heuristic scheduling algorithms is to
minimize the completion time of last finished task
(makespan).

The makespan is computed as follows:

makespan = max(ct(ti, mj)) , i=1,2,…,M , j=1,2,….,N (2)

Also, we can compute the makespan as the following:

makespan = max(mat(mj)) , j=1,2,….,N (3)

here, mat(mj) is the last computed machine availability time;
the time when machine mj complete execution of all the
assigned tasks.

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

40

2.1.3 Flow time
Flow time is the sum of all the time needed by all machines to
finish all tasks. Flow time is computed as the following:

()
1

N
Flowtime mat mj

j

 (4)

The heuristic scheduling algorithm aims to minimize the flow
time by minimizing the average task completion time.

2.1.4 Fitness
Minimizing the flow time requires that small tasks are
mapped to the fastest machines. Accordingly, the large tasks
will take longer completion time, and the makespan will be
maximized. On the other hand, minimizing the makespan

requires that large tasks are mapped to the quicker machines.
Therefore, the small tasks will take longer completion time,
and the flow time will be maximized. The fitness criterion
will measure the ability of the scheduling algorithm to
optimize the makespan ant the flow time. The fitness value is
computed as following:

(1)*
*

p flowtime
Fitness p makespan

N

 (5)

where, p is in the range of zero to one based on the
importance of the objective. In section 5 we set p to 0.5.

2.1.5 Resource Utilization
Resource utilization is the essential performance criterion for
the grid managers. The machine's utilization is defined as the
percentage of time that machine mj is busy during the
scheduling time. The machine's utilization is computed as
follows:

()
 1,2,...,

mat mj
mu for j N

j makespan
 (6)

The grid's resource utilization is the average of machines'

utilization:

1

N
mu

jj
RU

N

 (7)

2.2 Grid Heuristic Scheduling Algorithms
Several heuristic algorithms have been proposed to schedule
tasks in the Grid computing environment. The commonly
used algorithms are discussed in the following.

2.2.1 Minimum Execution Time (MET)
MET (Figure 1) assigns each task in arbitrary order to the
machine with the minimum expected execution time for the
task regardless of the machine availability time [8]. MET
assigns each task its best machine. This leads to severe load
unbalance among machines. The heuristic complexity

is NMO , where N and M are the number of machines and

the number of tasks respectively.

2.2.2 Opportunistic Load Balancing (OLB)
OLB assigns each task in arbitrary order to the next available
machine regardless of the task’s expected execution time on
the machine [8, 12]. OLB aims to balance the load among the
Grid system machines which leads to poor makespan.
Furthermore, The OLB heuristic complexity is similar to the
MET heuristic.

2.2.3 Minimum Completion Time (MCT)
MCT assigns each task in arbitrary order to the machine with
the minimum completion time for the task. Thus, some tasks
may not be assigned to the machine with minimum execution
time. The assigned task is deleted from the set of tasks, and
the completion times for all the remaining tasks are updated.
This process continues until all tasks are mapped [8].

Moreover, The MCT heuristic complexity is similar to the
MET heuristic.

2.2.4 Min-min
Min-min (Figure 2) first computes the completion time for
each task on each machine. Then, the machine with the
minimum completion time for each task is selected. Finally,

map the task with the minimum completion time to the
selected machine. The assigned task is deleted from the set of
tasks, and the completion times for all the remaining tasks are
updated. This process is repeated until all tasks are mapped [8,
12-14]. Min-min aims to minimize the makespan by assigning
tasks with minimum completion time (small tasks) to the
faster machines first followed by the tasks with longer
completion time (large tasks). This results in a load unbalance
and poor utilization. The Min-min heuristic complexity

is 2NMO .

2.2.5 Max-min
Max-min first computes the completion time for each task on
each machine. Then, the machine with the minimum
completion time for each task is selected. Finally, map the

task with the maximum completion time to the selected
machine. The assigned task is deleted from the set of tasks,
and the completion times for all the remaining tasks are
updated. This process continues until all tasks are mapped [8,
13-14]. Max-min achieves better performance better than the
Min-min algorithm when the number of small tasks is larger
than the number of long tasks. The Max-min heuristic
complexity is similar to the Min-min heuristic.

2.2.6 Sufferage
The task's sufferage value is the difference between its best
minimum completion time and its second best minimum
completion time. The task with high sufferage value is
selected and mapped to the machine with the minimum
completion time. The assigned task is deleted from the set of

tasks, and the completion times for all the remaining tasks are
updated. This process is repeated until all tasks are mapped [8,
15]. Since the Sufferage heuristic schedule the task that would
highly suffer if it is not assigned to the machine with the
minimum completion time first, it is expected to perform well
in the systems with machines are highly variant in their
execution times for a specific task. Moreover, the sufferage
heuristic complexity is similar to the Min-min heuristic.

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

41

Figure 1: The MET heuristic

Figure 2: The Min-min heuristic

3. THE PROPOSED HEURISTIC

ALGORITHM
In this section, we present the Mact-min heuristic algorithm
(Figure 3). Mact-min first computes the completion time for
each task on each machine. Then, the task with the maximum
average completion time is selected. Finally, map the selected
task to the machine with minimum completion time. The

assigned task is deleted from the set of tasks, and the
completion times and average completion time for all the
remaining tasks are updated. This process is repeated until all
tasks are mapped. The Mact-min heuristic pseudo code is

shown at Figure (3) and the heuristic complexity is NMO

if the number of machines is larger than the number of tasks,

otherwise, the heuristic complexity is 2MO .

4. ILLUSTRATIVE EXAMPLE
Consider a grid system with three machines and three tasks.
The ETC matrix is illustrated in Table 1. The performance of
the heuristic algorithms is shown at Figure (4). MET assigns
each task to the machine with the minimum expected
execution time for the task. Thus, all tasks have been mapped
to machine m3 and the makespan is 45. OLB assigns each

task in arbitrary order to the next available machine.
Accordingly, tasks t1, t2, and t3 have been mapped the
machines m1, m2, and m3 respectively and the makespan is
60. MCT assigns each task in arbitrary order to the machine
with the minimum completion time for the task. Hence, task
t1 is mapped to machine m3, task t2 is assigned to machine
m1 and task t3 is assigned to machine m3. Therefore, the
makespan is 30. Max-min maps tasks t1 and t3 to machine

m3, and task t2 to machine m1. As a result, the makespan is
30. Mapping of the Min-min is illustrated at Figure (5) where
the achieved makespan is 30 time units. Similarly, sufferage
algorithm achieves a makespan of 30 time units. On the other

hand, Mact-min is able to achieve the minimum makespan of
20 time units as shown at Figure (6). Figures (7-8) show that
Mact-Min is able to minimize the flow time and to achieve the
best resource utilization with a low computational complexity.

Figure 3: The Mact-min heuristic

Table 1: The scheduling scenario

m3 m2 m1

15 20 50 t1

15 60 20 t2

15 50 20 t3

Figure 4: The Makespan

1. for all tasks in the set U
2. for all machines
3. ct(ti, mj)= mat(mj)+ ETC (ti, mj)
4. do until all tasks in U are mapped

5. find the task ti with the minimum completion time and the
machine supports this minimum completion

min(min(ct(ti,mj))), i unassigned tasks , 1,2,...,j N

6. assign task ti to the machine with minimum completion
time
7. delete the selected task from U

8. update mat(mj) for, 1,2,...,j N

9.update ct(ti,mj), i unassigned tasks , 1,2,...,j N

10.end do

1. for all tasks in the set U
2. for all machines
3. do until all tasks in U are mapped
4.for each task ti in U in an arbitrary order find the
machine with the minimum execution time

 Min(ETC (ti, mj)), 1,2,...,j N

5. assign task ti to the machine with minimum completion

time
6. delete the selected task from U
7.end do

1. for all tasks in the set U
2. for all machines
3. ct(ti, mj)= mat(mj)+ ETC (ti, mj)
4. for all tasks compute the average completion time

1

(,)

() 1,2,...,

N

j

ct ti mj

act i for i M
N

5. do until all tasks in U are mapped
6. find the task with maximum average completion time
 max(act(i)) for i unassigned tasks

7. find the machine mj with the minimum completion time
for the selected task ti

 min(ct(ti, mj)) for 1,2,...,j N

8. assign task ti to the machine mj
9. delete the selected task from U
10. update mat(mj) for the selected machine mj

11. update ct(ti, mj) for i unassigned tasks , j mj

12. update act(i)

 (,)

() () ,
i j

i unassigned tasks
ETC t m

act i act i
N

 (,)i jETC t m , is execution time of the selected task ti on

the selected machine mj
13.end do

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

42

Figure 5: The Min-min heuristic algorithm mapping

Figure 6: The Mact-Min heuristic algorithm mapping

Figure 7: The Flowtime

Figure 8: The Resource Utilization

5. PERFORMANCE ANALYSES
For a comparison study among the heuristic algorithms, we

are using the ETC model of benchmark simulation
experiments [8]. This model is based on Expected Time to
Complete (ETC) matrix for 512 tasks and 16 machines.
Twelve different instances of the ETC matrices (512x16) are
used. These instances are based on task heterogeneity,
machine heterogeneity, and consistency. These instances are
shown in Table 2. The task heterogeneity indicates the amount
of variance among the execution times of tasks for a specific

machine. On the other hand, Machine heterogeneity
represents the amount of variance among the execution times
of machines for a specific task. ETC matrix is consistent if a
machine mj executes all tasks either faster or slower than
machine mk [16]. In contrast, ETC matrix is inconsistent if
machine mj may be faster than machine mk for some tasks
and slower for others. Moreover, when some machines are
consistent while the other are inconsistent the ETC matrix is

semi consistent.

Table 2: the ETC model

The makespan of the heuristic algorithms for the twelve
different instances of the ETC matrices are normalized and
illustrated at Figures(9-11). The Mact-min achieves

performance compatible with the Min-min performance with
a lower computational complexity. In contrast, MET and OLB
are the worst heuristic algorithms with the respect to the
makespan criterion.
Figures (12-14) show the normalized flow times of the
heuristic algorithms for the twelve different instances of the
ETC matrices. OLB is the worst heuristic algorithms with the
respect to the flowtime criterion. On the other hand, Mact-min

able to minimize the flow time in most instances.
Figures (15-17) show that Mact-min is able optimize
makespan and flow time. In contrast, OLB is the worst in this
criterion.
Tables (3-5) show that MET is the worst heuristic algorithms
with the respect to the resource utilization criterion. On the
contrary, Mact-min achieved the best resource utilization in
all instances.

Figure 9: The Makespan (consistent instance)

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

43

Figure 10: The Makespan (inconsistent instance)

Figure 11: The Makespan (semi-consistent instance)

Figure 12: The Flowtime (consistent instance)

Figure 13: The Flowtime (inconsistent instance)

Figure 14: The Flowtime (semi-consistent instance)

Figure 15: The Fitness (consistent instance)

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

44

Figure 16: The Fitness (inconsistent instance)

Figure 17: The Fitness (semi-consistent instance)

Table 3: Resource Utilization (consistent instance)

CHiHi CHiLo CLoHi CLoLo

0.0625 0.0625 0.0625 0.0625 MET

0.9237 0.9472 0.9222 0.9452 OLB

0.9476 0.9617 0.9498 0.9621 MCT

0.9993 0.9996 0.9992 0.9994 Max-Min

0.891 0.9393 0.8927 0.9364 Min-Min

0.9775 0.9871 0.9761 0.9863 Suffrage

0.9992 0.9995 0.999 0.9994 Mact-min

Table 4: Resource Utilization (inconsistent instance)

iHiHi iHiLo iLoHi iLoLo

0.6673 0.7164 0.6434 0.7201 MET

0.9524 0.9575 0.9526 0.9581 OLB

0.9225 0.9565 0.925 0.9561 MCT

0.9981 0.999 0.9981 0.999 Max-Min

0.8344 0.9111 0.8338 0.9141 Min-Min

0.9351 0.9762 0.9413 0.9767 Suffrage

0.9955 0.9987 0.9955 0.9985 Mact-min

Table 5: Resource Utilization (semi-consistent instance)

SHiHi SHiLo SLoHi SLoLo

0.1174 0.1177 0.1183 0.1179 MET

0.9486 0.9557 0.9512 0.9555 OLB

0.9326 0.9559 0.9357 0.9546 MCT

0.9984 0.9991 0.9984 0.999 Max-Min

0.8368 0.9144 0.8334 0.9119 Min-Min

0.9609 0.9808 0.9626 0.9812 Suffrage

0.9975 0.999 0.9975 0.9988 Mact-min

6. CONCLUSION
The grid infrastructure provides a mechanism to execute

applications over geographically distributed machines by

sharing resources, which may belong to different

organizations. Task scheduling is critical to achieving high

performance on grid computing environment. The

scheduling algorithm aims to schedule large number of

tasks, with the goal of reducing the tasks' completion time

(makespan). Several heuristic algorithms have been

discussed. In this paper, we proposed the Mact-min

heuristic algorithm to achieve multi objectives, such as

minim makespan, minimum flow time, and to maximum

resource utilization in the Grid system with a low

computational complexity.

7. REFERENCES
[1] I. Foster, and C. Kesselman, The Grid 2: Blueprint for a

New Computing Infrastructure, Second Edition, Elsevier
and Morgan Kaufmann Press, 2004.

[2] Zhou Lei and Zhifeng, Allen, Gabrielle Yun, "Grid
Resource Allocation," in Grid Computing:
Infraestructure, Service, and Applications, Lizhe Wang,
Wei Jie, and Jinjun Chen, Eds. Boca Raton: CRC Press,
2009, ch. 7, pp. 1172-188.

[3] Hojjat Baghban, Amir Masoud Rahmani, “ A Heuristic on

Job Scheduling in Grid Computing Environment”, In
Proceedings of the seventh IEEE International
Conference on Grid and Cooperative Computing, pp.
141-146, 2008.3605-7, pp. 8-12, 2009.

[4] Li Wenzheng, Zhang Wenyue, “ An Improved Scheduling
Algorithm for Grid Tasks”, International Symposium on
Intelligent Ubiquitous Computing and Education, pp. 9-
12, 2009.

[5] Hesam Izakian, Ajith Abraham, and Václav Snasel,

"Comparison of Heuristics for Scheduling Independent
Tasks on Heterogeneous Distributed Environments," vol.
1, pp. 8-12, 2009.

[6] Fatos Xhafa and Ajith Abraham, Meta-heuristics for
Scheduling in Distributed Computing Environments.:
Springer-Verlag Berlin Heidelberg, 2008, pp. 1-38, 247-
272.

[7] T.Braun, H.Siegel, N.Beck, L.Boloni, M.Maheshwaran,

A.Reuther, J.Robertson, M.Theys, B.Yao, D.Hensgen,
and R.Freund, “A Comparison Study of Static Mapping
Heuristics for a Class of Meta-tasks on Heterogeneous
Computing Systems”, In 8th IEEE Heterogeneous
Computing Workshop(HCW’99), pp. 15-29, 1999.

[8] Tracy D.Braun, Howard Jay Siegel, and Noah Beck, “A
Comparison of Eleven Static Heuristics for Mapping a

International Journal of Computer Applications (0975 – 8887)
Volume 46– No.18, May 2012

45

Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems”, Journal of Parallel and
Distributed Computing 61, pp.810-837, 2001.

[9] Miguel L. Pinedo, Scheduling: Theory, Algorithms, and
Systems, Fifth Edition.: Springer, 2008.

[10] Izakian Hesam, Abraham Ajith and Snasel Vaclav,
Comparison of Heuristics for Scheduling Independent
Tasks on Heterogeneous Distributed Environments, The
2009 IEEE International Workshop on HPC and Grid
Applications (IWHGA2009), China, IEEE Press, USA,
ISBN 978-0-7695- 3605-7, pp. 8-12, 2009.

[11] J.M.Schopf, “A General Architecture for Scheduling on
the Grid”, special issue of JPDC on Grid Computing,

2002.
[12] R.F.Freund, and M.Gherrity, “Scheduling Resources in

Multi-user Heterogeneous Computing Environment with

Smart Net”, In Proceedings of the 7th IEEE HCW, 1998.
[13] R.Armstrong, D.Hensgen, and T.Kidd, “The Relative

Performance of Various Mapping Algorithms is
Independent of Sizable Variances in Run-time
Predictions”, In 7th IEEE Heterogeneous Computing

Workshop(HCW’98), pp. 79-87, 1998.
[14] R.F.Freund and H.J.Siegel,”Heterogeneous Processing”,

IEEE Computer, 26(6), pp. 13-17, 1993.
[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R.

F. Freund, Dynamic mapping of a class of independent
tasks onto heterogeneous computing systems, J. Parallel
Distributed Computing 59, 2 (Nov. 1999), 107_121

[16] J.Brevik, D.Nurmi, and R.Wolski, “Automatic Methods

for Predicting Machine Availability in Desktop Grid and
Peer-to-Peer Systems”, In Proceedings of CCGRID’04,
pp. 190-199, 2004.

