
International Journal of Computer Applications (0975 – 8887)

Volume 46– No.16, May 2012

21

Cascading of the PDLZW Compression Algorithm with
Arithmetic Coding

NiraliThakkar

Department of Computer Engineering,
Madhuben&Bhanubhai Patel Women’s Institute of

Engineering
New V. V. Nagar, India

 Malay Bhatt
Department of Computer Engineering, Dharamsinh

Desai University
Nadiad, Gujarat, India

ABSTRACT

This paper proposes the cascading of two algorithms that

combines the features of both PDLZW and Arithmetic coding

and also compares this with deflate which is a cascading of

LZ77 and Huffman Coding.In PDLZW algorithm, the

dictionary is divided into several dictionaries based on the size

of the words. With the hierarchical parallel dictionary set, the

search time can be reduced significantly. All this dictionaries

are operated independently with each other. The results

generated by Arithmetic Coding are close to the optimal value

(as predicted by entropy in information theory).

General Terms

Data Compression Algorithms.

Keywords

Arithmetic Coding,Huffman Coding, Lossless Data

Compression, Lossy Data Compression, Parallel Dictionary

LZW (PDLZW), Word-based Dynamic LZW (WDLZW).

1. INTRODUCTION
Data compression is the process of encoding the data, so that

fewer bits will be needed to represent the original data whereby

the size of the data is reduced.The primary intension of data

compression is to reduce the physical capacity of the data. Data

compression technique can be broadly divided into two major

families: Lossless data compression and Lossy data

compression.

As the name implies, the encoded data while restored will be

identical to original data in case of lossless data compression.

The various data compression techniques include Run Length

Encoding, Huffman Encoding, LZW encoding etc. In case of

lossy compression there are many trade-offs whereby some

degradation in the quality of the data will occur as part of

compression.

Deflate is two-stage lossless data compression algorithm that

uses the combination of LZ77 and Huffman coding. This will

take advantage of both the algorithms. It is a popular

compression method that was originally used in the well-

known Zip and Gzip software and has since been adopted by

many applications. The following figure shows the block

diagram of deflate. At encoder side, the row data are

compressed by LZ77 encoder. The output of LZ77 is Literals

and length/distance. It is processed by Huffman Encoder which

results in compressed bit stream. At decoder side, compressed

data is decoded in the Huffman Decoder to construct a stream

of symbols required by the LZ77 decoder. The LZ77 decoder

operates reconstruct the original data.

The Huffman algorithm is simple and efficient. Huffman codes

have to be an integral number of bits long, and this can

sometimes be a problem. If the probability of a character is 1/3,

for example, the optimum number of bits to code that character

is around 1.6 (= -log2 (1/3)) bits. Huffman coding has to assign

either one or two bits to the code and either choice lead to a

longer compressed message than is theoretically possible. This

non optimal coding becomes a noticeable problem when the

probability of a character is very high [2]. Thus the Huffman

coding always produces rounding errors while Arithmetic

coding replaces a stream of input symbols with a single

floating-point output number.

\

Fig 1 Block diagram of deflate

One of the most widely used compression methods for lossless

compression is LZ77.LZ77 encoder maintains a sliding

window to the input stream and shifts the input in that window

from right to left as strings of symbols are being encoded. The

window below is divided into two parts. The part on the left is

called the search buffer. This is the current dictionary, and it

always includes symbols that have recently been input and

encoded. The part on the right is the look-ahead buffer,

containing text yet to be encoded. An LZ77 token has three

parts: offset, length, and next symbol in the look-ahead buffer.

The main disadvantage of LZ77 is the size of both the buffers

is very small. Increasing the sizes of the two buffers also means

creating longer tokens. These will produce the higher

compression ratio but it will reduce the compression efficiency

[5].

LZW is a dictionary based compression, which encodes input

data through establishing a string table and searching the table

to identify the longest possible input data string that exists in

the table. The encoded output is a sequence of the matching

string‟s address and length. It can typically compress large

English texts to about half of their original sizes. However,

Row Data
LZ77

Encoder

Huffman

 Decoder

Compressed Data

Huffman

Encoder

LZ77

Decoder
Original

Data

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.16, May 2012

22

conventional LZW algorithm requires large amount of

processing time for adjusting and searching through the

dictionary [3].

The dynamic LZW (DLZW) and word-based DLZW

(WDLZW) algorithms were proposed to improve searching

efficiency. In DLZW, the dictionary has been initialized with

different combinations of characters. It is organized in

hierarchical string tables. The baseline idea is to store the most

frequently used strings in the shorter table, which requires

fewer bits to identify the corresponding string. The tables are

updated using the move-to-front and weighting system with

associated frequency counter. During the compression time,

after the longest matching string is recognized in the table, it is

moved to the first position of its block. The table updating

process is based on the least recently used (LRU) policy to

ensure that frequently used strings are kept in the smaller tables.

This is to minimize the average number of bits required to code

a string when compare with a single table implementation [3].

The WDLZW algorithm is a modified version of DLZW that

focuses on text compression by identifying each word in the

text and make it a basic unit (symbol). The algorithm encodes

the input word into literal codes and copy codes. If the search

for a word has failed, it is sent out as a literal code, which is its

original ASCII code preceded by other codes for identification.

The copy code is the address of the matching string in the

string table. However, both algorithms are too complicated. To

improve this, parallel dictionary LZW (PDLZW) was proposed.

Since not all entries of the DLZW dictionary contains the same

word size, this leads to the need of the entire dictionary search

for every character. Consequently, the PDLZW has designed to

overcome this problem by partitioning the dictionary into

several dictionaries of different address spaces and sizes. With

the hierarchical parallel dictionary set, the search time can be

reduced significantly since these dictionaries can operate

independently and thus can carry out their search operation in

parallel [3].

2. TWO-STAGE ALGORITHM
In this section, a new two-stage algorithm is proposed. In this

approach, the row data is given to the PDLZW encoding

algorithm. The output of the PDLZW is given to the Arithmetic

coding for further compression. The decompression process is

totally reverse. Figure 2 shows the block diagram of this new

two-stage algorithm.

Fig 2 Block diagram of a new two-stage algorithm

As shown in figure 2, the row data is given to PDLZW

encoding algorithm.PDLZW algorithm is a LZW based

implementation using a parallel dictionary set. It partitions one

large dictionary into several small variable-word-width

dictionaries. Searching in parallel through small dictionaries

would require less amount of processing time than searching

sequentially through one large-address-space dictionary.

The PDLZW encoding algorithm is based on a parallel

dictionary set that consists m of small variable-word-width

dictionaries, numbered from 0 to m-1, each of which increases

its word width by one byte. More precisely, dictionary 0 has

one byte word width, dictionary 1 two bytes, and so on. The

following show the detailed operation of the PDLZW encoding

algorithm. PDLZW dictionary initialized with the input

symbols. ∑ represents the set of input symbols and |∑| indicate

the number of input symbols. The PDLZW Encoding

Algorithms are shown in [1] and [4]. The detail example of this

algorithm is shown in [6].

As shown in figure 2, the output of the PDLZW is given to

the Arithmetic encoder as an input. The output from an

arithmetic coding process is a single number less than 1 and

greater than or equal to 0. This single number can be uniquely

decoded to create the exact stream of symbols that went into its

construction. To construct the output number, the symbols are

assigned set probabilities. The detail arithmetic encoding

algorithm is shown in [2].

At the decoder side, first compressed file will be

decompressed by Arithmetic Decoder and the dictionary index

required by PDLZW is generated. Output of Arithmetic

decoder is given to the PDLZW decoder as an input. PDLZW

decoder uses this index and generates the actual string. One

reason for the efficiency of the PDLZW algorithm is that it

does not need to pass the dictionary to the decoder. The

PDLZW decoder can be built exactly as it was during

compression, using the input stream as data.

3. IMPLEMENTATION PROCESS
The following table shows the content of input file. This

row data is given to the PDLZW encoder as an input. PDLZW

encoder first separate out all character used in this file and

store those character into first dictionary.

TABLE I

CONTENT OF INPUT FILE

Input File:

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <times.h>

#include <stdlib.h>

#include <unistd.h>

#defined max1 500

int END_OF_STREAM, *a1;

static unsigned short int code;

static unsigned short int low;

static unsigned short int high;

The following table shows the dictionary structure which is

generated by the PDLZW Encoder. The total entry available in

the dictionary is 249. So the table shows the some selected

Row Data
PDLZW

Encoder

Arithmetic

Decoder

Compressed Data

Arithmetic

Encoder

PDLZW

Decoder
Original

Data

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.16, May 2012

23

entries in the dictionary. In table II, „∟‟ indicate new line

character. Here some selected entries are given. Dictionary

numbers are based on the size of string.

TABLE II

DICTIONARY STRUCTURE

Dictionary

Number

Dictionary

Index
String

Dictionary – 0

0 #

1 i

2 n

•

•

•

Dictionary – 1

45 #i

46 in

•

•

•

•

•

•

•

•

•

Dictionary – 9 248 .h>∟#incl

Dictionary – 10 249 .h>∟#inclu

After generating the dictionary, the PDLZW Encoder

generates the final output. The final output is shown by table

III.

TABLE III

OUTPUT OF PDLZW ENCODER

Index Output

0 0

1 1

2 2

3 3

4 4

5 5

•

•

•

•

•

•

21 49

22 51

23 53

24 55

•

•

•

•

•

•

204 10

205 124

Now, this final output of PDLZW Encoder is given to the

Arithmetic Encoder. Arithmetic Encoder findsthe frequency of

the each digit. Following table shows the frequency count of

some selected digits.

After calculating frequency count, Arithmetic Encoder finds

the lower and upper range of each value and then calculates the

low and high value according to the Arithmetic Encoding

Algorithm [2].

TABLE IV

FREQUENCY COUNT OF EACH COUNT

Digits Frequency Count

0 1

1 8

2 6

3 4

4 4

5 2

6 4

7 4

8 0

•

•

•

•

•

•

247 1

248 1

Arithmetic Encoder generates the compressed bit-file. Figure 3

shows the size of original file and compressed bit file. File size

of original file is 363 bytes and the file size of compressed file

is 173 bytes. Figure 4 shows the content of compressed bit file.

The first character of bit-file is NUL. The second character is

STX and so on. These are the ASCII character for the specific

value. These are the non-printable characters.

Fig 3File sizes of original file and compressed file

Fig 4 Content of compressed bit file

International Journal of Computer Applications (0975 – 8887)

Volume 46– No.16, May 2012

24

TABLE I

IMPLIEMANTATION RESULTS

File_name
Original_size

(Byte)

Deflate Proposed Algorithm

File

Size

Compression

Ratio

File

Size

Compression

Ratio

new.txt 261 142 54.40 97 62.83

file1.txt 12288 960 92.18 948 92.88

PDLZW10.c 68608 2662.4 96.11 2560 96.26

PDLZW_Arithmetic_

Decoding.c
88064 2867 96.74 2867 96.74

main.txt 872448 4505 94.83 4505 94.83

Fig 5 Comparison between Deflate and Preposed algorithm (PDLZW + Arithmetic Codig)

At decoder side, first Arithmetic Decoder one by one reads

the content of input file and decodes it. The output of the

arithmetic decoder is the same as the input of the arithmetic

encoder which is shown in table III. This is given to the PDLZW

decoder as an input. PDLZW decoder generates the output string

which is identical to the input file which is shown in table I.

PDLZW decoder also generates the dictionary which is same as

the dictionary generated by PDLZW Encoder (see Table II).

4. COMPRISON WITH DEFLATE
Table I shows the comparison between a new two-stage

algorithm with deflate. First column shows the different size of

text files. Figure 5 shows the graphical representation of both the

algorithms. For the small size of files the compression ratio of

both the algorithm is around 50-60 precent. As the file size

increases, the compression ratio also increases.

5. CONCLUSION
The cascading of PDLZW algorithm with Arithmetic coding

combines the features of both the algorithm and takes advantage

of PDLZW algorithm and Arithmetic coding. This combination

achieves the higher compression ratio compares to deflate. The

PDLZW is better than the other dictionary based algorithms. In

this algorithm, the dictionary is divided into several hierarchical

partitions. This improves the searching ability of the algorithm.

This combination improves the efficiency of algorithm and also

gains the higher compression ratio.

6. REFERENCES

[1] M. B. Lin, Jang-Feng Lee and Gene Eu Jan, “A Lossless

Data Compression and Decompression Algorithm and Its

Hardware Architecture”, IEEE Transections on VLSI

Systems, vol. 14, No. 9, pp. 925-936, Sep. 2006.

[2] M. Nelson and Jean-Loup Gailly , “The Data Compression

Book”, 2nd ed., BPB publications, 1996.

[3] P. Vichitkraivin and O. Chitsobhuk, “An Improvement of

PDLZW Implementation with a Modified WSC Updating

Technique on FPGA”, World Academy of Science,

Engineering and Technology, 2009.

[4] M.B. Lin, “A Hardware Architecture for the LZW

Compression and Decompression Algorithms Based on

Parallel Dictionary,” Journal of VLSI Signal Processing 26,

pp. 369-381, 2000.

[5] D. Salomon, “Data Compression the Complete Reference”,

4th ed., Springer, 2007.

[6] N. S. Thakkar, M. S. Bhatt, “Two-Stage Algorithm for Data

Compression”, International Conference on Advances on

Computer, Electronics and Electrical Engineering, 2012.

0
1000
2000
3000
4000
5000

Compressed_siz
e for Praposed
Algorithm(Bytes)

Compressed_siz
e for deflate
(bytes)

